#### **Discrimination** with Deformation

#### for Classification

#### Stéphane Mallat Centre de Mathématiques Appliquées Ecole Polytechnique

LVA, September 2010



## **Classification and Non-Linear LVA**

- Signals are deformed by unknown non-linear operators that carry information:
  - velocity in video, 3D shapes in stereo or shape from textures...
  - writing style, voice gender in speech, musical interpretation...
- Deformations: latent «operators»
- Classification requires estimating the amplitude of deformations
- Estimating deformations often comes with it

### **Classification Distance**

- Major classification difficulty: find a metric to compare signals if (f,g) ∈ C<sup>2</sup> then d(f,g) should be small
   if f ∈ C and g ∈ C' then d(f,g) should be big
- Supervised and non-supervised classifications assign classes by minimizing distances.
- What class of distances, how does it relate to deformations ?
- How to learn an optimized distance from training data ?

#### Low-Dimensional Framework

• For signals  $f \in \mathbb{R}^N$  on a smooth low-dimensional manifold: can use geodesic distances. MNIST digit data basis



- Deformable amplitude: length of the geodesic.
- Need to find the manifold and/or the geodesics from training data.

## High Dimensional Complex Signals

• Most complex signals (audio, images...) do not belong to low dimensional manifolds:

Texture Discrimination



- Patterns include textures
- Deformable template models do not apply.
- Not enough training data to estimate large dimensional manifolds: requires prior dimensional reduction.

#### **Dimensionality Reduction**

- In computer vision: dimensionality reduction and metrics are related to invariants to translation, rotation, scaling...
  - Histograms of wavelet coefficients: SIFT, bags of features
  - Deep learning neural networks.
- Works very well but not well understood.
- How to build invariants from high frequencies, and measure deformations for discrimination ?
- Invariants in quantum physics: specify the Lagrangian and the particle interactions in quantum field theory.

Configurations evolve along multiple paths: not just one path as in classical mechanics.

#### **Classification Metric Wish List**



• Classification with  $\mathbf{L}^2$  norm on a representation  $\Phi$ :

$$d(f,g) = \|\Phi(f) - \Phi(g)\|$$
.

• Classes are invariants to groups of operators  $\{D_{\tau}\}_{\tau}$  such as rigid translations  $D_{\tau}f(x) = f(x - \tau)$ , rotations, scalings...

if 
$$f \in \mathcal{C}$$
 then  $D_{\tau}f \in \mathcal{C}$  so  $d(f, D_{\tau}f) = 0$ .

hence  $\Phi$  should be invariant:  $\Phi(D_{\tau}f) = \Phi(f)$  if  $\tau = cst$ 

• For non-rigid deformations  $\tau(x)$  :  $D_{\tau}f(x) = f(x - \tau(x))$ metrics should provide the elastic deformation amplitude

$$|\Phi(f) - \Phi(D_{\tau}f)|| \sim ||f||_a \, ||\nabla \tau||_b \, .$$

• Metric on stationary processes:  $||E\{\Phi(F)\} - E\{\Phi(G)\}||$ .

Wednesday, October 13, 2010



- Failures of Fourier and wavelet metrics
- Interferences and invariant scattering: deep neural networks
- Mathematical properties of the invariant metrics
- Invariant metric on stationary processes
- O(N) learning and classification of patterns and textures
- Invariant scattering for general groups

## Deformation Instability of Fourier

- Elastic deformation  $D_{\tau}f(x) = f(x \tau(x))$  with  $|\nabla \tau| < 1$ .
- The Fourier modulus is translation invariant:

If 
$$\tau(x) = cst$$
 then  $|\widehat{D_{\tau}f}(\omega)| = |\widehat{f}(\omega)| : \Phi(f) = |\widehat{f}|$ .

• High frequency instability:

If  $\tau(x) \neq cst$  then  $\tau(x) \approx \tau(x_0) + \nabla \tau(x_0) \cdot (x - x_0)$  affine.

$$f(x) = \theta(x) e^{i\xi x} \Rightarrow D_{\tau} f(x) = \theta(x - \tau(x)) e^{i\phi(x_0)} e^{i(Id - \nabla \tau(x_0))\xi x}$$

$$\Rightarrow \| |\widehat{D_{\tau}f}| - |\widehat{f}| \| \sim \|f\| \| \nabla \tau \cdot \xi\|_{\infty}$$

