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ABSTRACT

This paper introduces a new source separation algorithms
exploiting the difference in the spectra shapes of the source
signals. The proposed approach relies only on second-order
statistics and estimates the mixing matrix by using eigen-
value decomposition of covariance matrix of prewithened
sensor signals or alternatively an input output identification
procedure using as inputs linear band pass filtered versions
of the estimated colored sources. An adaptive implemen-
tation of the proposed technique is presented. The new al-
gorithm shows to be computationally very simple and ef-
ficient. In addition and in contrast to other existing tech-
niques, the covariance of the noise do not need to be mod-
eled. The effectiveness of the proposed method is illustrated
by some numerical simulations.

1. INTRODUCTION
In practical situations, one has to process multidimensional
observation of the form

x(t) = As(t) + n(t) (1)
where x(t) is a noisy instantaneous linear mixture of source
signals, sampled at time ¢, A is m x n mixing matrix n(¢)
is the additive noise and s(t) = [s1(¢),- - -, sn(t)]T consists
of n source signals. Generally the waveform of source sig-
nals as well as their number are unknown and should be also
estimated. Model (1) has show to be a good approximation
in various areas as biomedical signal processing [1], factor
analysis [2] or financial time series [3].
Blind source separation consists of retrieving the source sig-
nals without resorting to any a priori information about the
mixing matrix A; it exploits only the information carried by
the received signals themselves, hence, the term blind.
Usually, signal separation algorithms are based on the main
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assumption of mutual independence of the source signals or
their different autocorrelation functions what is equivalent
to different spectra. Various techniques have been proposed.
A first class of them are based on batch processing of higher
order cumulants [4]. Another class is based on non-linear
spatial adaptive filters [5, 6]. Both these classes assume non
Gaussian source signals but do not require the exact knowl-
edge of their distributions. When the source distributions
are known, exact Maximum Likelihood approaches to solve
the signal separation problem become possible [7, 8, 9]. In
the case of time coherent source signals and even Gaus-
sian source signals, solutions based on second order statis-
tics are possible [10]. For non stationary source signals,
blind source separation based on time frequency distribu-
tions have been considered in [11].

In this paper, we propose a new signal separation algorithm
for sources with different spectra shapes. The proposed ap-
proach relies only on second-order statistics and estimates
the mixing matrix by an input output identification proce-
dure using as inputs band pass filtered versions of the es-
timated sources. The transfer functions of these filters are
chosen to do not overlap in the frequency domain. The pro-
posed method is implemented in an adaptive fashion. The
new algorithm is computationally very simple and efficient.
In contrast to other existing techniques, the proposed adap-
tive algorithm is robust to additive correlated noise.

2. PROBLEM STATEMENT

Assumptions: The source signal vector s(¢) is assumed to
be either H1) a deterministic sequence or H2) a stationary
multivariate process with
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H2)  E[s(t+7)s(t)"] = diag[p1(7), - .-, pu(7)]

where the superscript * denotes the conjugate transpose of
a vector and diag[-] is the diagonal matrix formed with the
elements of its vector valued argument. For simplicity, the
same notation E is used for the deterministic averaging op-
eration under hypothesis (H1) and for ensemble averaging
under (H2). This convention holds throughout. Assump-
tions (H1) or (H2) mean that the component processes s; (%),
1 <@ < nare mutually uncorrelated and p;(7) = E[s;(t +
T)s(t)] denotes the auto-correlation of s;(¢). The additive
noise n(t) is modeled as a stationary, zero-mean random
process and assumed to be decorreladed from the source
signals. Contrary to classical assumptions, no assumption
is made on either its distribution or its temporal or spatial
correlation properties. The m x n matrix A is assumed to
have full rank but is otherwise unknown.

3. THE NEW SECOND ORDER SEPARATION
PRINCIPLE
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Fig. 1. The new second order separation principle.

The principle of the proposed algorithm is depicted in

Figure 1. The concept is to estimate the mixing matrix by
an input output identification procedure using as inputs a
filtered version of the estimated sources. The transfer func-
tions of the filters associated to each source are chosen to do
not overlap in the frequency domain.
Let us start with data-assisted case when we know the source
signals. In this case, it would be a simple matter to estimate
the mixing matrix A using an input output identification.
For this purpose, multiply equation (1) by the transpose con-
jugate of s(t) and compute the expectation of the obtained
equation. This leads to

Ex(t)s(t)"] = AE[s(t)s(t)"] + En(t)s(t)"]  (2)

Since, the additive noise is decorrelated from the source sig-
nals, we have

En(t)s(t)*]=0
Finally, we obtain

A = E[x(t)s(t)*]E[s(t)s(1)*] "

©)

(4)
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Equations (3) and (4) show that the proposed algorithm will
have the important feature of being robust to colored addi-
tive noise. In practice, only an estimate over 7' samples of
the expectations are available. Hence, the solution consists
of evaluating the following statistics:

T
1
R, = T Z X(t)S(t)H, (5)
t=1
1 T
R;; = T Z S(t)S(t)H (6)
t=1
and commuting the estimated mixing matrix by
A =R,,R;} @)

where # denotes the transpose conjugate operator.

