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 Classification and Non-Linear LVA

• Signals are deformed by unknown non-linear operators that carry 
information: 
– velocity in video, 3D shapes in stereo or shape from textures...
–  writing style, voice gender in speech, musical interpretation...

• Deformations: latent «operators»

• Classification requires estimating the amplitude of deformations

• Estimating deformations often comes with it
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    Classification Distance

• Major classification difficulty: find a metric to compare signals 

• Supervised and non-supervised classifications assign classes by 
minimizing distances.

• What class of distances, how does it relate to deformations ?

• How to learn an optimized distance from training data ?

if (f, g) ∈ C2 then d(f, g) should be small

if f ∈ C and g ∈ C′ then d(f, g) should be big
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    Low-Dimensional Framework

• For signals               on a smooth low-dimensional manifold: can 
use geodesic distances.

• Deformable amplitude: length of the geodesic.

• Need to find the manifold and/or the geodesics from training data.

f ∈ RN

MNIST digit data basis
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Current Opinion in Neurobiology   

 

Figure 5  
Diffusion embedding of images of lips. The lip alphabet is learnt from a set of pictures of the lips of a speaker. The manifold 
structure and its parameters are parametrized by the three top eigenfunctions (axes in the figure) of the diffusion, and this 
parametrization can be used to lip-read. An interpretation of the low order eigenfunctions is openness of the mouth and 
exposure of teeth. 
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Figure 6  
Classification of tissue types in a hyperspectral image through diffusion. (a) A slice of a hyperspectral image with three 
selected regions that correspond to three different biologically significant types of tissue: nuclei (blue), cytoplasm of epidermal 
cells (pink) and collagen in the underlying dermis (green). (b) Predictions of tissue type by a standard nearest neighbor 
classifier, trained on the set in (a). (c) Predictions made by the diffusion classifier described above, with the training set 
represented in (a). 

12 

Templates
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• Most complex signals (audio, images...) do not belong to low 
dimensional manifolds:

• Deformable template models do not apply.
• Not enough training data to estimate large dimensional manifolds: 

requires prior dimensional reduction.

 High Dimensional Complex Signals

Texture 
Discrimination

Patterns  
include textures
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             Dimensionality Reduction

• In computer vision: dimensionality reduction and metrics are 
related to invariants to translation, rotation, scaling...
– Histograms of wavelet coefficients: SIFT, bags of features
– Deep learning neural networks.

• Works very well but not well understood.

• How to build invariants from high frequencies, and measure 
deformations for discrimination ?

• Invariants in quantum physics: specify the Lagrangian and the 
particle interactions in quantum field theory. 
Configurations evolve along multiple paths: not just one path as 
in classical mechanics. 
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         Classification Metric Wish List

•Classification with       norm on a representation    : 

•Classes are invariants to  groups of operators             such as rigid 
translations                                     , rotations, scalings...

hence       should be invariant: 

•For non-rigid deformations 
metrics should provide the elastic deformation amplitude

•Metric on stationary processes: 

Φ Φ(Dτf) = Φ(f) if τ = cst

{Dτ}τ

d(f, g) = ‖Φ(f)− Φ(g)‖ .

L2 Φ

Dτf(x) = f(x− τ)

τ(x) : Dτf(x) = f(x− τ(x))

‖Φ(f)− Φ(Dτf)‖ ∼ ‖f‖a ‖∇τ‖b .

if f ∈ C then Dτf ∈ C so d(f, Dτf) = 0 .

‖E{Φ(F )}− E{Φ(G)}‖ .
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        Overview

• Failures of Fourier and wavelet metrics

• Interferences and invariant scattering: deep neural networks

• Mathematical properties of the invariant metrics

• Invariant metric on stationary processes

• O(N)  learning and classification of patterns and textures 

• Invariant scattering for general groups
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• Elastic deformation 

• The Fourier modulus is translation invariant:

• High frequency instability:

Deformation Instability of Fourier

Dτf(x) = f(x− τ(x)) with

If τ(x) = cst then |D̂τf(ω)| = |f̂(ω)| : Φ(f) = |f̂ | .

