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ABSTRACT

In thiswork weaddressthegeneralizedeigendecomposition
approach (GED) to theblind sourceseparationproblem. We
present an alternative formulation for GED based on the
definition of congruent pencils. Making use of this defi-
nition, and matrix block operations, theeigendecompostion
approach to blind source separation is completely charac-
terized. Wealso present an iterativemethod to compute the
eigendecomposition of asymmetric positivedefinitepencil.

1. INTRODUCTION

TheBlind SourceSignal Separation isaproblem that arises
in many application areas such as communications, speech
andbiomedical signal processing. Theobjectiveistoextract
thesourcesignals from somesensor measurements. Gener-
ally, it isassumed that each measured (or mixed) signal isan
instantaneous mixture of the source signals. The extraction
must becarried on without knowing thestructureof the lin-
ear combination (themixing matrix) and thesourcesignals.
Themathematical model for this problem is

���� � �����

Where� is themixing matrix, ���� and ���� arevectors
of mixed and sourcesignalsat time �� respectively.

Most of thesolutions, for blind sourceseparation, com-
prise two steps[1][3]. In the first step, called the whiten-
ing (sphering) phase, the measured data is linearly trans-
formed such that the correlation matrix of the output vec-
tor equals the identity matrix. This linear transformation
isusually computed using thestandard eigendecomposition
of the mixed data correlation matrix. During this phase the
dimensionality of the measured vector is also reduced to
the dimension of the source vector. After that, the sepa-
ration matrix, between the whitening data and the output,
is an orthogonal matrix which is computed applying differ-
ent strategies. In algorithms like AMUSE and EFOBI [1]
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astandard eigendecomposition isperformed in amatrix de-
rived from fourth-order cumulant or time-delayed correla-
tion definitions. The global separation matrix, or an esti-
mate of the inverse of �, is the product of the two matrices
computed on the two phasesof themethod.

Recently, the problem was also addressed as a gener-
alized eigendecomposition (GED). The solution comprises
the simultaneous diagonalization of a matrix pencil �����
���� computed in the mixed signals. These matrices are
calculated with different strategies: Souloumiac [5] con-
sider two segments of signals with distinct energy� Lo [7]
considersdifferent embedding spacesof thechaotic signals�
and Molgedey [8], Chang [4] computes time-delayed corre-
lation matrices and Tomé [6] considers filtered versions of
themixed signals. Using thismethod theseparation matrix,
i.e. the matrix that simultaneous diagonalizes the pencil, is
thetransposeof eigenvector matrix of thegeneralizedeigen-
decomposition of pencil.

In thiswork, wewill formulatetheGED methodtoblind
source separation using a linear algebra approach based on
the definition of congruent pencils [10]. The use of con-
gruent pencil definition and of block matrix operationscon-
stitute a very simple formulization of the GED approach to
the blind source separation. We also review methods that
perform the eigendecomposition of a matrix pencil based
on two consecutive standard eigendecompositions. We will
introduce an iterative algorithm to compute the GED of a
symmetric matrix pencil. The algorithm is based on the
power methodandde�ation techniques, toperform standard
eigendecompositions, and on the use of the spectral factor-
ization of a matrix to approximate a linear transformation.
This method can be an on-line algorithm for blind source
separation if thematrix pencil can becomputed iteratively.

2. THE GENERALIZED EIGENDECOMPOSITION
APPROACH

Thegeneralizedeigendecomposition formulatio of theblind
source separation problem is based on the relation of two
pencils: the source matrix pencil ����� ���� and the mixed
pencil ����� ����� The two pencils are called congruent
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pencils [10] if thereexistsan invertiblematrix �� such that

��� � �����
� and ��� � �����

� (1)

In the blind source separation problem the matrix � is
the instantaneous mixing matrix and can be an � � � ma-
trix, i.e., the number of mixed signals ��� is not equal the
number of sourcesignals���� In that casewewill show that
thepropertieswhich characterizecongruent pencilsarealso
applied if � 	 �� Therefore, the inverse (or the pseudo-
inverse) of the mixing matrix can be estimated, using the
mixed pencil, if the eigenvector matrix of the source pen-
cil is diagonal. The following propositions constitute the
required prove.

Proposition 1 : Congruent pencilshavethesameeigenval-
ues.

The eigenvalues of a pencil are the roots of the charac-
teristic polynomial, 
����


��� � ������� � ����� � � (2)

If � isan invertiblematrix, then

������� � ����� � ������ ������� � ����� �����
� ��

which as the same roots as characteristic polynomial of the
sourcematrix pencil


��� � ������� � ����� � � (3)

When � is a rectangular matrix �� 	 ��� if ��� is
an invertible matrix, the congruent pencil ��������

���
�������

��� has also the same eigenvalues, and so the
mixed pencil (with ��� matrices) hasalso � eigenvalues
equal to theeigenvaluesof thesourcepencil.

