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ABSTRACT

Blind source separation (BSS) problems have recently be-
come an active research area in both statistical signal
processing and unsupervised neural learning. In most ap-
proaches, the number of source signals is typically assumed
to be known a priori, but this does not usually hold in prac-
tical applications. Although the problem of determining
the unknown source number has been studied recently, the
BSS problem when the source number is changing dynam-
ically is not yet considered. The main objective of this
paper is to study and solve these two problems. Its basic
idea is to utilize the correlation coe¢ cients between out-
put components of the neural network (NN) as a mean for
determining the unknown source number and/or detecting
dynamical change of the source number, and is to develop
a neural network with variable structure to perform the
corresponding adaptive blind source separation.

1. INTRODUCTION

In recent years, blind source separation (BSS) problems
have received increasing interest and have become an ac-
tive research area in both statistical signal processing and
unsupervised neural learning [1]-[12], [16]-[18]. The goal of
BSS is to extract statistically independent but unknown
source signals from their linear mixtures without knowing
the mixing coe¢ cients. The BSS techniques have many
potential applications in several areas, such as data com-
munications, speech processing, various biomedical signal
processing (MEG/EEG), and array processing in radar
and communications.

Many neural learning algorithms have been developed
for the BSS problem. Especially, some recently developed
algorithms are surprisingly good [1]-[4],[6]-[12], [16]-[18].
However, in their corresponding models and network ar-
chitectures it is usually assumed that the source number
is known a priori and …xed. In most neural approaches
to BSS, a typical assumption is that the source number
should be equal to the number of sensors (or array ele-
ments) and NN outputs. Unfortunately, these assumptions
do not necessarily hold in practice.

As Amari and Cichocki [3] pointed out, although re-
cently developed many algorithms are able to successfully
separate source signals, there are still many problems to be
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studied, for example, development of learning algorithms
which work: 1) when the number of the source signals is
unknown; 2) when the number of source signals is dynam-
ically changing. These two problems are very important
for many real-world applications, such as cellular wireless
communication systems, array processing in radar, and so
on.

The problem of determining the number of source sig-
nals has been considered only recently, and two approaches
has been proposed [9], [10], [12]. The …rst approach is
principal component analysis (PCA) based pre-whitening
in noisy conditions. In nature, this is also a subspace ap-
proach. The second approach uses a post-processing layer
for elimination of redundant signals. To our knowledge,
the BSS problem in the case of the source number chang-
ing dynamically is not yet studied in available literature.

The main objective of this paper is to study and solve
the above two BSS problems. Its basic idea is to utilize
the correlation coe¢ cient and the correlation measure of
NN output components as a mean for determining the un-
known source number and/or detecting dynamical change
of the source number, and is to develop a NN with vari-
able structure to perform the corresponding adaptive blind
source separation.

The paper is organized as follows. In Section 2 we
describe the general BSS problem formula. In Section 3
we …rst present a theoretical analysis to an important ob-
served phenomenon when the NN output number is larger
than the source number, and then de…ne correlation co-
e¢ cients and correlation measures for NN output compo-
nents, and proposes a new algorithm for determining the
unknown source number. In Section 4 we study and solve
the BSS problem when the source number is dynamically
changing. The neural network approach with a variable
structure consists of the three algorithms. The statistical
results of independent simulation runs are given in Sec-
tion 5 to show the e¤ectiveness of the new NN approach.
Conclusions are made in Section 6.

2. PROBLEM FORMULATION

Let s1(t); ¢¢¢; sn(t) be n zero-mean source signals that
are scalar-valued and mutually (spatially) statistically in-
dependent (or as independent as possible) at each time
instant t. The original source signals si(t) are mixed by
a m £ n mixing matrix A, and are observed by m sen-
sors or array elements. In real applications, the number of
sensors, m, is known and …xed.
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Assume x(t) = [x1(t); ¢¢¢; xm(t)]T be the m-
dimensional data vector made up of m mixtures.
Then, the mixing (data) model can be written in the
following vector form:

x(t) = As(t) (1)

where s(t) = [s1(t); ¢¢¢; sn(t)]T is the source vector con-
sisting of n source signals at t, and A is a full-rank m £ n
mixing matrix.

The task of blind source separation is to recover
the waveforms of the sources fsi(t)g using the mixtures
x1(t); ¢¢¢; xm(t) without the knowledge of the mixing ma-
trix A. It is well-known (see, e.g., [5], [15]) that it is im-
possible to separate several Gaussian source signals from
each other. Hence, at most one of the source signals si(t)
is allowed to have a Gaussian distribution.