#### Wavelet Transform Strategy

• Separates signal components in dyadic frequency bands:

$$W_{j,k}f = f \star \psi_{j,k}(x)$$
 with  $\psi_{j,k}(x) = 2^{-jd} \psi_k(2^{-j}x)$ 

If 
$$\forall \omega$$
,  $2(1-\delta) \leq \sum_{j,k} \left( |\hat{\psi}_k(2^j \omega)|^2 + |\hat{\psi}_k(-2^j \omega)|^2 \right) \leq 2$   
then  $(1-\delta) \|f\|^2 \leq \sum_{j,k} \|W_{j,k}f\|^2 \leq \|f\|^2$ 





# • Theorem If $D_{\tau}f(x) = f(x - \tau(x))$ then $\|W_j D_{\tau}f - W_j f\| \leq C \|f\| \left(2^{-j} \|\tau\|_{\infty} + \|\nabla \tau\|_{\infty}\right)$



• Near invariance if  $\|\tau\|_{\infty} \ll 2^j$ .



- . Lak
- Coarse to fine strategies: begin a large scale  $2^j$  and refine.
- Large scales keep low frequencies which are not discriminative, and hence produce big errors.
- How to build invariants and measure deformations through high frequencies ?
- Map high frequency wavelet coefficients to lower frequencies.

## **Modulus Demodulation** If $\psi(x) = \theta(x) e^{i\xi x}$ then $\psi_j(x) = \theta_j(x) e^{i\xi_j x}$ with $\theta_j(x) = 2^{-dj} \theta(2^{-j}x)$ and $\xi_j = 2^{-j}\xi$

so  $W_j f(x) = e^{i\xi_j x} f_j \star \theta_j(x)$  with  $f_j(x) = e^{i\xi_j x} f(x)$ 

hence 
$$|W_j f(x)| = |f_j \star \theta_j(x)|$$
.



#### **Modulus Interferences**



$$|W_j f(x)| = e_j + \frac{\epsilon_j(x)}{2e_j} + O\left(\frac{\epsilon_j^2(x)}{e_j^3}\right).$$

Music chord :







Wednesday, October 13, 2010



Wednesday, October 13, 2010

#### **Quantum Scattering**



#### **Quantum Scattering**





Iteration on a unitary one-step propagator  $U: U^m$ 

Builds paths  $p = \{(j_1, k_1), (j_2, k_2), \cdots, (j_{|p|}, k_{|p|})\}$ 





Iteration on a unitary one-step propagator  $U: U^m$ 

Builds paths 
$$p = \{(j_1, k_1), (j_2, k_2), \dots, (j_{|p|}, k_{|p|})\}$$

Scattering operator computes wavefunctions along paths:

$$S_J(p)f = U_J \prod_{n=1}^{|p|} U_{j_n,k_n} f = |\cdots|f \star \psi_{j_1,k_1}| \star \psi_{j_2,k_2}| \star \cdots |\star \phi_J$$

|p| is the scattering order.

 $||S_J(p)f||^2$ : probability to reach the detector through the path "p".















Wednesday, October 13, 2010

#### Multiple Mother Wavelets

Multiple mother wavelet transform:  $\psi_k(x)$  for  $1 \le k \le K$ .

 $\int \frac{|\hat{\psi}_d(2^j \omega)|^2}{|\hat{\psi}_d(2^j \omega)|^2}$ 

 $\omega_1$ 

0000



Metric over Scattering Paths



What are the properties of the scattering metric ?

$$||S_J f - S_J g||^2 = \sum_p \int |S_J(p) f(x) - S_J(p) g(x)|^2 dx$$
$$= \sum_p ||S_J(p) f - S_J(p) g||^2$$



If  $|p| \leq m$  then  $S_J(p)f = U^m(p)f$  where U is contractive and unitary so

 $S_J$  is contractive:

$$||S_J f - S_J g||^2 = \sum_p ||S_J(p) f - S_J(p) g||^2 \le ||f - g||^2$$

Wednesday, October 13, 2010



**Theorem:** For appropriate **complex** wavelets,  $S_J$  is unitary:  $\|S_J f\|^2 = \sum_p \|S_J(p)f\|^2 = \|f\|^2$ .

High energy paths are low order progressive paths.

#### Limit Metric

Theorem For 
$$(f,g) \in \mathbf{L}^2(\mathbf{R}^2)$$
:  
 $\|S_{J+1}f - S_{J+1}g\| \le \|S_Jf - S_Jg\|$   
so  $\lim_{J \to +\infty} \|S_Jf - S_Jg\| = d(f,g) \le \|f - g\|$   
and  $d(f,0) = \|f\|$ .

