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ABSTRACT

Estimating overcomplete ICA bases is a difficult problem
that emerges when using ICA on many kinds of natural
data, e.g. image data. Most algorithms are based on approx-
imations of the likelihood, which leads to computationally
heavy procedures. Here we introduce two algorithms that
are based on heuristic approximations and estimate an ap-
proximate overcomplete basis quite fast. The algorithms are
based on quasi-orthogonality in high-dimensional spaces,
and the gaussianization procedure, respectively.

1. INTRODUCTION

Independent component analysis can be considered to be
a fundamental generative model for low-level features of
many types of natural data. In ICA the observed data is
expressed as a linear transformation of latent variables that
are nongaussian and mutually independent. We may express
the model as ���������	��
� 
���
 (1)

where ������������������� � � ���� "! is the vector of observed ran-
dom variables, ���#� � �$� � �%��� � � � ��& ! is the vector of the la-
tent variables called the independent components or source
signals, and � is an unknown constant matrix, called the
mixing matrix.

In the classic case, we assume that the number of in-
dependent components equals the number of the observed
variables, i.e. ' �	( . Exact conditions for the identifiabil-
ity of the model were given in [1], and several methods for
estimation of the classic ICA model have been proposed in
the literature, see [8] for a review.

Recently, a non-classic modification of the model, where
it is assumed that the number of independent components is
larger than the number of observed variables ( '*) ( ), has
attracted the attention of a number of researchers [12, 13,
14]. Such a model is especially interesting when ICA is
used for image modeling, because it leads to decomposition
of image windows that is closely related to overcomplete

wavelet bases (see [13]). Basically, the larger number of in-
dependent components in the model means that we have a
larger ‘dictionary’ from which to construct the representa-
tion.

Some methods have already been proposed for estimat-
ing the mixing matrix in the ICA model with '+) ( , a
problem often called estimation of an overcomplete ICA ba-
sis. A drawback with most proposed methods is that they
are computationally very demanding. This is basically be-
cause the model then becomes a model with missing data.
In fact, the evaluation of the likelihood contains an integral
and even reasonable approximations of that integral are hard
to compute [12]. On the other hand, since these methods are
usually applied to data of very high dimensions, it would be
very useful to have an estimation method that can cope with
very large dimensions with a moderate computational load.

In this paper, we propose two somewhat heuristic meth-
ods for approximate estimation of the ICA model with over-
complete bases. The methods are computationally efficient
and appear to give good approximations of the optimal esti-
mates.

2. APPROXIMATE ESTIMATION BY
QUASI-ORTHOGONALITY

In feature extraction for many kinds of natural data, the ICA
model is only a rather coarse approximation. In particular,
the number of potential “independent components” seems
to be infinite: The set of such components is closer to a
continuous manifold that a discrete set. One evidence for
this is that in image feature extraction, basic ICA estima-
tion methods give different basis vectors when started with
different initial values, and the number of components thus
produced does not seem to be limited.

Any basic ICA estimation method for such data gives a
rather arbitrary collection of components which are some-
what independent, and have sparse (supergaussian or lep-
tokurtic) marginal distributions. We could argue, therefore,
that it is the sparseness that is important, and the exact de-
pendence relations between the components are secondary.
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In fact, recent research has revealed important dependencies
between the estimated components [6, 7, 15, 16].

In the following, we propose two methods that yield
bases for overcomplete sparse decompositions. The method
in this section is based on a Bayesian prior on the mixing
matrix, and the method in the next section uses a method of
gaussianization that has been proposed in projection pursuit
literature.

2.1. Sparse approximately uncorrelated decompositions

Let us assume, for simplicity, that the data is prewhitened
as a preprocessing step, as in most ICA methods. Then
the independent components are simply given by the dot-
products of the whitened data vector � with the basis vec-
tors � 
 , barring the noise generated by other components in
non-orthogonal directions.

Due to the above considerations, we assume in our ap-
proach that what is usually needed, is a collection of basis
vectors which has the following two properties.

1. The dot-products ���
 � of the observed data with the
basis vectors have sparse (super-Gaussian) marginal
distributions.

2. The ���
 � should be approximately uncorrelated (“qua-
si-uncorrelated”). Equivalently, the vectors � 
 should
be approximately orthogonal (“quasi-orthogonal”).

A decomposition with these two properties seems to capture
the essential properties of the decomposition obtained by
estimation of the ICA model. Such decompositions could be
called sparse approximately uncorrelated decompositions.

