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ABSTRACT

In this paper we propose a novel approach for separating
convolutive mixtures in the frequency domain. This ap-
proach involves the solution of several instantaneous mixing
problems and the elimination of the indeterminacies which
appear because the sources may be extracted in a different
order or with different amplitudes in some frequency bins.
In order to separate each instantaneous mixture, we will ex-
tend the criterion proposed in [4]. We also show that both
the permutation and the amplitude indeterminacies can be
removed using second-order statistics when the sources are
temporally-white.

Keywords:- Blind source separation, convolutive mixtures,
blind deconvolution, frequency-domain approach.

1. INTRODUCTION

The separation of convolutive mixtures of statistically in-
dependent signals (sources) is a fundamental problem in
signal processing that arises in a large number of applica-
tions. The problem is termed blind when the sources are
recovered without resorting to an a priori knowledge of the
sources or the mixing system [5, 8]. This problem can be
solved in the frequency domain by interpreting a convolu-
tive mixture as several instantaneous mixtures which may
be separated using many existing algorithms (see [6] and
references therein). However, since each problem is solved
independently, the sources may be recovered in a different
order (permutation indeterminacy) and with different ampli-
tude (amplitude indeterminacy) in some frequency bins. Re-
moving both indeterminacies is crucial because the sources
in the time domain are obtained from the outputs in all the
frequencies. During the last years, several criteria have been
proposed to remove the permutation problem [2, 7, 8, 9] but
few solutions to the amplitude indeterminacy have been pre-
sented [8].
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In this paper we extend the algorithm proposed in [4] to
the frequency domain. We prove that the attractors of the
algorithm correspond to points where the perfect separation
of the sources is achieved. In addition, the permutation in-
determinacy is solved by clustering the outputs according to
their cross-correlations. Then, the amplitude indeterminacy
is corrected taking into account the values predicted by the
stability analysis.

This paper is structured as follows. Section 2 presents
the signal model. Section 3 introduces a compact represen-
tation of the observations in the frequency domain which
will be used in the paper. In Section 4 we extend the sep-
arating algorithm proposed in [4]. In Section 5 we present
a solution to the permutation and amplitude indetermina-
cies which exploits the temporally-white property of the
sources. Section 6 presents several computer simulations
which show the behavior of the proposed system. Finally,
Section 7 is devoted to the conclusions.

2. SIGNAL MODEL

We will consider the following signal model. Let s(n) =
[s1(n),...,sn(n)]T be the vector of N sources whose ex-
act probability density functions are unknown. We as-
sume that the sources are stationary, complex-valued, zero-
mean, temporally-white, non-Gaussian distributed, statisti-
cally independent and have the same kurtosis sign. The
sources propagate along an open medium and arrive at an
array of M sensors. The output of the sensors, denoted by
x(n) = [z1(n), ...,z (n)]T, provides a convolutive com-
bination of the IV sources. The observations are typically
related to the sources through the following expression

> A(k)s(n — k) (1)

where A (k) is an unknown M x N matrix representing the
mixing system. Without any loss of generality we can sup-
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pose that all the sources have a normalized power equal to
one.

Itis interesting to note that in the frequency domain, the
convolutive mixture (1) takes the form

x[w] = Alw]s[w] )

where x[w], s[w] and the matrix A[w] represent the obser-
vations, the sources and the mixing coefficients in the fre-
quency domain, respectively. From (2), we can interpreted
a convolutive mixture as several instantaneous mixtures.
Therefore, we can recover the sources at each frequency by
using a MIMO (Multi-Input Multi-Output) system with out-
put

ylw] = W w]x[w] 3)

where W{w] is the M x N coefficients matrix in the fre-
quency w. This matrix can be adapted using many existing
algorithms (see [6] and references therein).

Combining both (2) and (3) together, we can express the
outputs as follows

y[w] = Glwlx[w] (4)

where Glw] = WH[W]A[w] is the overall mix-
ing/separating matrix. Sources are optimally recovered
when each output extracts a single and different source.
This means that the optimum matrix G[w] has the form

Glw] = Alw]P[w] (5)

Note that if at each frequency the separating system is
adapted independently, the sources can be recovered in a
different order (permutation indeterminacy) and with dif-
ferent amplitudes (amplitude indeterminacy).

