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Abstract

Reticle trackers have been used successfully with a beam
splitter for tracking and discrimination of several moving
incoherent (heat) optical sources in the mathematical
framework called Independent Component Analyses
(ICA). Here we further explore the theoretical basis of the
coherent and partially coherent illumination by laser for
the possibility of blind source de-mixing. An application
of the partial coherence theory and the Huygens-Fresnel
principle is utilized to formulate the problem. When
incoherence is assumed a linear ICA model is obtained
while in most general case of either partially or totally
coherent optical radiation the resulting signal model is
inherently nonlinear. It can be transformed into linear one
under very special condition that assumes no relative
motion between the radiating sources. In the most general
case of partially coherent radiation, tracking of the
several moving optical sources by using the beam splitter
based reticle trackers is possible either by using ICA
algorithms developed for undercomplete representation or
by introduction of one additional sensor.

1.0 Introduction
Reticle trackers are considered to be the classical
approach for estimating the position of a target in a
considered field of view and are widely used in IR
seekers, [3-13]. Their advantage is simplicity and low
cost, [10,11]. However, the major drawback of the reticle
trackers has been proven to be sensitivity on the man-
made clutters such as flares and jammers, [8,10]. Such
limitation of the reticle systems in real world
applications was very often due to the use of the single
detector element, [10]. Several attempts to neutralize such
problem are based on the introduction of the segmented
focal plane arrays (FPA) behind the reticle. Since the
advantage of the reticle seekers is simplicity and low cost
the segmented FPA must be comprised of a small number
of detectors so as not to become as complex and
expensive as an imaging system with a full strength FPA.
The problem still exists when the two sources are in space
region acquired by the same detector element.
Appropriate space resolution should be ensured requiring
more detector elements. A new approach was proposed in
[3,7] was extended in [4,5] and will be completed in this
paper. It is based on the ICA theory and an appropriate
modification of the optical tracker design. We present in
Section 2 a brief description of the optical modulation
theory while more details can be found in [8-12]. In
Section 3 a rigorous derivation of the signal model of the
modified optical tracker output signals is given. With the
advent of Laser Radar, LIDAR, we explore the general
case of either coherent and partially coherent laser
sources or the incoherent heat sources for the possibility
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of moving sources blind demixing and discrimination. An
application of the statistical optics principles, partial
coherence theory and Huygens-Fresnel principle, [1,2], is
utilized to formulate the problem. Although, linear ICA is
obtained a special solution for the incoherent sources this
case is of practical interest. Therefore, we address in
Section 4 the problem of the characterization of the linear
part of the signal model derived in the Section 3. By
using blind identification approach we show that
convolutive mixing model could have non-minimum
phase. We propose an adaptive frequency domain
algorithm for separating experimental data obtained from
the modified optical tracking device, [23]. In Section 5
experimental results are presented for the incoherent heat
sources while conclusions are given in Section 6.

2.0 Optical Modulation Theory

The reticle system provides directional information for
tracking and also suppresses unwanted background
signals, [8,9], by performing modulation of the incident
light flux. According to the type of the reticle and the
relative motion produced by the scan pattern, the
encoding method of the reticle may be classified into
AM, FM and pulse code modulation. In addition,
according to how the relative motion between the reticle
and the optical spot is obtained we may classify reticle
systems into fixed or moving reticle. When reticle is
fixed relative motion can be obtained by using rotating
mirror which causes the light beam and hence the spot to
either nutate or rotate in relation to the fixed reticle. In
the opposite case spot forming optics is fixed while
reticle performs either nutation or spinning. The general
case of one moving reticle system is illustrated with Fig.
1. Moving reticle is placed in the focal plane of the
collecting optics, while filed optics collects modulated
light and focuses it on detector. The selective amplifier
center frequency is usually the number of spoke pairs
times the nutation or spinning frequency. The rising-sun
reticle that is very often used in the nutating FM reticle
trackers, [3,8,9], is shown on Fig. 2.