If τ(x) != cst then τ(x) ≈ τ(x0) +∇τ(x0) · (x− x0) affine.

f(x) = θ(x) eiξx ⇒ Dτf(x) = θ(x− τ(x)) eiφ(x0) ei(Id−∇τ(x0))ξx

⇒ ‖ |D̂τf |−| f̂ | ‖ ∼ ‖f‖ ‖∇τ · ξ‖∞

|∇τ | < 1.
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• Separates signal components in dyadic frequency bands:

    Wavelet  Transform Strategy

2−jπ 2−j+1π2−j−1π0 ω

|ψ̂(2jω)|2

Wj,kf = f ! ψj,k(x) with ψj,k(x) = 2−jd ψk(2−jx)

then (1− δ) ‖f‖2 ≤
∑

j,k

‖Wj,kf‖2 ≤ ‖f‖2

d = 1

ω1

ω2

d = 2

|ψ̂k(2jω)|2

If ∀ω , 2(1− δ) ≤
∑

j,k

(
|ψ̂k(2jω)|2 + |ψ̂k(−2jω)|2

)
≤ 2
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• Theorem 

• Near invariance if  

   Invariants with Wavelets

0 100 200 300 400 500 600
0

0.5

1

0 100 200 300 400 500 600
!0.5

0

0.5

1

f(x)

Wjf(x)

If Dτf(x) = f(x− τ(x)) then

‖τ‖∞ " 2j .

Dτf(x)

WjDτf(x)

‖WjDτf −Wjf‖ ≤ C ‖f‖
(
2−j ‖τ‖∞ + ‖∇τ‖∞

)

Φ = Wj
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• Coarse to fine strategies: begin a large scale       and refine.

• Large scales keep low frequencies which are not discriminative, 
and hence produce big errors. 

• How to build invariants and measure deformations through 
high frequencies ?

• Map high frequency wavelet coefficients to lower frequencies.

   Wavelet Failure

2j
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|̂Wjf |(ω)

If ψ(x) = θ(x) eiξx then ψj(x) = θj(x) eiξjx

with θj(x) = 2−dj θ(2−jx) and ξj = 2−jξ

so Wjf(x) = eiξjx fj ! θj(x) with fj(x) = eiξjx f(x)

hence |Wjf(x)| = |fj ! θj(x)| .

           Modulus Demodulation 

ω

ψ̂j(ω) = θ̂j(ω − ξj)

ξj2−jπ 2−j+1π0 ω

f̂(ω)

0 2−jπ−2−jπ

Low frequency mapping

Wednesday, October 13, 2010



|Wjf(x)| = ej +
εj(x)
2ej

+ O
(ε2j (x)

e3
j

)
.

e2
j εj(x)

|̂Wjf |(ω)

aj,m = am ψ̂(2jωm)

|Wjf(x)|2 =
∑

m

|aj,m|2 + 2
∑

m′ !=m

aj,maj,m′ cos(ωm − ωm′)x

   Modulus Interferences

f(x) =
∑

m

am cos(ωmx)

Interferences :Energy :

•  

2−jπ 2−j+1π0 ω

ψ̂(2jω)
f̂(ω)

0 2−jπ−2−jπω2 − ω1

ω3 − ω2
ω3 − ω1

Minor 3rd

Major 3rd

Perfect 5th

C Major

Music chord :
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f ! φj−1

f ! φj

Wjf = f ! ψj

Wj+1f

Wj−1f

f ! φJ

          Wavelet Transform

2−jπ 2−j+1π 2−j+2π

f̂(ω)

2−Jπ

! hj
! gj

Wednesday, October 13, 2010



0

̂|Wj+1f | |̂Wjf |
̂|Wj−1f |

2−j+1π2−jπ

          Interference Tree

00

2−jπ 2−j+1π 2−j+2π

f̂(ω)