3. SHORT-TIME FOURIER TRANSFORM OF THE
OBSERVATIONS
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Fig. 1. Separating system

To recover the sources from convolutive mixtures we
propose to use the system shown in Figure 1. The first stage

consists of applying the Short-Time Discrete Fourier Trans-
form (STFT) to moving windows of observations. We split
each particular observation, z;(t), in R non-overlapped
segments of K points, ie., x;(t;) = [z;(t),z;{E +
1),.,z;(t, + K —1)]" wheret, =rK, r=0--- ,R—1
denotes the window position. Subsequently, we compute
the L-points DFT (L > K) of each window and obtain

K—1
Wk, tr Za:J (t, + m)e?*™ k=0,..,L —1 (6)
m=0

where wy, = 2wk /L denotes the frequency bin. In a com-
pact form, we can write the observation in the frequency
domain as follows

L-1 (7

zj[wk,t.] = £ x§(t,) k=0,..,

- ej27rk(K—1)/L’ vy ej27rk:(L—1)/L]T is the
Fourier transform vector and x§ () = [z;(tr), ..., z; (t» +
K —1),0,...,0]7 is an extended version of x; (t,.) obtained
by appending L. — K zeros.

In practice, we assume that the mixing system can be
modeled as a FIR (Finite Impulse Response) filter of order
F and, therefore, the mixing matrices A[wy] are formed by
coefficients

where f;, = [1,

Qij [wk] = fkTaf (8)

I2k(F—1)m/L __ oj2nk(L-1)/L]T jg

where f, = [1,...,
the vector corresponding to the L-points DFT, af =
[a;(0), ...,a;(F —1),0,...,0]T is an extended version of the
i-th column of the mixing matrix A. We also assume that the
sources are transmitted in blocks of F' samples and, there-
fore, the sources in the frequency domain are given by

sjlwr, t] = £ s5(tr) 9

where £, = [1,...,e/2mk(F-1)m/L_ei2nk(L=1)/L1T gng
s¢(ty) = [s5(tr), s5(tr + 1),...,5;(t, + F —1),0,...,0]".
According to the properties of the DFT, we can express the
relationship between observations and sources (2) as fol-
lows

X[wka tT] = A[wk]s[wk; tT‘] (10)

In order to simplify the notation, we will use x[k] instead
of x[wg,t.], A[k] instead of Afwg] and s[k] instead of
S[wka ]

It is important to remark that the transformation of a
convolutive mixture in several instantaneous mixtures by
means of the STFT is strictly true only if we append ze-
ros to the sources. This occurs in several applications such
as in digital communications where transmissions occur in
bursts and there exists a guard time between frames of data.

180



4. SEPARATING CRITERION

As explained in Section 3, we can interpret the convolu-
tive mixture (1) as L instantaneous mixtures in the fre-
quency domain given by (10). In order to solve each in-
dividual problem, the observations at each frequency bin
are processed by a MIMO linear system with coefficients
WIk], k =0,...,L—1andoutputs y;[k], i = 1,..., N, k =
0,...,L — 1 (see Figure 1). At each frequency bin, we pro-
pose to select the matrix W[k] by maximizing the following
cost function [4]

N N N
J(WIK]) = Z Ji(WIk]) — Z Z Jiy(WIK])  (11)

where the parameter ~ is a real and positive constant,

Ji(WIED) = Ky pgwl — f(Eylk]P)
= |Ellylk]|"] — 2B [lys[k]I*] — | Elys[k]*]|?|
F(Ellyilk]*]) (12)
and
Jij(WIE]) = Ky, 4]
= |Ellyilk]ly;[K]1] — Elly:[k]I*1Elly;[%]1]
|Ely:[kly; [KII° — |Elyslkly; [K])1?]  (13)
The term Ky = EllylklPly; k"] -

Ellyi(MPIEly; [K°] — [Elyalkyik)> n (12) and
(13) denotes the fourth-order cross-cumulant between y; [k]
and y;[k]. The main difference of the cost function (11)
with respect to the criterion proposed in [4] is that now the
function f(x) in expression (12) is a derivable real-valued
function chosen so that each of the following functions

K s ksan| 22

pi(z) = WF - f(x), i=1,..,N

(14)
has a single maximum for z > 0. Expression (14) depends
on the kurtosis and the second order moments of the sources
in the frequency domain. However, since we are assuming
that the sources are temporally-white, stationary and have
power equal to one, we can write

K, ik1s: (k) = FEKsy(n)si(n) = Fpi

Ellsi[k]P"] = F Elsi(n)]] = F (15)
where p; = K, (k)s: (k) / E[|s:(k)|?] is the normalized kur-
tosis of source s;(k). Substituting (15) in (14), we obtain
that the function f(z) must be chosen so that each of the
following functions

2

pi@) = lpil — J(@), i=1..N (1)

has a single maximum for > 0. For instance, consider the
second order polynomial

f(z) = ax® — 2Bz )

It is straightforward to check that each function p;(z) =
(|pil/F — a)z? + 2Bx has a single maximum in

Fp
ti=———, i=1,..,N 18
when o > %, i=1,...,Nand g > 0. It is apparent that

for the second-order polynomial (17) we only need to select
a sufficiently large value of a.

