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ABSTRACT

Current methods in Blind Source Separation (BSS) utilize
either the higher order statistics or the time delayed cross-
correlations to perform signal separation. In this paper we
investigate a method for source separation which utilizes
joint information from higher order statistics and delayed
cross-correlations. The algorithm is motivated by problems
in analysis of Electroencephalography (EEG) data. We use
an EEG analysis example to demonstrate that the Joint Cu-
mulant and Correlation based (JCC) algorithm obtains bet-
ter source separation than either of the group methods based
on higher order statistics or time delayed cross correlations.

1. INTRODUCTION

Most methods in Blind Source Separation (BSS) and Inde-
pendent Components Analysis (ICA) use higher order statis-
tics and spatial diversity to force the statistical independence
of the solution components. An alternative approach as the
so called Second Order Blind Identification (SOBI) [1] ex-
ploits the spatial and spectral diversities of the sources. This
is achieved by utilizing time delayed cross-correlations to
impose at different time delays a decorrelation structure on
the solution. These two approaches access different types of
information and their relative performance depends entirely
on the source properties. Accordingly, the first approach can
separate at least one Gaussian source and performs poorly
when the other sources are close to the Gaussian distribu-
tion. And the second approach can not separate sources with
identical spectra shape and performs poorly when the spec-
tra are close to each other. To overcome these problems, one
can use a joint approach that utilizes together higher order
statistics and time-delayed cross-correlations.

In problems such as EEG source analysis, the choice of
a BSS algorithm is particularly difficult because it is largely
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impossible to assess the quality of separation or even that
the estimated sources have any relation to the actual cen-
ters of activity in the brain. Several higher order algorithms
have been used in EEG data analysis [3, 4, 2]. Yet, other
groups [5, 6] found that delayed cross-correlation based al-
gorithms, namely SOBI, obtains more plausible separation
in EEG and MEG data.

Here, we introduce a method that uses joint cumulant
and correlation matrices. Termed JCC, the method exploits
both higher order statistics and time-delayed cross correla-
tions by performing joint diagonalization of a set of cumu-
lant matrices, namely the eigen matrices of the data quadri-
covariance, and a set of time-delayed cross-correlation ma-
trices.

As a result, we are able to separate sources that are not
separable by either the higher order statistics or the time de-
layed cross-correlation based BSS algorithms alone. The
performance of the JCC algorithm is demonstrated using a
simulated set of sources and an example from EEG analysis.
The EEG example was designed to be able to ascertain the
quality of separation. The EEG data in this example con-
tains brain and ocular sources, where the eye movement is
primarily horizontal and is decoupled from the vertical eye
blink. The quality of separation of ocular sources can be
judged on how well the methods can separate saccades and
the blink from the rest of the activity.

2. BACKGROUND

2.1. Data model

We consider the � -dimensional vector of sensor signals de-
fined as �����	��
� �������	�����������	�������	����� , generated by an un-
known linear model:

�����	��
��! "���	� (1)

where  "���	��
#� $������	�����������%$'&(���	��� � is the ) -dimensional vec-
tor whose elements are called sources. The matrix � is
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called a mixing matrix. The source signals $��"���	����� 
� ������� �	) ( )�� � ), are assumed independent.
It is well known that due to the lack of prior information,

the problem of source separation has two inherent ambigui-
ties:
Permutation ambiguity: It is not possible to know the
original labeling of the sources; hence, any permutation of
the estimated sources is also a satisfactory solution.
Scaling ambiguity: It is inherently impossible to uniquely
identify the source signals because the exchange of a fixed
scalar factor between a source signal and the corresponding
column of the mixture matrix � does not effect the obser-
vations.

2.2. Algebraic identification approaches

Herein, we outline two blind identification approaches based
on two step processing; the first step is common to the two
approaches and consists of whitening the data by a spher-
ing matrix � in order to transform the mixing matrix �
into a unitary matrix � [1]. The second step consists then
of retrieving this unitary matrix by joint diagonalizing a
set of data correlation matrices when considering the first
approach referred to as Second Order Blind Identification
(SOBI) and a set of eigen matrices of the data quadrico-
variance referred to as Joint Approximate Decomposition of
Eigen matrices (JADE) . Note that the first step is nothing
than the Principal Component Analysis (PCA).