2−Jπ

|Wj−1f |

|Wjf |

|Wj+1f |

f ! φJ
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f ! φjf

2j−1 2j 2j+1 2J0 time

f ! φj+1diffusion

interferences

Uj,kf = |f ! ψj,k| Uj+1,kf = |f ! ψj+1,k|

UJ = f ! φJ

 Quantum Scattering

{Uj1,k1f}j1,k1f
U

Detector

1 ≤ k ≤ K

Wednesday, October 13, 2010



f ! φjf

2j−1 2j 2j+1 2J0 time

f ! φj+1diffusion

interferences

1 ≤ k ≤ K

 Quantum Scattering

{Uj1,k1f}j1,k1f
U

Detector {Uj1,k1f Uj2,k2f} j1,k1
j2,k2

U

Uj,kf = |f ! ψj,k| Uj+1,kf = |f ! ψj+1,k|

UJ = f ! φJ

Wednesday, October 13, 2010



{Uj1,k1f Uj2,k2f} j1,k1
j2,k2

Iteration on a unitary one-step propagator U : Um

Builds paths p = {(j1, k1) , (j2, k2) , · · · , (j|p|, k|p|)}

 Quantum Scattering

{Uj1,k1f}j1,k1f
U U

Detector

Wednesday, October 13, 2010



SJ(p)f = UJ

|p|∏

n=1

Ujn,knf = | · · · |f ! ψj1,k1 | ! ψj2,k2 | ! · · · | ! φJ

|p| is the scattering order.

‖SJ(p)f‖2 : probability to reach the detector through the path ”p”.

Scattering operator computes wavefunctions along paths:

 Quantum Scattering

Iteration on a unitary one-step propagator U : Um

Builds paths p = {(j1, k1) , (j2, k2) , · · · , (j|p|, k|p|)}
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̂|Wj+1f | |̂Wjf |
̂|Wj−1f |

    One-step propagator U 

0
2−j+1π

2−jπ00

|Wj−1f |

|Wjf |

|Wj+1f |

f ! φJ
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    One-step propagator U 

|Wj−1f |
|Wjf |

|Wj+1f |

f ! φJ
|̂Wjf |

2−jπ

2nd wavelet 
   transform
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|Wj−1f |
|Wjf |

|Wj+1f |

f ! φJ
|̂Wjf |

2−jπ0

     Progressive paths: jn+1 > jn

2nd wavelet 
   transform

Wednesday, October 13, 2010



     Progressive paths: 

̂|Wj+1f | |̂Wjf |
̂|Wj−1f |

0 2−j+1π2−jπ00

jn+1 > jn
|Wj−1f |

|Wjf |

|Wj+1f |

f ! φJ

2nd wavelet 
   transform
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ŜJ(p)f

SJ(p)f

     Progressive paths: jn+1 > jn

2−j+1π

2nd order
scattering

Wednesday, October 13, 2010



     Progressive paths: jn+1 > jn

3rd order
scattering

ŜJ(p)f

SJ(p)f
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lim
J→∞

2Jd SJ(p)f(x) =
∫

| · · · |f ! ψj1,k1 | ! ψj2,k2 | ! · · · | dx

When J increases, SJ(p)f converges to the L1 norm along the path:

     Progressive paths: jn+1 > jn

4th order
scattering

Deep Convolution
Neural Network

ŜJ(p)f

SJ(p)f
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ψk(x) for 1 ≤ k ≤ K .

1st order

ω1

ω2

|ψ̂d(2jω)|2

Multiple mother wavelet transform:

  Multiple Mother Wavelets

Wednesday, October 13, 2010



ψk(x) for 1 ≤ k ≤ K .Multiple mother wavelet transform:

  Multiple Mother Wavelets

2nd order
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What are the properties of the scattering metric ?

‖SJf − SJg‖2 =
∑

p

∫
|SJ(p)f(x)− SJ(p)g(x)|2 dx

=
∑

p

‖SJ(p)f − SJ(p)g‖2

    Metric over Scattering Paths
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SJ is contractive:

‖SJf − SJg‖2 =
∑

p

‖SJ(p)f − SJ(p)g‖2 ≤ ‖f − g‖2 .

If |p| ≤ m then SJ(p)f = Um(p)f where U is contractivee and unitary so

             Contraction  

Wednesday, October 13, 2010



‖SJf‖2 =
∑

p

‖SJ(p)f‖2 = ‖f‖2 .

High energy paths are low order progressive paths.

Theorem: For appropriate complex wavelets, SJ is unitary:

              Unitary 
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‖SJ+1f − SJ+1g‖ ≤ ‖SJf − SJg‖

so lim
J→+∞

‖SJf − SJg‖ = d(f, g) ≤ ‖f − g‖

and d(f, 0) = ‖f‖ .