4.1. Stability Analysis

In this subsection, we demonstrate that the only maxima of
the proposed cost function correspond to the perfect separa-
tion of the sources. In addition, a stochastic algorithm

Wi [k] = Wioa[k] + 1 Vi J (Wi [B], % [k])  (19)

contains the same attractors and attraction domains as the
deterministic equation provided that 4 is sufficiently small,
x(n) is stationary and V) J (W k]) is a regular and rea-
sonably well-behaved function of its arguments [1]. Here,
w is the step-size parameter and Vi) J (Wy—1[k], x¢[k])
is an estimation of the gradient of the cost function (11) de-
pending on both the matrix coefficient at the instant ¢ — 1,
'W;_1[k], and the observations at the instant ¢, x;[k]. As a
consequence, the analysis guarantees the stability of a gradi-
ent algorithm that maximizes the cost function (11). Due to
lack of space, in this paper we do not present the algorithm
but it can be obtained like in [4].

First, we will write the cost function in terms of the
global matrix G[k]. Recall that the outputs of the MIMO
system are linear combinations of the sources

N
vilk] =) galklsi[k], i=1,..,N (20)
=1

Considering (15) and (20), the statistical moments involved
in J(W[k]) can be expressed as

N N
Ellyi[k]”] = Z|gil[k]|2E[|Sl[k]|2]=FZ|9il[k]|2
=1 =1
N
Kymgmr = O 1galk]1g 0612 K g, k1s.
=1
N
= FZ |ga[k]11g: (k]| o1l
=1
N N
Ky klyse) = Z| a[k][* K =FZ| a[k]1* i
yilkly: (k] git si[k]si[k] 9il Pl
=1 =1

(21)
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Substituting (21) in (11), the cost function J(W|[k]) be-
comes

Gl =3 (z Fiplloalk -

i=1

f(FIIgi[k]IIZ))

N N
—yF Y Y ledlgalklPlgulk] (22)
';-7;:71 =1
where [|gi[k]|[> = i, |galk][>. Comparing this cost
function and the criterion presented in [4], we observe that
the only difference is that in (22) the constant F' appears.
Thus, it is straightforward to extend the results in [4] to the
new cost function.
Using the complex derivative operator, we obtain that
the first derivatives of the cost function (22) are given by

6/(/} _ * . 2
Dol 2F | pm| 93 [K]| gim [K]|
—  Fgi [klf (Fllglk]*)
N
—  2FY|pm|ginlk] D gimlK]”
=
im=1,.,N (23)

Recall that at the separating point, the global matrix G[k]
takes the form G[k] = A[k]P[k] and the first derivatives
(23) can be written as follows

6¢ = 5* .. _ * ! »
B0ulk] Flpil63;[k]|6::[K] [ — Fo35 [k f' (F|6uilk][?)
= Fo3;[klpi(F|6[K]|*) =0,i=1,...,N

where pj(z) is the first derivative of p;(z). Since each
function p;(z) contains a single maximum for z > 0,
we conclude that the expression (24) vanishes when z; =
F|5;[k]|? is the maximum of p;(z). Using the same rea-
soning as in [4], it is easy to conclude that this point is a
maximum of the cost function (22). In addition, from the
analysis in [4], we conclude that the condition v > 1 is suf-
ficient to ensure that the other stationary points of the cost
function (22) are minima or saddle points.

In summary, the analysis above guarantees that the only
maxima of the proposed cost function correspond to the
point where the sources are separated. The analysis also
predicts that the magnitude of the entries of the matrix A[k]
are |6;;[k]|> = z;/F where x; is the maximum of p;(z).
For instance, from (18) we obtain that the cost function (22)
has a maximum in

2 _ Ti p .

5. TIME-DOMAIN RECOVERING

The last stage in the separating system shown in Figure 1
consists of recovering the sources in the time domain. Both
the permutation and the amplitude indeterminacy must be
solved before applying the Inverse STFT (ISTFT) to the out-
puts.