In our problem, the source signals s(¢) are of course un-
known, otherwise we will have no need to perform the source
separation. In this case, we propose to use instead of the
original source signal a filtered version of the recurrently
estimated sources. The transfer functions of the filters as-
sociated to each source are chosen to do not overlap in the
frequency domain. Hence, the estimated matrix A can be
computed iteratively by employing a recurrent input output
identification.

Comments: If the source signals do not overlap in the fre-
guency domain, a simple spectral filtering of only one ob-
served signal is sufficient. In the case of overlapping spectra
sources, the spatial diversity provided by the multi-sensor
array is necessary to achieve the separation by actually a
spatial filtering, commonly known as beamforming. The
proposed new approach suggests the combination in a recur-
sive fashion of both the spectral and spatial filtering. Note
that the spatial filtering is achieved by the band pass filters
and the spatial filtering is achieved by the unmixing matrix.
The latter is estimated by an Input-Output like identifica-
tion, which links together the spectral and the spatial filter-

ing.

4. IMPLEMENTATION

4.1. Bandpass filter implementation

The estimated source signal obtained at each iteration are
filtered by 1IR bandpass filters and in special case by a first
order AR (autoregressive) filter described by

y(t) =s()+acy(t-1) ®)

where ® designates the Hadamard product and

a = [a1,as,...,a,]T a vector that contains the different
complex-valued coefficients a; = |a;|e?:. The argument of
a; controls the center frequency of the filter (that we would



like to be fit with the one of the source) and its modulus
controls the bandwidth of the filter.

In the special case of real valued data, the following sec-
ond order bandpass filtering can be used,

yi(t) 8(t) +a@yi(t—1)
y2(t) = 8(t)+a* Oya(t—1)
y(t) = yi(t) +ya(t)

Note that a should be complex if we would like to obtain a
band pass filter.

Another alternative realization of real bandpass filter with
extremely easy adjustable central frequency and bandwidth
is the 4-th order Buttherworth filter with the transfer func-
tion:

H(z) = bo + baz 2+ byzt
1+ aqwz=(aw? + ay)z72 + agwz =3 + a4z*$)
where (
bo = bi=1/(d*+2°°d+1),
by = —2bo,
by = by = —4bo,
a; = —2d(2d+ 2°%)by,
as = 4d2b0,
ah, = 2(d*>—1)b,
az = 2d(—2d+2°%)by,
ay = (d*—2°%d+ 1)by,
d = cotan(nB),
and
_cosmh+f) g (10)

cos(mB)

where f; and f, are normalized lower and higher cutoff fre-
quencies and B is hormalized bandwidth. It should be noted
that for fixed (constant) bandwidth B, w is an only center
frequency dependent parameter. It is worthwhile mention-
ing that the stability constraints on H (z) are provided if

w| < 1 andd > 0. 11)

To show the advantage of the fourth-order Buttherworth
bandpass filter in comparison with other simpler realization
for wide band source signals lets us consider the standard
second order band pass filter with transfer function

wz /(r+1r?) -1

H. =(1
2(2) = ( 1—wz 47222

—7)

where w(n) = 2r cos(27 fon) is the only center frequency
term and the parameter r is a fixed design one related to the
frequency bandwidth B as follows

(1-1)/2

(12)

B =
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Such filter provides unity gain only at center frequency
alone and make rather large distortion for source signal which
are usually not pure sinusoids with some frequency vari-
ability. Therefore, by choosing a very narrow bandwidth,
this filter can be applied for tracking and enhancement of
single sinusoid in white noise. In contrast the forth-order
Buttherworth filter has flat characteristic around central fre-
quency and enable enhance arbitrary narrow band source
signal with low distortion.

By maximizing the output power of the band pass fil-
ter we can adjust automatically the center frequency to the
input bandpass signal.

The filter output is given by

bos(n) + bas(n — 24bss(n —4) — a4
w(n)y(n — 1) — (asw?(n) + ay)y(n — 2)
azw(n)y(n —3) — asy(n — 4) (13)
In order to find an optimal value of the parameter w(n)
for a specific bandwidth, we can maximize cost function

E{y?(n)} using gradient ascent procedure and obtain sim-
ple learning rule

y(n)

w(n +1) = w(n) + p(n)y(n)a(n) (14)
where p(n) = p/r(n), 7(n) = Ar(n — 1) + a?(n) and
_ 9y
o= Bm
= —ay(n —1) — 2aw(n)y(n — 2)
—azy(n —3) — ajw(n)a(n — 1)
= (a3 + azw(n)*)a(n - 2)
—azw(n)a(n —3) —asa(n —4) (15)

4.2. Outline of the proposed adaptive algorithm
AT TIME-INSTANT ¢t + 1:

1. Get a filtered version y(t) of the previous estimate as
described above.

2. Compute the statistics:

_ — T
R{) = (1-pREY +uxt)y(t)
R = (1—pREY +uy(@)y ()T

where p is a decreasing and positive sequence.
3. Update the value of the mixing matrix:
Al _ php@ !
AV =Ry
4. Estimate the source signals at time ¢t + 1 by

s(t+1)= RggR;tg#x(t +1)