Collecting QM

Photo-detector
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Amplifier
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Figure 1. Moving reticle based optical tracker



Figure 2. The rising-sun reticle

It can be noted from the previous discussion that relative
motion between the spot and the reticle can be ensured
either by nutation, [3,8,9], or rotation (spinning), [12]. In
any case detector output voltage is proportional to the
light irradiance behind the reticle according to [12,13]:

1(0)=1, [} [", s(r,0)3[r = 1,0 — (Q — @) | rdpdir
(1

where s(7, @) is the reticle transmission function (rtf) and
and ¢ are spatial variables of the rtf ranging from 0 to R
and -7 to 7, respectively. Also let the reticle nutation or
spinning rate be £21in rads™ and let r, and 6, be the spatial
coordinates of a point source that is imaged onto the
reticle. Ip in (1) is the peak irradiance of the point source
through the rtf. Since the convolution of any function
with delta function is the function located at the delta
function coordinates the Eq. (1) becomes:

1(t)=1,5(ry, Q2 — ;) )
We shall derive Eq. (2) in Section 3 as a limiting case of
the multi-source scenario by using more general approach
based on the statistical optics principles, partial coherence
theory and Huygens-Fresnel principle of the propagation
of electromagnetic waves. In optical trackers that
generate FM signal by means of the rising-sun reticle,
Fig. 2, and nutation the rtf are of the form [9,11]:

s(rop,0)=1, cos[le—m(r/a)sin(go)] (3)
The optical spot performs circular motion, with radius a,
around the center with coordinates (r,¢) relative to the
center of the reticle. Necessary condition for Eq. (3) to
hold is (#/a)’ << I. m in Eq. (3) is the number of spoke
pairs of the reticle. Eq. (3) represents canonical form of
the FM signal where frequency deviation from the carrier
frequency is directly proportional with the spot »
coordinate. So by using nutating rising-sun reticle, both
directional information, distance and azimuth, are
encoded in the reticle transmission function. Instead of
using nutation the relative motion between the spot and
the reticle can be obtained by simple rotation or spinning.
More details about such systems can be found in
[5,11,13].

3.0 Derivation of the Signal Model
We shall assume scenario shown on Fig. 1. Intensity at
point Q (detector) is obtained as:

1, =(u(Q.0u" (0.1)) )

where:

w(@,0)=u(Q,, 1) +u(Q,,1) )
and u(Q,,t) is disturbance at point O due to the point P; in
the plane %; and u(Q,,¢) is disturbance at point O due the
point P, in plane %;. Those quantities can be obtained as
functions of radiation at points P; and P, by application
of the Huygens-Fresnel principle to the propagation of
optical waves. Relation will be derived for quantity
u(Q,,t) while for u(Q,,¢) applies the full analogy. We will
give derivation for the quasi-monochromatic or narrow-
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band light since it is of practical interest. The purely
monochromatic case is obtained as a special case of the
quasi-monochromatic derivation. If the light is quasi-
monochromatic then [1,2]:

u(P,t—d,/c)
d,

where A, is the inclination factor that for the small

u(Q]’Z):” K(R,Q)AdP, (6)

diffraction angles &, and @, can be approximated with

1 —
A 27 where A is central wavelength of the source
J
emitting band. Because optical system is present between
Y, and X, its influence is taken into account introducing
K(P,,Q,) into integral (6). We shall assume here the

ideal lenses and only rtf to be important so that:

K(P,0,) =s(r,Q ~ ) @)

Now intensity Iy in Eq. (4) is obtained as:

1y =(u(01,0u" (0,,0) +(u(Q,,Hu" (05,1))
+ (01, 0u" (Q1,0)+ (" (01,10, u(0,.1)

The first two parts in Eq. (8) represent intensities
produced by the optical sources placed at points P; and P,
respectively. Then for the quasi-monochromatic light it
applies:

1Q,,0)= (0, 0" (0,,0)

1 I(P,t )
= 15 R R, xs(0,,1,0

A7 55 d,
If we assume a point source at P, then:
u(Po-y=up - Lys(p-p) a0

c c
Then Eq. (9) is reduced to:

1 I(P,1)
](Q]al):7 dllz S(rlawlal) (1)

In Eq. (15) and (17) as well as in analogous subsequent
derivations it will be assumed that [4,5]:

Sz(}‘l,gol,l‘):S(l"l,ng,l)

(S(r1,§01,1)>=s(l‘1,¢1,l)
Derivation of the third and fourth part in Eq. (8) is
becoming especially interesting. For a narrow-band light
it applies the following:

(0. 00" (0,.0))=
1
Aldd,

IR

PR}

X $(1, @1, 0)8(ry» 9351

)dP,dP, (12)

For <u*(Q1,l)u(Q2,l)> the same expression is obtained

so it will not be derived. According to Ref. 2. (pp. 180
and 197, Eq. (5.2-31) and (5.4-7)) it applies for the quasi-
monochromatic light:

F[Plapz; d2 _dlj:J(ﬂ,Pz)exp[—jiT”(dz _dl):l

and Eq. (12) becomes:




(u(Ql,r)u*(Qz,w):

Taa, 047"

x$(r,@,,1)s(ry, 0,,1)

2
Pz)exp[_ JT(dz -d, ):ldpldpz

(13)
where I'(P, P,P) is
the mutual intensity of light at P; and P,. According to
Ref. 2 (pp. 181 Eq. (5.2-30)-(5.2-33)) and Ref. 1 (1, pp.
507, Eq. (9) and (10)) mutual intensity can be expressed
as:

J(Ra%)exp[_jifﬂ(dz _dl):|:\ll(Pl)](Pz)7/12(0)

where y,(0) is mutual degree of coherence of the two

P,,7) is mutual coherence and J(

sources #; and u,. Then Eq. (13) is transformed into:

(0w (0,.1))=
— TPy a P

Xs(rlawlat)s(r27¢2’t)
Assuming point sources at P; and P, we finally obtain:

(010" Q1) =2 IR )712(0)

xs(r,0,,1)s(ry, 0,,1)

(14)

(15)
From Ref. 1 (pp. 507-508, Eq. (9)-(13)) and Ref. 2 (pp.
181 and 205, Eq. (5.2-37) and (5.5-14)-(5.5-16)) it
applies for the quasi-monochromatic source:

712(0) = |7/12 (0)| Cos(ﬂlz ) (16)

where:

Po=argy,(0)=0(F)-d(F)  (17)
and for the moving quasi-monochromatic sources it can
be written:

V()= |)/12 (t)| COS|:271’%Z+ ACD} (18)

where v is relative velocity between the two points and
A® is some initial phase difference. Now Eq. (14) can be
written as:

(w000 (0:.0)) == i —=——I(R)I(P,)
X Y12 (O, @1,0)8(ry, 9,,1)
(19)
wherey,(#)is given with Eq.(18) for quasi-
monochromatic radiation and is in principle unknown
function of time for the polychromatic radiation. Eq. (19)

can be applied on the pure monochromatic sources
replacing A with A,. The photo-current is obtained
when the intensity [y, Eq. (8) and related Eq. (11) and
(19), is expressed in terms of spectral irradiance and
when detector spectral responsivity is taken into
consideration giving for the quasi-monochromatic and
purely monochromatic sources:
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A1, )
)= 35 =

AI(P/It)
= d;

VI(BL AP, 2,0 y,(8) % 5(5,0,0)5(13.0,.1)

where A is the detector sensing area and R(/T ) is detector

R(Z)x s(r;.0,.0)
B (20)
R(A) x5(15,9,,1)

+ =
Add,

responsivity. Eq. (20) will be basis for obtaining
expressions for optical tracker output signals. Let
modified tracker be illustrated with Fig. 3, [3-7].
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Figure 3. Modified optical tracker

The reason for using more detectors is inability of the
existing tracker, Figure 1, to discriminate more optical
sources, [3-13]. On the basis of Eq. (20) the photo-
currents i; and i, can be obtained by simply inserting
7(A)and p(A) in (20) where 7(A) is the beam splitter
transmission coefficient and p(A) is the beam splitter
reflection coefficient. The optical tracker output signals x,
and x, are obtained as:

x,()=g,(*i,(t) jefl2} (e2))
where g, and g, are impulse responses of the selective
amplifiers and * means temporal convolution. Based on

Eq. (20) the following is obtained for quasi-
monochromatic and monochromatic sources:

x,(6)=g (1) *s(r,01,0) + g1, (1) *5(ry,0,,1)
+gl3(t)*[}/12(l)XS(FI,¢1,Z)S(VZ,(0,Z)]
X, ()=gpn () *s(r, @1, D)+ 80 (1) *5(ry,0,,1)
+g23(l)*[}/12(l)XS(VI,(DDZ)S(VZ,(DZ,I)]
(22)
where expressions for impulse responses are given in

[4,5]. Due to the high level of non-stationarity we were
not able to include in Eq. (22) the mutual degree of

coherence y,(f) as the part of the impulse responses.
The signal model Eq. (22) is reduced into linear one when
optical sources are incoherent i.e. ¥,,(¢)=0, [3-7].