To separate n source signals, we use a feed-forward
linear NN as a simple linear separating system:

y(t) = W(t)x(t) (2)

where y(t) = [y1(t); ¢¢¢; yn(t)]T is an estimate of s(t); and
W(t) is a n £ m separating (or de-mixing) matrix. The
key of adaptive blind source separation is to …nd W(t) in
a recursive way so that y(t) = W(t)x(t) is an estimate of
the source signal vector s(t).

There are three main methods for blind signal sepa-
ration : the independent component analysis (ICA), the
maximum entropy (ME) and nonlinear PCA. The ICA
is identical to minimizing the mutual information of the
output y(t). The basic idea of minimum mutual informa-
tion is to choose W that minimizes the dependency among
the components of y(t). For non-Gaussian (sub-Gaussian
and/or super-Gaussian) source signals, uncorrelatedness
is a necessary prerequisite for the stronger independence
condition.

To measure the dependency between non-Gaussian
output components, we must use higher-order cumulants
of the output vector y(t); namely consider the nonlinear
transformation of y(t). To this end, let zi = gi(yi); i =
1; ¢¢¢; n be the nonlinear componentwise transformed out-
puts, and z = [g1(y1); ¢¢¢; gn(yn)]T . It is shown [16] that
subject to maximizing the joint entropy H(z;W) or min-
imizing mutual information of z; it gives the following
learning rule:

dW

dt
= ´(t)

@H(z;W)

@W
WTW =´(t)

³
I ¡ Á [y(t)]yT (t)

´
W

(3)
or

W(t + 1) = W(t) + ´(t)
¡
I ¡ Á [y(t)]yT (t)

¢
W(t) (4)

where ´(t) > 0 is the adaptive learning rate, and I is the
n £ n identity matrix. Since @H(z;W)

@W WTW is called the
natural gradient, (4) is referred to as the natural gradient
learning rule.

The natural gradient learning rule is very easy to im-
plement, since Á (y) can be computed as follows [16]:

Á (y)
¢
= [Á(y1); ¢¢¢; Á(yn)]T

= f(·3; ·4) ± y2 + g(·3; ·4) ± y3 (5)

where ± denotes the Hadamard product of two vectors:

f ± x = [f1x1; ¢¢¢; fnxn]T ; (6)

and

yk =
£
(y1)

k; ¢¢¢; (yn)k
¤T

for k = 2; 3; (7)

f(·3; ·4) =
£
f(·1

3; ·
1
4); ¢¢¢; f(·n

3 ; ·n
4 )

¤T
; (8)

g(·3; ·4) =
£
g(·1

3; ·
1
4); ¢¢¢; g(·n

3 ; ·n
4 )

¤T
: (9)

while the functions f(x; y) and g(x; y) are given by

f(x; y) = ¡ 1

2
x +

9

4
xy; (10)

g(x; y) = ¡ 1

6
y +

3

2
x2 +

3

4
y2; (11)

and the third- and fourth-order cumulants of the i-th out-
put component, ·i

3 and ·i
4 can be estimated adaptively

as:

d·i
3

dt
= ¡ ¹

¡
·i

3 ¡ (yi)
3
¢
; i = 1; ¢¢¢; n (12)

d·i
4

dt
= ¡ ¹

¡
·i

4 ¡ (yi)
4 + 3

¢
; i = 1; ¢¢¢; n (13)

where ¹ is the learning rate for updating the cumulants of
output components.

The two standard assumption in blind source sepa-
ration are: 1) the number n of the source signals should
be known, 2) the number n of the source signals and out-
put channel number l are equal in the separation network.
Generally, both these assumptions are usually not hold in
practice.

3. SOURCE NUMBER DETERMINATION

Like in most neural blind source separation approaches,
the only additional requirement in this paper is that the
number of available sensors or array elements, m; is greater
than or equal to the true number n of source signals, that
is, m > n.