2.2.1. SOBI algorithm

Under the linear data model of equation (1) and hypothe-
sis of sources with different spectra shape, the time delayed
cross-correlation matrices take the following simple struc-
ture: 	 ��
 � 
� � �����	� ��������
 � � �


 � 	�� ��
 � ��� � for 
��
�� (2)

where
	�� 
 diag � � � ������� ��� & � is time delayed cross correla-

tion matrix of the sources whose entries ��� 
�� � $��	���	�	$�� �����
 � ����� � 
 � ������� �	) are the correlation coefficients of the
sources.

The whitened correlation matrices
	 ��
 � are than given

by ! 
"�
�� 	 ��
 ��
�� 	 ��
 �#� � 
�� 	�� ��
 �$� � (3)

Since � is unitary and
	%� ��
 � is diagonal, the latter just

means that any whitened correlation matrix is diagonalized
by the unitary transform � . Hence, the missing unitary
matrix � can be obtained by a joint diagonalization [1]
of a set & 	 ��
�����' � 
 � ������� �)(+* of ( whitened correlation
matrices. The matrix � is ‘unique’ (i.e. up to permuta-
tion and phase shifts) if and only if for any pair ���%�,� � of

sources, there exists at least one lag 
�- in ��
 � ����������
/."� such
that �0�	��
1- �2�
3�4�"��
1- � . We omit the proof of this statement
that can be found in [1]. Once the unitary matrix � is ob-
tained, the mixing matrix is estimated by 5� 
6��� and the
unmixing matrix is then given by ���+�87 , where 7 denotes
the pseudo-inverse.

2.2.2. JADE algorithm

To a n-dimensional random vector � with 4th-order cumu-
lants, a quadricovariance 9 is associated. It is defined as
the linear matrix-to-matrix mapping: :<;>= 
89 �?: �
where : and = are ��@ � matrices related by

� =��A� � 
CB#D - EGF ) �����	�	�H�"�	� D �	�I- � � : �
D - (4)

where
EGF ) �����	�	�H�"�	� D �	�I- � denotes the 4th-order cumulants

of � [7]. It is shown that since the set of the ��@ � ma-
trices is a �+J -dimensional linear space, there exist �KJ real
numbers LIM and � J orthonormal matrices :NM , verifiying9 �?:OM'� 
PLIM�:OM , Q 
 � ������� �	� J . Note that 9 is actually a
4th-order tensor and the :NM matrices are the eigen-matrices
of 9 associated to its eigen values L�M . It is proved [7] that
the quadricovariance 9 has exactly rank � so that only �
out of � J eigenvalues are non zero.

Under the linear data model of equation (1) and hy-
pothesis of independent sources, the eigen matrices of the
quadricovariance of the whitened data have the following
structure,R

M 
���S�M�� � �TS�M 
�UV�#WYX�� ����� �[Z �.
R
M Z\. ������� � (5)

where Q 
 � ������� �	� and Z\. denotes the p-th column of ma-
trix � . Note that the � non zero eigen values associated
to the eigen matrices

R
M correspond to the kurtosis of the

sources.
According to (5), the missing unitary matrix � can be

obtained by a joint diagonalization of the � eigen matrices
R
M [7]. Once the unitary matrix � is obtained, the mixing

matrix is estimated by 5� 
]��� and the unmixing matrix
is then given by � � � 7 .

3. THE JCC ALGORITHM

SOBI and JADE both start by sphering the data and then
perform the joint diagonalization of a set of matrices. SOBI
uses time delayed cross-correlation matrices and JADE uses
quadricovariance eigen matrices. These two groups of ma-
trices contain different information, namely the correlation
information and the cummulant information. To take ad-
vantage of both information, the Joint Cumulant and Cor-
relation algorithm suggests to simultaneously diagonalize a
set of the two groups of matrices.
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Under the linear data model of equation (1) , the eigen
matrices of the quadricovariance of the whitened data and
the whitened data correlation matrices have the following
structure, R

M 
��S�M�� � � (6)	 ��
 � 
� 	�� ��
 �$� � � for 
��
�� (7)

where � is unitary and S%M and
	�� ��
 � are both diagonal.

Hence, the unitary matrix � can be obtained by a joint di-
agonalization of a set of the matrices

R
M and

	 ��
 � . The
program is completed by estimating the mixing matrix by��� and the unmixing matrix by � � � 7 .