Also, if y,(f) = const.the signal model Eq.(22) is
transformed into linear one by simple linear bandpass
filtering, [4,5]. In the most general case when y,,(f) is
some arbitrary function of time we can introduce
additional source signal s3(l)=Re[;/12 (l)]><s1(l)s2 0.
We can either use ICA method developed for
undercomplete representation, [26], in order to recover
the three source signals from two measured signals or to
introduce one additional beam splitter and one additional
detector in order to recover the three unknown source
signals on the basis of three measured signals. We can
discard the source signal s; after recovery since we are
not interested in it. Since the first two source signals are



sub-Gaussian signals the third source signal can be even
Gaussian. The key point is that it must be statistically
independent in relation to the first two source signals.
Simulations show that second and fourth order cross-
cumulants between s,,s, and s; are more than 10 times
smaller than related second and fourth order cumulants.
One can also note that in the special case of
quasimonochromatic radiation, Eq.(18), for

A=1 um and relative velocity v > 0.1 ms™ the numerical

frequency f = v//T is greater than 100 kHz in which case

the nonlinear part in Eq.(22) is transformed on higher
frequencies that are out of the pass-band region of the
bandpass filters g;; and g,; so that signal model Eq.(22)
could be again reduced on the linear one by simple linear
bandpass filters.

4.0 Characterization of the Signal Model
We shall assume the linear form of the signal model (22)
i.e. that optical sources are mutually incoherent with

71, (£) =0 . There are two problems associated with the

statistical inversion of the convolutive mixtures, Fig. 4
and Eq.(22): the whitening problems and problems with
the non-minimum phase of the mixing system transfer
function. The whitening problem can be solved by
recurrent neural network architecture, Fig. 5, [14].

s,(r,0,k) o Van\ x(k)
Gyi(z.k) +
W/
Gio(2,6) 4/
Gy (z.k) —X\
. x%y(k)
Gy(z.k) +
5,(r,0,k) A

Figure 4. Convolutive signal model

H(k) )

{+)

Wy (z.k)

Wy, (2.k)

Y2(k)

Figure 5. Recurrent separation network.

It is straightforward to derive relationships between the
mixing filters and separation filters in Z domain:

W, (2)==-G,(2)G,, (2)7]
WZI(Z):_GZI(Z)GZZ(Z)A (23)

If mixing filters G,,(z) and G,,(z) have zeros outside the
unit circle then non-causal realization of the separating
filters W,,(z) and W,;(z) must be used in order to
approximate unstable roots. Since any non-minimum

phase system can be written as G(z) =G, (2)G 4»(2) ,

Gmin (Z)
G, p(2)is an all-pass system, [24], the problem of

where is a minimum phase system and

inverting non-minimum phase system is to delay the
inverting systems properly, [25]. For the recurrent
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separation network such delay is obtained going to the
frequency domain and performing signal separation on
the block by block basis. Therefore, we have applied here
an adaptive frequency domain algorithm, [23]. In order to
identify the possible non-minimum phase problems we
have applied the fourth-order cumulant based blind
identification, [20], of the mixing filters G,,(z) and G,,(z)
that were modeled as the FIR filters of the 14" order.
Provided that input signals are non-Gaussian i.i.d. signals
the coefficients of the FIR filter of the order L are
obtained as [20]:

h(l-): C4y(L’0’ l) l- _

=0,...,.L
C4y(L7070)

where C(L,0,i) are the fourth-order cumulants of the
output signal y. Since in our case the input signal is FM
signal, that belongs to the sub-Gaussian class of signals,
the fourth-order cumulants exist. Figure 6. shows location
of the zeros of such blindly identified FIR mixing filter.
Obviously, there are zeros outside the unit circle. It
should be noted that zero locations of the mixing filters
G;(z) and Gy,(z) are influenced mainly by the character
of the selective amplifiers impulse responses.