5.1. Permutation indeter minacy

Assuming that the output y;[m] extracts the source sp[m]
and y;[k] extracts the source s, [k], the cross-correlation be-
tween both outputs is given by

Elyi[mly; [F]] = gip[m] 953 [F] Elsplm]si[k]  (25)

Using the equation (9) we obtain

Elyi[mly; [k]] = giplm]gis (K1 Elsp (t:) (5 () 167

ej27rk(F71)/L ] ej27rk(L 1)/L]T
sS(ty) = [s5(tr), -- s,(t + F —1),0,...,0]T. Since, the
sources are temporally white and statlonary we obtain

Elyi[m]y; [¥] 9iplmlgi[k]E[sp(n)s; (n)]fﬁfji

gip[mgiy [k E[sp(n)s; (n)]f;" £
(26)

where f, = [1,..

where f;, = [1, ef2mh(F=1)/L1T - guppos-
ing £7f,, # 0, we deduce that expression (26) will be
non-zero when y;[m] and y,[k] extract the same source, i.e.,
yilm] = gip[m]sp[m] and y,[k] = gip[K]sp[k].

From the above explanation, we can devise a method
to avoid the permutation indeterminacy. We compute
the cross-correlation between each output at the first fre-
quency bin and the outputs in the other frequency bins,
Elyi[0ly;[k]], i,0 = 1,...,N, k =1,...,L — 1. For each
output at the first frequency bin, we select the outputs in the
other frequency bins with the maximum cross-correlation.
Then, we cluster the outputs corresponding to the same
source

j2wkm /L
.., € ..,

U = {ui[0] = y;[0],wi[1]

ui[L - 1]

= max | E[y;[0]y; [1]]], ---,
yi[1]

= max [ElylOlyr (L -1} (@7)

This criterion can be used only when fHf, # 0, k =
1,...,L — 1. Since

F-1 p 1 e_j2w£cF

N A 2rk -

f,ff():Z(e JL) - (28)
=0 l—e7772

this occurs when kF'/L is not an integer number for k =
1,..,.L—1.
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| Ey: [0]y;[]]]
[ Frequency bin [[ [E[y1[0]y; <]l | [Ely1[0]y3 k][ |

k=1 1.8278 0.1899
k= 1.2352 0.1765
k= 0.5439 0.1245
k=4 0.5240 0.1180
k= 1.1886 0.1901
k=6 0.1508 1.8746

| Ely2[0]y;[#]]]

| Frequency bin || [E[y>[0y;[Kll | [Ely2[0lys[Fll |
k=1 0.3726 1.5053
k=2 0.2514 1.0344
k=3 0.0252 0.5457
k=4 0.0416 0.4156
k=5 0.2450 1.0475
k=6 1.7227 0.1263

Table 1. Cross-correlations | E[y;[0]y; []]|

5.2. Amplitude indeter minacy

In order to solve the amplitude indeterminacy, we will force
that all the outputs u;[k] into a set &{; have the same ampli-
tude than w;[0]. Let us consider u;[k] = d;[k]s;[k], i =
1,..,N. We start with z;[0] = u;[0] = 9;;[0]s;[0] and, then,
we compute the other outputs z;[k], ¥ = 1,...,L — 1 as
follows

0::[0]6%[ k]
zilk] = 2P
= o
Substituting (29) in u;[k] = d;;[k]s;[k], it is easy to show
that z;[k] has the same amplitude as z;[0]
6:i[0]07; [K1dii K]
|03 ]2

wilk, k=1,..L—-1 (29

Note that the term |d;;[k]|? in (29) can be found using (24).
Therefore, in order to evaluate (29), we only need to de-
termine the term §;;[0]67;[k]. Since the sources have unit
power, we obtain

Elwi0uf[*]] = 8[0165 kI Bls; (¢)(s5 () 18

(3

= 5ul0]0% [RIE Eo (31)
As a consequence,

sl = el (32)
k 10

Finally, substituting (32) in (29), we deduce that the output
z;[k] can be obtained as follows

Zz[k‘] = wuz[k], k= 1,..