It is well-known that there is indeterminacy or am-
biguity in both exact order and amplitude of separated
source signals. Since the number m of sensors should be
larger than the unknown number n of source signals, the
m£ n mixing matrix A is a ‘high’ matrix. To solve the
problem of source number determination, we use a dynam-
ical neural network (DNN). As compared to the general
NN with …xed structure, the DNN has a variable struc-
ture in which the input number m is …xed, but the output
number l is variable. Clearly, n 6 l 6 m. In such a case,
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the weight matrix W of the neural network in the learning
rule (4) is an l £ m ‘wide’matrix. Hence, we should …nd
a separating or de-mixing matrix W adaptively such that

W = ¤ PAy (14)

where ¤ is a non-singular l £ l diagonal matrix, Ay =
(ATA)¡ 1AT is the n £ m Moore-Penrose generalized in-
verse of A, and P is an l£ n ‘high’generalized permutation
matrix whose each row has one unity;while each column
has one or more unity except from zero elements. Using
(14), we have y(t) = Wx(t) = ¤ PAy ¢As(t) = ¤ Ps(t);
from which it is easy to see that there are n separated
source signals and l ¡ n copies (with di¤erent scaling fac-
tors) of some source signals among the neural network’s l
outputs. A signal and its copy with di¤erent scaling factor
are coherent in the sense that their correlation coe¢ cient
is theoretically equal to unity. Therefore, the well-known
key conclusion of the ICA should be corrected as follows:
only when the output number l is equal to the source num-
ber n, minimizing the mutual information of the output
vector y(t) makes its all components become independent;
whereas if l > n, minimizing the mutual information of
y(t) can only make its n components become independent,
while other l ¡ n components will be coherent with some
original source signals.

Here, we proposes a new practical approach for deter-
mining the source number on-line by detecting correlations
between NN output components. As we concluded above,
when l > n, there are n independent output components
and l ¡ n coherent components among l NN outputs. Im-
portantly, coherent signals are easily discriminated. To
this end, we de…ne correlation coe¢ cients as

rij =
cov[yi(t); yj(t)]q
cov[yi(t)]cov[yj(t)]

; i; j = 1; ¢¢¢; l but i 6= j

(15)
where cov[x(t); y(t)] = Ef[x(t)¡ mx][y(t)¡ my]g;
cov[x(t)] = Ef[x(t)¡ mx]2g; and mx= Efx(t)g. Note
that 0 · jrij j · 1.

On the other hand, the correlation measure of yi(t)
on all of other output components is de…ned as

Di(t) , D (yi(t)) =

vuut 1

l ¡ 1

lX

j=1;j 6=i

(rij)
2; i = 1; ¢¢¢; l:

(16)
The correlation coe¢ cients rij and the correlation

measures Di(t) are very important to the BSS with the
unknown source number and the changing source number.
Clearly, if jrij j is close to unity for some yi(t) and yj(t)
after the NN converges to its equilibrium point; then yi(t)
and yj(t) can be considered to be coherent. On the other
hand, if Di(t) are su¢ ciently small for all i, then all output
components can be considered to be separated from each
other. In adaptive blind source separation, rij and Di(t)
can be computed recursively.

A variable learning rate scheme is proposed with the

following diagonal form

´ (t) = diag
£

´1(t) ´2(t) ¢¢¢ ´l(t)
¤

(17)

The ´i(t) is only the learning rate of the output compo-
nent yi(t). If Di(t) is su¢ cient small, the output signal
yi(t) is considered to be uncorrelated with all of other out-
put components. Otherwise, yi(t) is correlated with other
outputs, and the larger Di(t), the stronger the correlated-
ness. A natural choice of ´i(t) is that the smaller Di(t)
is, the lower the learning rate ´i(t) should be, vice versa.
More speci…cally, we choose ´i(t) as

´i(t) = ¯ (Di(t)); i = 1; ¢¢¢; l (18)

where ¯(¢) > 0 is a nonlinear function, for example it can
be piecewise linear for simplicity.

Our approach to determining the unknown number of
source signal on-line are as follows:

Algorithm 1 (Source Number Determination)
Step 1: In the initialization stage of running learning

algorithm (4), we take l = m. Since there are the larger
bias in the estimates of both the correlation coe¢ cient rij

between yi(t) and yj(t) and the correlation measure Di(t)
of yi(t) computed recursively from a shorter set of samples,
we take ´ (t) = diag(® ; ¢¢¢; ® ) until 300 samples; where ®
is a larger constant.

Step 2: After 300 samples, we use ´i(t) = ¯ (Di(t)) to
run the learning algorithm (4).

Step 3: If all of the correlation measures Di(t); i =
1; ¢¢¢;m are su¢ ciently small (for example Di(t) < 0:05),
we consider all of source signals to be separated from each
other.