To avoid the matrix inversion in step 3 and 4, one can update
directly R;yl or R;‘fy using the Woodbury’s identity. This
leads to the following adaptation,

t—1 —_1(t—1
iRy Ty by () Ry Y

_1(b) 1(t=1)
R} = R,
Yy 1_#[ Yy (1—M)—

t—1 t—1
1 [R#(t—l)_uRfy( 'x(t)y(®)"RE," "

— —1
py(OF Ry Py ()

L—pt ™ (1—p) — px

5. SEPARATION PROCESS ANALYSIS

In this section, we analyze the separation process of the pro-
posed algorithm. This analysis is done in the noiseless case.
Substituting x(¢) by As(t) in the equation at step 4 of the
above adaptive algorithm, we get

$(t+1) s(t+1)

This equation shows that our algorithm satisfies the equiv-
ariant property stated in [12]. The performance of such al-
gorithm do not depend on the mixing matrix A in the noise-
less case.

Note now that we can also write

#
=R{R{) (16)

#
y(t) = RY)RY) " s(1) (17)
According to equations (16) and (17), we have
R ]y = [RY)]g, fori # (18)
and
RG]y = Ry, fori # (19)

Note that [R',™];; (RE™]:,) and [RE));; ([RY));) are
nothing than the correlatlon between 5; and 5; (s; and 5;),
and between y; and y; (s; and y;), respectively.

Under the assumption of no overlapping band pass filters
and source signals with different spectra shape, we can see
that

RV < RET], fori # (20)
and

R < [RET], fori # (21)
From equations (18), (19), (20) and (21), we obtain

Ry, Vi < [R{Lij, for i # (22)
and

RV < [RY)];, fori # (23)

Equations (22) and (23) suggest that at convergence (¢t —
oc), matrices R( vy ) and R(°°) are diagonal matrices!. Hence,
§ converges to the correct source signals up to a permutation
and a scalar factor.

I Note that the diagonal elements ofR(°°) and R(°°) are different from
zero as long as source signal energy exnsts in the frequency band of each
filter.
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(t—1)
MHERE, y(t)

6. NUMERICAL SIMULATION

In this section, the performance of the proposed blind source
separation method, as investigated via computer simulations,
is reported.

In the simulated environment, a 2-element uniform linear
array having half wavelength sensor spacing receives two
signals arriving from different directions ¢; = 0 and ¢ =
20 degrees (the particular structure of the array manifold is
of course not exploited by the proposed algorithm). The ad-
ditive noise is generated from a zero mean and temporally
white Gaussian process with the following covariance ma-

trix,
S

) (24)

where o2 is the noise power and p is the coefficient of noise
correlation. The step size parameter p is fixed to 0.5.
Sample run: In this example, the source signal are a QAM-
162 and a complex sinusoid at normalized frequency of 0.3.
A Signal to Noise Ratio (SNR) of 20 dB is chosen for this
experiment with p = 0. Figures 2 and 3 present a sample
run corresponding to this example using the signal space
representation and the spectral representation, respectively.
The observed results show clearly that the proposed algo-
rithm has succeeded in separating the source signals.
Figure 4 displays the rejection level defined as

) 2 IAF AP
p#q

(25)

where A is the estimated mixture matrix and # denotes
the pseudo-inverse. It is plotted in dB versus time itera-
tions. For this figure the plotting convention is: solid line
for the proposed algorithm; dashed line for the EASI al-
gorithm [12]. The plots show fast convergence and small
steady state error with respect to the EASI technique.
Performance evaluation: This section deals with the per-
formance evaluation of the proposed algorithm through se-
ries of experiments. For this purpose, the source signals
are generated by filtering a complex circular white Gaus-
sian processes by an AR model of order one with coefficient
a1 = 0.85exp(40.3) and ax = 0.85p2 exp(j(0.3+J5)), re
spectively. The parameter §, accounts for the spectral shift
between the spectrums of the two sources. The overall re-
jection level is evaluated over 100 independent runs.

In Figure 5, the SNR is kept constant firstat 5 dB (for p = 0
and p = 0.5) and than at 20 dB (for p = 0 and p = 0.5).
The curves show the mean rejection level in dB plotted as
against the ‘spectral shift” 5. These plots show that the pro-
posed approach is robust with respect to spatially colored
noise.

2Quadrature Amplitude Modulation with 16 constellations.
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7. CONCLUSION

In this contribution, we have introduced a new blind source
separation algorithm for sources with different spectra shapes.

The

technique is based on a recurrent input output identi-

fication using as inputs band pass filtered versions of the
estimated sources. This method shows a number of attrac-

tive

features: i) it relies only on second order statistics of

the received signals, ii) allows -in contrast to higher order

stati

stic techniques- the separation of Gaussian sources, iii)

improvement of the quality of the separation, iv) ability to

deal

with additive noise of unknown covariance, v) compu-

tationally very simple and efficient. An adaptive implemen-
tation of this approach was proposed.
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