= D LL—1 (33
£7£0|6:: [K]|2 39

611(0]67, [K]

Frequency bin || Estimated value True value
k=1 1.0143 +0.0091i | 0.9852-0.0178i
k=2 0.8229 + 0.5513i | 0.8360 + 0.5895i
k=3 -0.3905 + 1.1581i | -0.3318 + 0.9851i
k=4 -0.4441-1.0904i | -0.3934-0.8873i
k=5 0.6445-0.7023i | 0.6555- 0.7496i
k=6 1.0114 - 0.2436i | 0.9996 - 0.2057i

622[0]035 (]

Frequency bin | Estimated value True value
k=1 0.7570 + 0.3533i | 0.8282 + 0.3747i
k=2 0.3621 + 0.7464i | 0.3254 + 0.8634i
k=3 -0.8355 + 0.8977i | -0.5356 + 0.7908i
k=4 -0.5343-0.7658i | -0.4528 - 0.8218i
k=5 0.6321-0.5532i | 0.6332-0.6187i
k=6 0.9499 - 0.1080i | 0.9250 - 0.0947i

Table 2. True and estimated value of §;;[0]5};[k]

where f, = [1,...,e2mkE-D/IT £ — [1,1,....,1]7,
|6:[K]|? is the theoretical amplitude predicted by the sta-
bility analysis and E[u;[0]u? [k]] is the cross-correlation be-
tween two outputs into the set I/;.

5.3. Inverse Short-Time Fourier Transform

Finally, the ISTFT is applied to the outputs z;[k, t,.] for re-
covering the sources

L-1
:2mkm

1
Sitr +m) = 2 D zilk,t]e
k=0

where t, = rF withr = 1, ..., R is the window position.

6. SSMULATION RESULTS

We have generated 10,000 samples of a 4-QAM and a 16-
QAM which have been partitioned in blocks of F' = 5 sam-
ples. We have appended P —1 = 2 zeros to each block. The
mixing system has been obtained by truncatingto F' = 5 the
following transfer matrix:

0.6+2z"1 —0.8 0.6+2z"1
_ 1+0.6z-1 *©1+40.62-1
H(z) = 0.8.0:5+27" 0.5+z"1 (34)
*~140.52-1 140.5z—1

To recover the sources from the observations we have used
L = F+ P —1 = 7 frequency bins. The coefficients of the
separating systems have been computed using the proposed
algorithm with the non-linear function (17), « = 1, 5 = 4,
~ = 1.5 and step-size parameter x = 0.01.

Note that the permutation and the amplitude indeter-
minacies can be removed using the proposed methods be-
cause kF/L, k = 1,...,6 is not an integer number. Ta-
ble 1 shows the absolute value of the cross-correlations
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Elyi[0]y;[m]], 4,5 = 1,2, m = 1,...,6, which have been
computed using 2, 000 samples of the outputs. It is inter-
esting to note that the cross-correlation obtained in the fre-
quency bins k = 3 and & = 4 are small in comparison with
the other frequency bins. The reason of this disparity is that
the value of £/7f, = 0.4450 k = 3,4 is small. From this
table, we have clustered the outputs in two sets

U = {u1[0] = y1[0], wa[1] = y1[1], wa[2] = y1[2],
u1[3] = y1[3], ur[4] = y1[4], ua[5] = y1[5], u1 [6] = y2[6]}
and

Uz = {u2[0] = y2[0], u2[1] = ya[1], u2[2] = ya[2],
u2[3] = ya[3], u2[4] = ya[4], u1[5] = ya[5],u1[6] = y1[6]}

In the next step we have solved the amplitude indetermi-
nacy by evaluating the expression (32) using the theoret-
ical amplitudes obtained from (24), |6:1[k]|> = 1 and
|622[K]? = 0.9259, and the estimation of 4;;{0]7;[%] shown
in Table 2. In order to validate our method, Table 2 also
shows the true values obtained from the final separating ma-
trix and the mixing matrix (34). We can see the similarity
between the estimated and the true values. Finally, Figure 2
shows the recovered sources in the time domain (part (),
the sources obtained when only the permutation problem is
solved (part (b)) and the sources obtained without solving
the amplitude nor the permutation problem (part (c)). It is
apparent that both indeterminacies must be removed to re-
cover the sources.

7. CONCLUSIONS

We have proposed a new approach for separating
temporally-white signals in the frequency domain. The
sources at each frequency bin are recovered using a gra-
dient algorithm which maximizes a cost function obtained
by extending the criterion in [4]. We have demonstrated
that the attractors of the gradient algorithm correspond to
the desired solution. The permutation problem has been
solved by clustering the outputs according to their cross-
correlation. Finally, the amplitude indeterminacy has been
corrected taking into account the values predicted by the
stability analysis.
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