It is clear that it is possible to find highly overcom-
plete basis sets that have the first property of these two.
What is not obvious, however, is that it is possible to find
strongly overcomplete decompositions such that the dot-
products are approximately uncorrelated. The main point
here is that this is possible because of the phenomenon of
quasi-orthogonality.

2.2. Bayesian priors for quasi-orthogonality

Quasi-orthogonality [9, 10, 11] is a somewhat counterin-
tuitive phenomenon encountered in very high-dimensional
spaces. In a certain sense, there is much more room for
vectors in high-dimensional spaces. The point is that in an' -dimensional space, where ' is large, it is possible to have
(say)

� ' vectors that are practically orthogonal, i.e. their
angles are close to 90 degrees. In fact, when ' grows, the
angles can be made arbitrarily close to 90 degrees. This
must be contrasted with small-dimensional spaces: If, for
example, ' � �

, the even the maximally separated
� ' ���

vectors exhibit angles of 45 degrees.

Our goal is now to formulate a Bayesian prior for quasi-
orthogonality. Such a prior would give high probabilities to
mixing matrices with quasi-orthogonal columns. The start-
ing point is to assume that the elements of the basis vectors
are drawn randomly, independently from each other. Con-
sider the dot-product between two basis vectors: ���
 �	� . Let
us normalize this to obtain the quantity


 
 ��� � �
 �	�� � 
 ��� �	� � (2)

Assume that the dimensions are large. Under the assump-
tion of the independence of the elements of the vectors, the
sum ���� 
 � � ��� has an approximately gaussian distribution,
due to the central limit theorem. For large dimensions, the
norms in the denominator can be considered to be approx-
imately constant. In the following, we thus approximate
the distribution of


 
 � by a gaussian distribution. Its vari-
ance can computed under this independence approximation
as ���$' .

Thus, we could impose a gaussian prior on these dot-
products: � � 
 ! ��� � 
�� ' ! � ' (3)

where � is the standardized gaussian probability density
function. This is used to define the prior for � :

� � � ! ���
�� � � �

 
 � � ' ! � ' ���
�� � � �

���
 �	�� � 
 ��� �	� � � ' ! � '
(4)

whose logarithm is given by

! "�# � � � ! ��$ ' � � 
�� � �
���
 �	�� � 
 ��� �	� � ! �&% const. (5)

This prior assigns higher probabilities to mixing matrices
whose columns are quasi-orthogonal.

In practice, this prior can be multiplied by a constant
that expresses the strength of the prior. It seems that this
strength should be proportional to the number of observa-
tions, so that its effect is not diminished for large sample
sizes; thus we use a prior strength of the form ')( where '
is a positive constant that includes the factor '�� � . Further-
more, in simulations we have noticed that the prior often
performs better if the exponential 2 is replaced by a higher
number, denoted by * . Thus, in the following we use the
following prior:

! "�# � � � ! � ')( � 
�� � �
���
 �	�� � 
 ��� �	� � !,+ % const. (6)

One possible reason why higher powers are better can be
seen in Fig. 1: The gaussian approximation of the density
of the dot-product is good only relatively close to zero; by
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Fig. 1. Logarithms of the actual and the approximated prob-
ability densities of the absolute values of the dot product be-
tween two random (unit) vectors in a 20-dimensional space.
The upper curve corresponds to the gaussian approximation
and the lower curve to the actual distribution. The differ-
ence for large values may explain why a higher * than 2
gives better results.

using a higher power, the approximation may be better for
larger dot products.

To use the above prior with the ICA likelihood, we do
another approximation. Consider the likelihood for ordinary
(not overcomplete) ICA:

! "�#�� � � ! �	�
�

&
� 
  � ! "�#

� 
 ��� �
 � ����!�! % ( ! "�#��	��
����� � (7)

where the �



are the rows of the inverse of � , and
� ���� � . The purpose of the last term involving

! "�#��	��
�����
is

basically to make to �


more or less orthogonal. In fact, this

term disappears if the � 
 are constrained orthogonal. Thus,
since we are already incorporating the quasi-orthogonality
in the prior, we discard this term and simply extend the first
term of the likelihood to the overcomplete case. Finally, we
arrive at the following expression for the posterior:

! "�# � � � � � ����! ��� � � ��� � � � ( ! � �
�

&
� 
  � ! "�#

� 
 � � �
 � ����!�!
% ')( � 
�� � �

� �
 �	�� � 
 ��� �	� � ! + % const. (8)

In the following, we maximize this posterior to estimate � .
Note that previously we proposed a modification of FastICA
to perform a similar estimation by quasi-orthogonality [5],
but it seems that the present method estimates more orthog-
onal bases. This may be due to the additional parameters '
and * that can be tuned to fit the data at hand.