(25)

Figure 6. Zeros of the blindly identified FIR filter

The linear part of the convolutive signal model (22) can
be transformed into frequency domain yielding:

{Xl }{GH Glz}{&}
X2 G21 G22 S2
where all quantities in the Eq. (26) are Discrete Fourier
Transforms (DFTs) of the related time domain quantities
in the signal model (22). To recover the source signals we
shall apply the slightly modified version of the adaptive

frequency domain algorithm developed by Back and
Tsoi, [22], that was itself the frequency domain extension

(26)

of the time domain Herault-Jutten neural network
[15,16]:

AW, =®(F,, k)Y, (k)

AW, =®(y,, k)Y, (k) 27

where i=1,..,N-1; j=i+1,..,N, N is the number of
sources and:

®(y,)=STFTlp(y)] ©(3,)=STFT|p(7))]
Y, =ISTFT(Y)) y, :ISTFT(Y;)
and nonlinearity (o) is applied componentwise. The

linear terms in Eq. (27) are due to the results developed
by Amari, [21], for the instantaneous mixtures stating that
learning rules will be super-efficient if only one odd
nonlinear function is used. The closed form input-output
relation of the recurrent neural network given with Fig. 5
is:



y=(+w)'x (28)
where W is easily identified from Fig. 5. More details
about this algorithm can be found in [23].

5.0 Experimental Results for the Incoherent (Heat)
Sources
Measured signals x; and x, are obtained on the basis of
the two frequency modulated (FM) source signals s; and
s, by means of the optical tracking device, [3-7], whose
schematic diagram is shown on the Figure 3. and
photography of the working model is shown on the
Figure 7. Deviation of the FM signal is proportional with
the distance of the optical source from the optical axis of
the optical tracker. Spectrogram of the measured signal x;
is shown on Fig.8 and spectrogram of the measured signal
X, looks similarly. It can be seen from the spectrogram
that two signals, corresponding with associated optical
sources, exist simultaneously in the measured signals x,
and x,. When FM demodulator is applied on either signal
x, or signal x,, only the IR optical source that was placed
near the center of the filed of view (FOV) can be
discriminated. If, however, the frequency domain based
BSS algorithm, Eq. (27), is applied on the signals x; and
X, the influence of the IR source placed near the center of
the FOV can be eliminated and both IR sources can be
discriminated. Here, we have used the filter length of 32
taps. In order to eliminate effects of the circular
convolution 32 zeros are added to the signal vectors prior
to doing FFT. So the overall FFT length was L=64. This
FFT length introduces 1ms delay in the tracking loop
making it suitable for real time tracking. We have done
frequency domain implementation using overlap-save
technique with overlap factor 0.5. The data were
whitened before applying the BSS algorithm.
Spectrograms of the output signals y, and y,, obtained
according to Eq. (28) are shown on Fig. 9 and 10. It can
be observed in signal y, that influence of the IR source
placed near the center of the FOV is eliminated. Fig. 11
shows demodulated signals: the first one (with stable
amplitude) obtained after demodulation of the original
source signal and the second one obtained after
demodulation of the recovered signal with

@(y) =2y +sign(y)y’.

maving reticle
beam spliter f {

Figure 7. Functional model of the modified reticle tracker
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6.0 Conclusion

The beam splitter based modification of the reticle optical
trackers is used for tracking and discrimination of the
several optical sources. The mathematical framework
called Independent Component Analysis (ICA) is used
for that purpose. The theoretical basis of the problem is
formulated by using statistical optics principles, partial
coherence theory and Huygens-Fresnel principle. It has
been shown analytically and verified experimentally that
incoherent (heat) sources produce linear ICA model
which enables the application of the linear ICA theory to
recover the unknown reticle transmission functions (rtfs)
that encode positions of the corresponding single optical
sources. In a case of the partially coherent illumination by
laser a nonlinear and highly nonstationary signal model is
obtained. However, transformation into linear model is
possible in special case when partially coherent optical
sources are not in relative motion i.e. when the mutual
degree of coherence is time invariant. If coherence factor
is time dependent we can introduce additional source
signal and apply linear ICA algorithms developed for
undercomplete representation or additional sensor must
be used in order to have the same number of sensors and
sources.
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