If f ∈ L2(Rd) then d(f, g) is an integral over a path variable.

SL(p)f = 2−dL

∫

[0,2L]d
| · · · |f ! ψj1,k1 | ! ψj2,k2 | ! · · · | dx

If f is supported in [0, 2L]d then J ≤ L:

d2(f, g) = ‖SLf − SLg‖2 =
∑

p

|SL(p)f − SL(p)g|2 .

          Limit Metric

Theorem For (f, g) ∈ L2(R2):
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If Dτf(x) = f(x− τ) is a translation then

Theorem:

SJ(p)Dτf(x) = SJf(x− τ) = Dτ SJf(x) .

lim
J→∞

‖SJDτf − SJf‖ = d(Dτf , f) = 0 .

   Translation Invariance
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‖SJDτf − SJf‖ ≤ C ‖f‖w log3/2
( ‖τ‖∞
‖∇τ‖∞

)
‖∇τ‖∞

Proof:
‖SJDτf − SJf‖ ≤ ‖DτSJf − SJf‖+ ‖DτSJf − SJDτf‖

then for J > log ‖τ‖∞
‖∇τ‖∞

with ‖f‖w =
+∞∑

j=0

‖Wjf‖2 +
0∑

j=−∞
|j| ‖Wjf‖2 .

Key element: ‖[W, Dτ ]‖2 = ‖
∑

j

[Wj , Dτ ] [Wj , Dτ ]∗‖

      Elastic Deformations

If Dτf(x) = f(x− τ(x)) with ‖∇τ‖∞ < 1Theorem
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∀p , SJ(p)Dτf(x)− SJ(p)f(x) + τ(x) ·∇SJ(p)f(x) ≈ 0 .

then for J >
(
log ‖τ‖∞

‖∇τ‖∞

)1/2

‖SJDτf − SJf + τ ·∇SJ(p)f‖ ≤ C ‖f‖w log
( ‖τ‖∞
‖∇τ‖∞

)
‖∇τ‖∞

Linearisation of Deformations

If Dτf(x) = f(x− τ(x)) with ‖∇τ‖∞ < 1Theorem

• Deformations           (optical flow, stereo disparity) can be 
estimated with a system of linear equations:        

• Deformations are linearized: possibility to learn classification 
metrics through affine projections.  

τ(x)
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 Scattering Stationary Processes

• Theorem: If             is a stationary then                     is stationary.                       

• Indeed, if            is stationary then                   and                     are 
stationary and the modulus reduces the variance: 

F (x) SJ(p)F (x)

F (x) F ! ψj(x) |F ! ψj(x)|

var(|F ! ψj |)
var(F ! ψj)

= 1− π

4
if F is Gaussian .

and var(SJ(p)F (x)) ≤ var(F (x))β|p| with β < 1 .

E{SJ(p)F (x)} = E{| · · · |F ! ψj1 | · · · | ! ψj|p|(x)|}
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For Gaussian white noise and wide classes of processes:

G

lim
J→+∞

‖SJF − SJG‖2 = ‖E{SJF}− E{SJG}‖2 .

E{SJF}

E{SJG}

lim
J→+∞

∑

p

var(SJ(p)F ) = 0

‖E{SJF}− E{SJG}‖2 ≤ E{|F (x)−G(x)|2} .

  Invariant Metric on Processes

F
MSJ

x

x

Theorem: If F and G are stationary then

‖E{SJF}− E{SJG}‖2 =
∑

p

|E{SJ(p)F}− E{SJ(p)G}|2
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For K mother wavelets:

If f(n) is of size N then SJ(p)f(n) is of size N 2−dJ

Computations: O(N).

For images experiments: d = 2, K = 4, m = 3.

O(Km Jm) progressive paths of order |p| ≤ m.

If J = d−1 log2 N there are O(d−m Km (log2 N)m) coefficients.