2.3. Simulations

First, we tried our method on simulated data. We mixed 40
independent components with Laplacian distributions into
a 20 dimensional data space, i.e. � was a matrix of size����� � � . The sample size was 50000.

A general problem in estimating overcomplete bases is
that components whose contributions to the data are very
small (as measured by the norm of the corresponding col-
umn of � ) are very difficult to estimate. To avoid this prob-
lem, the columns of the mixing matrix were generated so
that the norms of the columns were uniformly distributed
between

� � ��� and � � � . Otherwise, the mixing matrix was
random.

As a preprocessing step, the data was whitened. We then
maximized the posterior in (8) by gradient ascent. The pa-
rameter ' was fixed to the value of 3. We tried both second
and higher powers in the exponent * of the distribution func-
tion. We found that the second power was unable to prevent
all the components from converging to the same result. By
using the eighth power * ��� , the prior worked properly.

To investigate the quasi-orthogonality of the obtained
basis vectors, we can look at the minimum angle between
one basis vector from the rest. This minimum angle can be
calculated from the maximum of the absolute values of the
dot products between the basis vector in question and the
rest, i.e. from the maximum element of the row (or col-
umn) of �� � �� corresponding to the basis vector. These an-
gles are depicted in Fig. 2. Note that all of these angles are
above 70 degrees, which shows good quasi-orthogonality.
The probability density shown by the solid line in Fig. 2 for
comparison gives the distribution that one would expect for
the elements of �� � �� if they were actually distributed ran-
domly in different directions. One can see that in fact, the
obtained vectors are even more orthogonal than correspond-
ing random vectors.

The other thing of interest is, of course, how close the
estimated basis vectors are to the original basis vectors. This
can determined by looking at the absolute value of the ele-
ments of � � �� . First we find the element with the largest
absolute value from this matrix, remove both the real and
the estimated basis vectors corresponding to it, and repeat
this until we have a “match” for each basis vector.

The angles (in degrees) between the estimated basis vec-
tors and the matched original basis vectors are shown in
Fig. 3. We can see that at least 35 components were quite
correctly estimated.

2.4. Experiments on image data

Next we tested our method on image feature extraction. We
sampled � ��� � � image windows from 13 natural images.
We removed the mean from the windows and whitened the
thus obtained data vectors. From this 143 dimensional space
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Fig. 2. The separation results when 40 independent com-
ponents with Laplacian distribution are mixed into a 20 di-
mensional space, in the quasi-orthogonalization approach.
Asterisks: The minimum angles between the estimated ba-
sis vectors. Solid line: Probability density that the minimum
angle would have if the vectors were really generated ran-
domly.

we estimated 300 components, i.e. a basis more than twice
overcomplete. We used the same parameters * � ��� ' � �
that we used with the simulations. A supergaussian den-
sity was assumed for the independent components by taking! "�# � 
 � ��
 ! � ! "�#�� "���� ��


.
In Fig. 4, the basis vectors are shown. They are quite

similar to what one obtains with ordinary ICA using a super-
gaussian prior for the independent components. Note that
there are no low-frequency components since we used an
exclusively supergaussian prior density for the components.
In Fig. 5, we show the distances between the estimated ba-
sis vectors in the whitened space; these show that the basis
vectors are really quasi-orthogonal.
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Fig. 3. The distances between the real and matched compo-
nents, using the quasi-orthogonalization approach.

Fig. 4. The basis vectors obtained with the quasi-orthogo-
nalizing prior. The basis vectors are quite similar to those
obtained by ordinary ICA, but the basis is more than 2 times
overcomplete.

3. APPROXIMATE ESTIMATION BY
GAUSSIANIZATION

3.1. Gaussianization vs. orthogonalization

The second method that we propose for approximate esti-
mation of overcomplete ICA bases is based on gaussianiza-
tion. This idea comes from projection pursuit literature [3].
The point is to replace orthogonalization or quasi-orthogo-
nalization by a nonlinear transform that makes the projec-
tions onto already estimated basis vectors gaussian.