If f is supported in  $[0, 2^L]^d$  then  $J \leq L$ :

$$S_L(p)f = 2^{-dL} \int_{[0,2^L]^d} |\cdots| f \star \psi_{j_1,k_1}| \star \psi_{j_2,k_2}| \star \cdots | dx$$
$$d^2(f,g) = ||S_L f - S_L g||^2 = \sum_p |S_L(p)f - S_L(p)g|^2.$$

If  $f \in \mathbf{L}^2(\mathbf{R}^d)$  then d(f,g) is an integral over a path variable.

**Translation Invariance** 

If  $D_{\tau}f(x) = f(x - \tau)$  is a translation then

$$S_J(p)D_\tau f(x) = S_J f(x-\tau) = D_\tau S_J f(x) .$$

#### Theorem:

$$\lim_{J\to\infty} \|S_J D_\tau f - S_J f\| = d(D_\tau f, f) = 0.$$

#### **Elastic Deformations**

**Theorem** If  $D_{\tau}f(x) = f(x - \tau(x))$  with  $\|\nabla \tau\|_{\infty} < 1$ 

then for 
$$J > \log \frac{\|\tau\|_{\infty}}{\|\nabla \tau\|_{\infty}}$$

$$||S_J D_{\tau} f - S_J f|| \le C ||f||_w \log^{3/2} \left(\frac{||\tau||_{\infty}}{||\nabla \tau||_{\infty}}\right) ||\nabla \tau||_{\infty}$$
  
with  $||f||_w = \sum_{j=0}^{+\infty} ||W_j f||^2 + \sum_{j=-\infty}^{0} |j| ||W_j f||^2$ .

## Proof: $||S_J D_{\tau} f - S_J f|| \le ||D_{\tau} S_J f - S_J f|| + ||D_{\tau} S_J f - S_J D_{\tau} f||$ Key element: $||[W, D_{\tau}]||^2 = ||\sum_j [W_j, D_{\tau}] [W_j, D_{\tau}]^*||$

### Linearisation of Deformations

**Theorem** If 
$$D_{\tau}f(x) = f(x - \tau(x))$$
 with  $\|\nabla \tau\|_{\infty} < 1$   
then for  $J > \left(\log \frac{\|\tau\|_{\infty}}{\|\nabla \tau\|_{\infty}}\right)^{1/2}$   
 $|S_J D_{\tau}f - S_J f + \tau \cdot \nabla S_J(p)f\| \le C \|f\|_w \log\left(\frac{\|\tau\|_{\infty}}{\|\nabla \tau\|_{\infty}}\right) \|\nabla \tau\|_{\infty}$ 

 $\square \frown$ 

• Deformations are linearized: possibility to learn classification metrics through affine projections.

• Deformations  $\tau(x)$  (optical flow, stereo disparity) can be estimated with a system of linear equations:

$$\forall p , S_J(p)D_{\tau}f(x) - S_J(p)f(x) + \tau(x) \cdot \nabla S_J(p)f(x) \approx 0$$

#### Scattering Stationary Processes

• **Theorem:** If F(x) is a stationary then  $S_J(p)F(x)$  is stationary.  $E\{S_J(p)F(x)\} = E\{|\cdots|F \star \psi_{j_1}|\cdots|\star \psi_{j_{|p|}}(x)|\}$ and  $\operatorname{var}(S_J(p)F(x)) \leq \operatorname{var}(F(x))\beta^{|p|}$  with  $\beta < 1$ .

• Indeed, if F(x) is stationary then  $F \star \psi_j(x)$  and  $|F \star \psi_j(x)|$  are stationary and the modulus reduces the variance:

$$\frac{\operatorname{var}(|F \star \psi_j|)}{\operatorname{var}(F \star \psi_j)} = 1 - \frac{\pi}{4} \quad \text{if } F \text{ is Gaussian }.$$



#### **Computational Complexity**

- If f(n) is of size N then  $S_J(p)f(n)$  is of size  $N 2^{-dJ}$ For K mother wavelets:
- $O(K^m J^m)$  progressive paths of order  $|p| \leq m$ .
- If  $J = d^{-1} \log_2 N$  there are  $O(d^{-m} K^m (\log_2 N)^m)$  coefficients.
  - For images experiments: d = 2, K = 4, m = 3.
  - Computations: O(N).