Step 4: Detect a pair of output components (yi; yj)
with su¢ ciently large correlation coe¢ cient rij (for exam-
ple rij > 0:8), and delete either yi(t) or yj(t). Repeat this
deleting process until all of the redundant copied signals
are deleted.

We refer to Step 1 as the initialization stage, Steps
2 and 3 as tracking stage, and Step 4 as source number
determination stage. If applying the learning algorithm
(4) with …xed learning rate, Step 2 is omitted.

In the tracking phase, the redundant output signal
( such as yi(t) ) will be a copy of another signal ( such
as yj(t) ). Without loss of generality, we promise that
the output yi(t) will be deleted. To do this, the ith row
of W is deleted and its size is become (l ¡ 1) £ m. In
a similar way, the ith row and ith column in matrices
´ (t) and ª are deleted. In this way, the NN has still m
inputs, but the number of outputs becomes l ¡ 1 from l.
It is easy to verify that the NN output vector is y(t) =
[y1(t); ¢¢¢; yi¡ 1(t); yi+1(t); ¢¢¢; yl(t)]

T ; i.e., yi(t) has been
deleted, while all others are unchanged. Repeating the
above process, we …nally have n separated source signal
outputs.

4. SOURCE NUMBER CHANGING

In standard adaptive source separation approaches, it is
assumed that the source number is unchanged. However,
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this assumption is not true in many practical applications.
A typical example is cellular wireless communication sys-
tems within which the number of users is changing dynam-
ically. This dynamical change includes both source num-
ber decreasing and increasing. The case of source number
decreasing is discussed in detail in this paper.

Once the number n of source signals are determined,
the NN has m inputs and n outputs. Let us consider the
case when the signal sk(t) separated in the output channel
yi disappears suddenly at some time. When the number
of output channels is decreased from n to n ¡ 1, there
appears the copy of another source signal (say sd(t)) in
output channel yi . For convenience, let the separated sig-
nal sd(t) output at the channel yj : Computing recursively
the correlation coe¢ cient rpq for each pair of di¤erent out-
puts (yp; yq) with the same time segment, and detecting
whether rpq is su¢ ciently large, we can …nd the output
pair (yi; yj) such that yi(t) is a scaled copy of yj(t): Note
that unlike the case of determining the unknown number
of source signals, we should delete yi(t) rather than yj(t)
here: How to determine which one is yi(t)? For this pur-
pose, we de…ne the following self-similar degree of a signal
for two time segments:

ssk(¿) =
1

L

L¡ 1X

t=0

yk(t+ T )yk(t + T ¡ ¿); k = i; j (19)

where L is the length of a segment of output signal yk(t), T
is its starting point of time; T +L ¡ 1 is its stopping point
of time, and ¿ is the distance between the two segments
of yk(t): Clearly, T + L ¡ 1 should be equal to the current
time. Since the self-similar degree describes the correlation
degree of two di¤erent time segments of the same signal,
it is easy to see that by selecting appropriate ¿; the output
with a small self-similar degree is yi(t) to be deleted, while
another output has a large self-similar degree and should
remain. Then, we can use a similar way to construct the
(n¡ 1)£ (n¡ 1) diagonal matrix ´ (t), the (n¡ 1)£ (n¡ 1)
matrix ª and the (n ¡ 1) £ m de-mixing matrix W: After
implementing the learning algorithm (4), the NN with m
inputs and n ¡ 1 outputs can track the remaining n ¡ 1
signals.

The above discussion can be summarized into the fol-
lowing algorithm.

Algorithm 2 (Source Number Decreasing)
Step 1: Find an output pair (yi; yj) with su¢ ciently

large correlation coe¢ cient rij(for example rij > 0:8).
Step 2: Determine yi or yj should be deleted by using

( 19) to inspect their self-similar degrees.
Step 3: Delete the redundant signal.
The case of source number increasing is somewhat

complex. To make the NN work well under this new envi-
ronment, it should have the following abilities: 1) Detect
whether one or more new source signals add, 2) Use a vari-
able structure to track new source signal(s) together with
the original n source signals.