One may expect that JCC will perform better than SOBI
and JADE. This is not always true because the incorpora-
tion in the joint diagonalization procedure, of non accurate
estimates of either the cumulant or correlation matrices will
degrade the performance. However, JCC will be of great
importance in examples where the identification conditions
of both SOBI and JADE are not meet. Hence in this case,
JCC will be able to succeed where both SOBI and JADE
will fail to separate all the sources.

4. SIMULATION

Herein, we consider 2 Gaussian distributed sources with
different spectrums and 2 white binary sources. The orig-
inal sources are displayed in Figure 1. Figure 2 shows the
spectrums and the histograms (sample distributions) of the
4 sources. Note that the identification conditions of both
SOBI and JADE are not meet in this example. Four linear
mixtures of the sources are generated by a random mixing
matrix. The mixed signals are shown in Figure 3. The esti-
mated sources by SOBI, JADE and JCC are plotted in Fig-
ures 4, 5 and 4, respectively. Figure 4 shows that SOBI has
succeeded to separate only the two sources that have differ-
ent spectrums. Figure 5 shows that JADE has succeeded to
separate only the binary sources. Figure 6 shows that JCC
algorithm has succeeded to separate all the sources. The
same conclusion is achieved when we compute the matrix,� 
 5��� � � (8)

where � and 5� are the true and estimated mixing matrix,
respectively. Because of the ambiguities stated in Section 2.1,
this matrix is close to a permutation matrix for a good sep-
aration. Accordingly, we have obtained for the three algo-
rithms the following matrices:

������� � 


���
	

�� � � � �Y� � � �Y� � � �Y�� � �Y� � � �Y� �� ������ ���� � �Y� � � �Y� �� ������ ���� � �Y� 
�� � � � �Y� � � �Y�

� ��
� (9)

� ������� 


���
	
�� �! ��� ��� � � �Y� � � �Y�� � �Y� � � �Y� � � �Y� 
�� ��� ���"�� �!# � � �Y� � � �Y�� � �Y� � � �Y� 
�� � � � �Y�

� ��
� (10)

� ��$%$ 


���
	
� � �Y� � � �Y� � � �Y� 
�� �� � �Y� 
�� � � � �Y� � � �Y�� � �Y� � � �Y� 
�� � � � �Y��� #!� � � �Y� � � �Y� � � �Y�

� ��
� (11)

The 3-rd and 4-th columns of the matrix
� ����� � related to

SOBI show that the two corresponding sources are still mixed
at the output of the separator. The 1-st and 2-nd columns of
the matrix

� ������� related to JADE show that the two corre-
sponding sources are still mixed at the output of the sepa-
rator. In contract to

� ����� � and
� ������� , the matrix

� ��$%$ that
is related to the JCC algorithm is a quasi permutation ma-
trix, which shows that all the sources have been perfectly
separated.
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Fig. 1. Original sources.
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Fig. 2. Spectrums and histogram of the sources.
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Fig. 3. Mixed sources.
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Fig. 4. Separated sources by SOBI.
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Fig. 5. Separated sources by JADE.
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Fig. 6. Separated sources by JCC.

5. EEG DATA ANALYSIS

A difficulty in using source separation in EEG analysis is
that no objective way exists to evaluate the accuracy of the
obtained source separation. One goal of this study is to de-
sign an EEG experiment to validate the performance of var-
ious source separation algorithms. Since the eyes constitute
strong dipolar bioelectric sources whose signals mix with
the signals coming from the brain, we set up an experiment
where the subjects move their eyes in a predetermined pat-
tern and we use these known ocular sources to assess how
well they are separated by a given algorithm. This exper-
iment offers an objective way of evaluating the quality of
separation of a subset of EEG sources.

In the experiment described, the subjects were asked to
read four lines of text presented on the computer screen.
Thus the eye movements were primarily horizontal with quick
vertical saccades between the lines. The signals generated
by eye blinks are generated primarily by the vertical move-
ment of the eye lid, although a small vertical movement of
the eye is also present. Eye blinks produce very strong elec-
tric signals that add to the mixture of brain and ocular sig-
nals recorded in EEG. Because the signal is coming primar-
ily from the eye lid, it is decoupled from the ocular signal,
but the two electric sources, the eye lid and the eyeball, are
located very close to each other. It is thus difficult for source
separation algorithms to separate out these closely spaced
sources. The eyes’ horizontal movement and the blink gen-
erated by a vertical eye lid movement provide signals that
let us evaluate how cleanly the two motion components, and
thus the sources, are recovered by the source separation al-
gorithms.