#### **Gaussian White and Bernouilli**



F(x)

Bernouilli Process







## **Classification of Deformed Processes**

#### Joan Bruna

- Low dimensional affine space models in the scattering domain:
  - deformations are linearized: principal deformation directions
  - principal directions of residual variability for processes
- For realizations F of a class C let  $\mu(p) = E\{S_J(p)F\},\$

the class distance  $d(f, \mathcal{C}) = ||S_J f - \mu||^2$  is replaced by

$$d(f,\mathcal{C}) = \|S_J f - \mu - P_{\mathbf{W}_{\mathbf{M}}}(S_J f - \mu)\|^2$$



#### **Affine Space Selection**

- Affine space learning with PCA : O(training coefficients)
  - For each class  $C_k$ : compute the mean  $\mu_k$  and covariance  $\Sigma_k$  of  $S_J f_n$  for all training signals  $f_n \in C_k$
  - Best approximation space  $W_{k,M}$  of dimension M: space generated by the M eigenvectors of largest eigenvalues.
- Classification by penalized estimation:  $O(K (\log N)^m)$ 
  - The class of *f* is estimated by minimizing the class distance, penalized by its dimension:

$$k(f) = \arg\min_{1 \le k \le K} \min_{M} \left( \|S_J f - \mu_k - P_{\mathbf{W}_{k,M}} (S_J f - \mu_k)\|^2 + \lambda M \right)$$

- Cross validation estimation of  $\lambda$  and J during learning.

#### **Digit Classification: MNIST**



#### $S_J f$ with J = 3 and m = 3.

| Training Size | SVM              | Deep Net       | Scattering    | - | Training Size | SVM: $N_s$ | Scattering $M_{av}$ |
|---------------|------------------|----------------|---------------|---|---------------|------------|---------------------|
| 100           | 28%              |                | 15%           | • | 100           | 45         | 9                   |
| 500           | <b>12</b> %      | <b>6.0</b> ~%  | <b>3.4</b> %  |   | 500           | <b>120</b> | <b>40</b>           |
| 1000          | 8.5%             | 3.21%          | 2.2%          |   | 1000          | 200        | 80                  |
| <b>5000</b>   | <b>4.2</b> %     | <b>1.52</b> ~% | <b>1.3</b> %  |   | 5000          | 500        | 100                 |
| 10000         | 3.1%             | 0.85%          | 1.2%          |   | 10000         | 800        | 100                 |
| 30000         | 1.8%             | 0.7~%          | 0.85%         |   | 30000         | 1500       | 140                 |
| 60000         | $\mathbf{1.4\%}$ | <b>0.64</b> ~% | <b>0.78</b> % |   | 60000         | 2000       | 160                 |

#### **Textured Digit Classification**





#### $S_J f$ with J = 3 and m = 3.

| Training Size | SVM | Scattering | Training Size | SVM: $N_s$ | Scattering $M_{av}$ |
|---------------|-----|------------|---------------|------------|---------------------|
| 100           | 80% | 41%        | 100           | 500        | 10                  |
| 500           | 80% | 23%        | 500           | 500        | 40                  |
| 1000          | 80% | 18%        | 1000          | 1000       | 70                  |
| 5000          | 65% | 10%        | 5000          | 2000       | 160                 |
| 20000         | -   | 8%         | 20000         | _          | 100                 |

#### **Classification of Textures**



61 classes Training size per class: 46 Testing size per class: 46

Malik (3D Textons): **5.35%** Zisserman (MRF): **2.57%** Scattering error: **0.4%** 





- Need invariance to other groups of deformations  $\mathcal{G} = \{G_k\}_k$  rotations, scaling...
- Wavelets  $\{\psi_k = G_k \psi\}_k$  dilated  $\psi_{j,k}(x) = 2^{-dj} \psi_k(2^{-j}x)$  $W_j f(k, x) = f \star \psi_{j,k}(x)$

$$W_j(G_a f)(k, x) = G_a W_j f(k - a, x) .$$

• Invariance by invariant scattering along k.











- The properties of invariant scattering come as a suprise, with many open questions:
- Mathematics.
  - Characterization of the metric on stationary processes
  - Dimensionality and «size» of the attractor manifold.

Conclusion

#### • Applications.

- Image, audio (attacks) and generic classification
- Estimation of deformations, mouvements...
- Building and understand neural networks
- Biological plausible models of complex cells for perception ?
- Relations with quantum physics.