The …rst task can be completed in very short time by
detection the correlation measure. Before a new source sig-

nal adds, the NN lies at its equilibrium point, meaning the
output components are independent each other. That is
to say, all correlation coe¢ cients rij are small enough, and
hence the correlation measure Di(t) of yi(t); i = 1; ¢¢¢; n
on all of other output components are su¢ ciently small as
well. When a new source signal adds, the equilibrium point
of the NN is broken, which may result to a large change of
correlation measures Di(t) for all output components: By
detecting such a change, we know whether a new source
signal adds. In general, Di(t) < 0:05 when the NN lies at
its equilibrium point, while Di(t) > 0:3 soon after a new
source signal adds.

But for second task, we have not any good method
except for re-initialization NN weight. Our future investi-
gations will focus on the new method for this case.

5. SIMULATIONS

In order to show the e¤ectiveness of the NN with a variable
structure for adaptive blind source separation, we apply it
to separate source signals from the observed mixtures. For
comparison, we run the learning algorithm (4) with …xed
learning rate (´ = 55) and with the diagonal variable learn-
ing rate matrix ´ (t) to each simulation. For convenience
of statement, we call them Method 1 and Method 2, re-
spectively. When applying Method 2, we use the following
formula to compute the learning rates:

´i(t) =

½
K1Di(t) ¡ 10; Di(t) > 0:05
K2D

2
i (t); Di(t) 6 0:05

(20)

´i(t) = 250 if ´i(t) > 250 (21)

where K1 = 1200 and K2 = 20000 were taken.
Example 1: This is an example for determining the

unknown number of source signals. The …ve source signals
are as follows:

s(t) =

2
66664

sign(cos(2¼155t))
sin(2¼25t) sin(2¼800t)
sin(2¼300t + 6cos(2¼60t))
sin(2¼90t)
n(t)

3
77775

(22)

The sign(¢) is a sign function, and n(t) is a noise source
uniformly distributed in [¡ 1;+1].

In simulation, we take l = m = 10 in Methods 1 and 2.
The elements of the 10£ 5 mixing matrix A are uniformly
distributed random numbers in [¡ 1; +1].

Fig.1 shows the separation process how to determine
the unknown number of source signals obtained by using
Method 2. To measure the performance of the algorithms,
we use the following cross-talking error [17]:

E =
lX

i=1

0
@

nX

j=1

jbij j
maxk jbikj ¡ 1

1
A +

nX

j=1

Ã
lX

i=1

jbijj
maxk jbkjj

¡ 1

!

(23)
where B = fbijg = WA is a l £ n matrix,
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maxk jbikj = max fjbi1j ; ¢¢¢; jbinjg ; and maxk jbkj j =
max fjb1j j ; ¢¢¢; jblj jg. Fig.2 shows the statistical result
(the mean and the standard deviation) of the cross-talking
errors for 100 independent runs of Methods 1 and 2:

Example 2: Here we consider the case when a source
signal disappears suddenly. The source signals are still
given by (22) until the 2000 th sample, but the source sig-
nal sign(cos(2¼155t)) disappears since the 2001st sample.
In start learning phase, we take l = m = 6.

Fig. 3 is the separation processes provided by Meth-
ods 2. The mean and the standard deviation of the cross-
talking errors for 100 independent runs of Methods 1 and
2 are given in Fig.4.

From statistical results in Figs.2 and 4, we see that
Method 2 (with variable learning rate) has the smaller
cross-talking error, faster convergence rate and better re-
constructed signal waveforms, as compared with Method
1 with a …xed learning rate.

6. CONCLUSIONS

In standard neural and adaptive BSS approaches, the
source number is assumed to known and/or …xed. How-
ever, these assumptions may not hold in practice. In this
paper, we study the BSS problems when the source num-
ber is unknown and is changing dynamically, and propose
a NN approach with a variable structure to solve the two
problems.

The main results of this paper can be summarized as
follows:

1. A theoretical analysis is given to demonstrate why
the NN with m inputs and l outputs has n independent
output components and l¡ n (scaled) copies of some source
signals appear at the output when the source number n is
less than the NN output number l.

2. Using the correlation coe¢ cients and the corre-
lation measure, we present the method to determine the
number of redundant signals and to detect the change of
source number.

3. By changing the structure of the neural network,
we propose the two adaptive source separation algorithms
for source number determination and source number de-
creasing, respectively .

The simulation results show the e¤ectiveness of the
algorithms.

Results
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Fig.1 The separation process using Method 2 for source
number determination
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Fig.2 Statistical results of the two methods for the
source number determination
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number decreasing
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Fig.4 Statistical results of the two methods for the
source number decreasing
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