The data were recorded using a 32 channel EEG record-
ing system. Figure 7 shows 10 channels of the recorded data
that were used in the analysis. Channels 1, 6, 7, 8, and 9 are
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ocular channels, those recording the electrodes were placed
around the two eyes. A blink occurred at the end of the ex-
periment. The blink is reflected in practically all the chan-
nels, except channel 9 which measured the generated elec-
tric field components that were purely due to the horizontal
motions of dipoles. Thus this channel provided a very close
measure of the actual ocular sources. It is the only channel
that did not reflect the vertical eye blink. Channels 7 and 8
reflect the signals due to the vertical motion of the eyes, the
small vertical saccades where the transitions between lines
of the text was made, and the motion of the eye lid during
the blink. Channel 6 reflects a mixture of electric signals
generated from both horizontal and vertical movements of
the eyes and eye lids. Channels 2, 3, 4 and 5 were located
toward the front of the head and record the signal due to the
eye blink and brain activity. We found that 10 channels (or
even less) are sufficient to separate eye components from
the data.

Figure 8 shows separation from 10 channels of the EEG
data using SOBI. Three components with ocular character-
istics are observed in the separation (Sources 1, 8, and 10
in Figure 8). Sources 1 and 8 in Figure 8 represent the
two eyes. The eye blink, that is the eye lid source, how-
ever, is not separated well from the ocular sources and the
brain signals. The eye blink component is clearly present
in components 6, 7, 8, and 10. Both component 8 and 10
also show saccade movements in them. This poor ability
to separate out a sharp delta function-like blink is consis-
tent with the expected performance of SOBI [1]. The time
delayed cross-correlations are near zero for such sources,
which causes poor separation of such signals by the SOBI
algorithm. Thus SOBI separates out the two individual eye
sources, but has poor performance in separating eye blinks.

Figure 9 shows separation from the same 10 channels
of the EEG data using JADE. An ocular component (Source
number 3 in Figure 9) and a vertical motion eye lid com-
ponent (Source number 10 in Figure 9) are identified. The
eye blink can be seen only in component 10 and thus is sep-
arated cleanly from the rest of the source. JADE, however,
does not identify two separate ocular sources. The compo-
nents it identified are noisier than those obtained by SOBI
and it does not identify the fourth eye saccade, which occurs
right before the blink. JADE performance also degraded no-
ticeably when run using all 32-channels (not shown here).

Figure 10 shows separation by the JCC algorithm from
the 10 channels of the EEG data shown in Figure 7. The
JCC separation clearly identifies the two ocular sources (Sources
1 and 4 in Figure 10), and the eye blink component (Source
8 in Figure 10), which is cleanly separated from the rest
of the sources. The ocular and eye lid components contain
minimal noise as in the SOBI separation. Thus JCC sepa-
ration in this example combines properties of the SOBI and
the JADE algorithms to identify both the ocular and the eye

blink sources, which the latter two algorithms were unable
to do individually. The rest of the JCC separated compo-
nents, which we assume are due to the brain activity, look
different from the corresponding components extracted by
either SOBI or JADE. This demonstrates how the quality of
the separation of the ocular and eye lid sources affects the
separation of the rest of the sources.

6. DISCUSSION

This study is motivated by the need for a rigorous evalua-
tion of the accuracy of separation of EEG sources provided
by the different source separation algorithms. We have de-
signed an experiment in which we are able to evaluate such
performance for at least some of the sources represented in
the EEG data. We evaluated three groups of blind source
separation algorithms, one based on higher order statistics,
another based on time delayed cross-correlations, and a joint
method that utilizes both of these criteria. In our experi-
ments, the method based on the joint separation criteria was
able to separate the ocular and eye lid sources completely,
while the methods based on just one of the individual cri-
teria were not able to recover these sources without errors.
The study presented indicates that methods based on joint
higher order and time delayed cross-correlation criteria may
be better suited for separation of at least the ocular and eye
related sources in EEG data. How well the different meth-
ods can separate EEG sources due to cortical activity needs
to be investigated further.
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Fig. 7. 10 channels of the recorded EEG data.
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