We use deflationary estimation of the independent com-
ponents [2, 4], which means that we first estimate one inde-
pendent component (typically by maximizing a measure of
nongaussianity), then estimate a second component some-
how discarding the direction of the first one, and so on, re-
peating the procedure ' times.

The question is then, how to discard the already esti-
mated components. Typically this is done by constraining
the search for new independent components to the space that
is orthogonal to the already found components; this is more
or less equivalent to removing the estimated independent
components from the data by linear regression, assuming
that the data is prewhitened.

In the gaussianization procedure, we do not remove the
components from the data, but we attempt to remove the
nongaussianity associated with the component. Assume that
we have estimated the � -th component as the linear combi-
nation

��
 �����
 � . To gaussianize this direction, we compute
the cumulative distribution function, say 	 of

��

. Then we

compute for every observation

�$
 ����! � � �
 � ����! the trans-
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Fig. 5. The distances between the estimated components in
the whitened space, using the quasi-orthogonalization ap-
proach on image data. See caption of Fig. 2.

form � ����! ��� � � � 	 � ��
 ����!�!�! , where � is the cumulative
distribution function of the standardized gaussian distribu-
tion. This variable � has a gaussian distribution [3]. To
reconstruct the observed � ����! after this gaussianization, we
transform the data back as

� ����!�� � 
 � ����! % ��� $ � 
 � �
 ! � ����! (9)

Note that even after ( marginal gaussianizations (where( is the dimension of the data) the data is still not dis-
tributed according to a joint gaussian distribution: Forcing( marginal distributions to be gaussian does not, in general,
make the joint distribution gaussian. In fact, the marginal
gaussianizations may interact because the directions are not
necessarily orthogonal, so that even the ( components that
were gaussianized need not have gaussian distributions af-
ter the whole process is finished. Compare this with the
case of orthogonalization: In orthogonalizing deflation, it
is completely impossible to estimate more than ( compo-
nents since one cannot have more than ( orthogonal vectors
in an ( -dimensional space. This is exactly why we had to
use quasi-orthogonalization instead of exact orthogonaliza-
tion in the heuristic extension of the preceding section. In
gaussianization, we do not need to modify the method. On
the other hand, gaussianization is only applicable in defla-
tionary mode, not in symmetric mode in which the quasi-
orthogonalization was used in the preceding section.

3.2. Simulations

We applied our method first on simulated data. The data
we used with this approach was identical to that used with
the quasi-orthogonalizing prior. The procedure for the es-
timation was as follows: first we whitened the observed
data. Then we estimated one component by using FastICA
[4] with the

���
	 �
nonlinearity, and then gaussianized (using

the cumulative distribution functions) the component in the
direction that FastICA found. Then we estimated another
component by FastICA, and so on.

We evaluated the angles between estimated basis vec-
tors in the same manner as with the quasi-orthogonalizing
prior. The minimum angles are shown in Fig. 6. All of these
angles are above 52 degrees, which shows that we again ob-
tained quite quasi-orthogonal basis vectors. The distances
between the original basis vectors and their matched esti-
mates are shown in Fig. 7. Almost all the components were
properly estimated.
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Fig. 6. The separation results when 40 independent com-
ponents with Laplacian distributions are mixed into a 20 di-
mensional space, in the case of the gaussianization method.
See caption of Fig. 2.
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Fig. 7. The distances between the real basis vectors and the
matched estimates, for simulated data using the gaussian-
ization procedure.

3.3. Experiments with image data

Finally, we applied our algorithm for image feature extrac-
tion. The image data was similar to that used with the quasi-
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orthogonalizing prior. In Fig. 8 we have the obtained basis
vectors. These are again similar to those obtained by basic
ICA estimation. We obtained low-frequency components
as well, which is in contrast to the quasi-orthogonalization
method. In Fig. 9 we have the distances between the es-
timated directions in the whitened space, showing that the
basis vectors are quite diffent from each other.

Fig. 8. The image basis vectors obtained using gaussian-
ization. Again, the basis vectors are quite similar to what
one obtains with ordinary ICA, but the basis is more than 2
times overcomplete.
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Fig. 9. The distances between the estimated components in
the whitened space, for image data and the gaussianization
approach. See caption of Fig. 2.

4. CONCLUSION

We introduced two somewhat heuristically motivated meth-
ods for estimating overcomplete ICA bases from images.

The methods were based on simply extending the estimation
principles of basic ICA to the overcomplete case. Simula-
tions and experiments on image data show that the methods
work surprisingly well, thus offering computationally effi-
cient alternatives for more statistically principled methods.
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