     Computational Complexity 
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|p| = 1 |p| = 2 |p| = 3 |p| = 4

             Path Ordering 

Scattering order reordering:
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          Musical Chord

|| | | | |

01     2               3              4              5   6 7

|

IJf(x, α)

f(x)

SJ(p)f

                   Scattering order
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I0F (α)

F (x)

  Gaussian White and Bernouilli

    Scattering order
01  2    3         4        5     6 7 8

|| | | ||| |

    Scattering order
0 1 2      3       4        5    6   78

|| | | ||| |

Gaussian White Noise Bernouilli Process

SJ(p)f SJ(p)f
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• Low dimensional affine space models in the scattering domain:  
– deformations are linearized: principal deformation directions
– principal directions of residual variability for processes

• For realizations  F  of a class       let  

Classification of Deformed Processes

•

WM

C µ

Joan Bruna

SJ

C µ(p) = E{SJ(p)F},

the class distance d(f, C) = ‖SJf − µ‖2 is replaced by

d(f, C) = ‖SJf − µ− PWM(SJf − µ)‖2

M
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    Affine Space Selection

• Affine space learning with PCA : O(training coefficients)
– For each class      : compute the mean        and covariance        

of             for all training signals 
– Best approximation space             of dimension M : space 

generated by the M eigenvectors of largest eigenvalues.

• Classification by penalized estimation:  
– The class of  f  is estimated by minimizing the class distance, 

penalized by its dimension:

– Cross validation estimation of      and  J  during learning.

fn ∈ Ck

Σkµk

λ

Wk,M

SJfn

k(f) = arg min
1≤k≤K

min
M

(
‖SJf − µk − PWk,M (SJf − µk)‖2 + λ M

)
.

Ck

O(K (log N)m)
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Training Size SVM: Ns Scattering Mav

100 45 9
500 120 40
1000 200 80
5000 500 100
10000 800 100
30000 1500 140
60000 2000 160

SJf with J = 3 and m = 3.

Training Size SVM Deep Net Scattering
100 28% 15%
500 12% 6.0 % 3.4%
1000 8.5% 3.21% 2.2%
5000 4.2% 1.52 % 1.3%
10000 3.1% 0.85% 1.2%
30000 1.8% 0.7 % 0.85%
60000 1.4% 0.64 % 0.78%

 Digit Classification: MNIST
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Training Size SVM Scattering
100 80% 41%
500 80% 23%
1000 80% 18%
5000 65% 10%
20000 - 8%

Training Size SVM: Ns Scattering Mav

100 500 10
500 500 40
1000 1000 70
5000 2000 160
20000 - 100

  Textured Digit Classification

SJf with J = 3 and m = 3.
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   Classification of Textures

61 classes
Training size per class: 46
Testing size per class: 46

Malik (3D Textons): 5.35%
Zisserman (MRF): 2.57%
Scattering error: 0.4%
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   General Group Invariance

Wednesday, October 13, 2010



Wednesday, October 13, 2010



   General Group Invariance
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   General Group Invariance
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     General Group Invariance

• Need invariance to other groups of deformations                      
rotations, scaling...   

• Wavelets                            dilated 

• Invariance by invariant scattering along k .

G = {Gk}k

{ψk = Gk ψ}k ψj,k(x) = 2−djψk(2−jx)

Wjf(k, x) = f ! ψj,k(x)

Wj(Gaf)(k, x) = GaWjf(k − a, x) .
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{ψk = Gk ψ}k

   Group Interference Tree

1st order

ω1

ω2

|ψ̂d(2jω)|2

Group transformed wavelets:

Rotation example

Wednesday, October 13, 2010



SJ1

   Group Interference Tree

ω1

ω2

|ψ̂d(2jω)|2

Group transformed wavelets:

Rotation example

{ψk = Gk ψ}k

SJ1

SJ1

SJ1
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   Group Interference Tree

Group transformed wavelets: {ψk = Gk ψ}k
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   Group Interference Tree

Group transformed wavelets: {ψk = Gk ψ}k
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         Conclusion

• The properties of invariant scattering come as a suprise, with 
many open questions:

• Mathematics. 
– Characterization of the metric on stationary processes
– Dimensionality and «size» of the attractor manifold.

• Applications.
– Image, audio (attacks) and generic classification
– Estimation of deformations, mouvements...
–  Building and understand neural networks
– Biological plausible models of complex cells for perception ?
– Relations with quantum physics.
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