Proposition 2 : The eigenvectors of the source pencil are
related with theeigenvectorsof themixed pencil

The generalized eigendecomposition statement of the
mixed pencil

���� � ���� (4)

where � is the eigenvector matrix and it will be an unique
matrix (with the columns normalized to unity length) if the
diagonal matrix  has distinct eigenvalues, ��. Otherwise
the eigenvectors which correspond to the same eigenvalue
might be substituted by their linear combinations without
affecting the previous equality. So, supposing that  has
distinct values in itsdiagonal, rewriting theequation (4)

�����
�� � �����

�� (5)

if � is an invertible matrix, we can multiply both sides of
theequality by ��� and changing

�� � ��� (6)

The new equality, ����� � ������ is the eigendecom-
position of the source pencil and �� is its eigenvector ma-
trix. The normalized eigenvectors for a particular eigen-
value are related by �� � ��� � where � is a constant that
normalizes, to unity the length, theeigenvectors

In what concerns the blind source separation problem
the eigenvector matrix � will be an approximation to in-
verse of mixing matrix, if the �� is the identity matrix (or
a permutation). This is a fact when the matrix pencil of the
sourcesignalsareboth diagonal.

When themixing matrix is a�� � (� 	 �� theequa-
tion (5) might written using block matrix notation. Consid-
ering � and � divided into two blocks: � into ��� � � ��
and ��� �� � �� � �� � into �� � � � � and ��� �� �
����� Therefore, performing matrix block operations the
equation (5) can bewritten as

�����	 � �����	
�����	 � �����	

(7)

where	 � ��
��� 
��

��� � ��� is��� matrix.
The first equation shows that this case also resumes the re-
lation among congruent pencils. 	 isamatrix that also rep-
resents the eigenvector matrix of the source matrix pencil
having ����� columnsof zeroespaired with theeigenval-
ues in  that does not belong to eigenvalue decomposition
of ����� ����� Using thisdirect approach to solve theblind
source separation, it is possible to find out the number of
sources because after the separation �� � �� zero ampli-
tude signals are obtained. Nevertheless, the solution is also
foundusingasubset of mixedsignals(� signals) tocompute
themixed matrix pencil.

In resume, the GED approach to Blind Source Separa-
tion is feasible if the congruent pencils have distinct eigen-
values and that the source pencil is the identity matrix (or
a permutation). In a practical situation the first condition
may not be a real restriction nevertheless, Chang discusses
a recursive implementation where the signals are separated
into disjoint groupsthat can befurther separated computing
additional matrix pencils within the a subset of separated
signalscorresponding to multipleeigenvalues[4].

2.1. Computing theeigendecomposition of symmetr icpen-
cils

There are several ways o compute the eigenvalues or the
eigenvectors of a matrix pencil, if at least one of the matri-
ces a symmetric positive definite pencil [10]. A very com-
mon approach is to reduce the GED statement to the stan-
dard form, i.e. , to the eigenvalue decomposition problem.
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Consider theproblem of computing theeigenvaluesand the
eigenvectorsof thepencil ����� ����

���� � ���� (8)

Thereduction of thepreviousequation to thestandard form
��� � �� is achieved by solving the eigendecomposition
of the matrix ���� Then, if the matrix is positive definite,
��� � ���� � �������������� � �� , and con-
sidering � � ���wecan writeequation (8) as

�������
��� � � (9)

The previous equation is an eigendecomposition state-
ment of a real symmetric matrix �� � �������

�� if
��� isalso symmetric positivedefinite. The transformation
matrix ���� � �������� � should be computed with the
non-zero eigenvalues and the corresponding eigenvectors.
With the eigendecomposition solution of ��� the eigenval-
ues of pencil (8)are also available, while the eigenvectors
arecomputed solving theequation � ������

Usually, the matrix ��� is decomposed using Cholesky
approach [10], but with the proposed decomposition ���

can be written using spectral factorization what can be an
advantage when an iterative algorithm is required as will
show innext section. TheCholesky decomposition ���� �
������� � is also used in algorithms likeAMUSE, EFOBI
[1] and FastICA [9] to achieve theso called datawhitening,
but instead of performing a linear transformation on a ma-
trix, the transformation isused on theraw data. In AMUSE
and EFOBI algorithms, thesecond step is astandard eigen-
decomposition of a matrix which can also be written as a
product of matricesvery similar to thosefound in equations
(9) and (1). The transformation matrix and the mixing ma-
trix can be identified multiplying, on left and on right, a
matrix related with thesourcesignals.

2.2. I terativeeigendecomposition algorithm

Thestrategy to compute thegeneralized eigenvaluedecom-
position of two symmetric positive-definite matricescan be
resumed as follows:

� Computetheeigenvaluedecomposition ����� of one
of thematrices.

� Compute the matrix ��� � �������� and trans-
form thesecond matrix

� Compute the eigenvalue decomposition of the trans-
formed matrix ��

Usually the solution to eigendecomposion of the pencil
is achieved by finding a solution for each step but each one
has effectively an iterative solution. The standard eigende-
composition, of the first and third steps, can be achieved

with power method and de�ation techniques as brie�y de-
scribed in appendix, and the transformation matrix can be
written asaspectral factorization

��� �
�

�

�
��

���
�
� (10)

Therefore, the spectral factorization turns the computa-
tion of the transformation matrix into an iterativeprocedure
using a criterion to include a pair ���� ��� of the first eigen-
decomposition. The criterion can be the mean square error
��� ��� where �� � ����� � ����� Then, after having an es-
timative to the transformation matrix, the eigendecomposi-
tion of �� can start. This matrix is a rank deficient matrix,
during the first iterations, since ��� is rank deficient. The
number of eigenvalues used to compute the transformation
matrix will be the number of eigenvalues/ eigenvectors of
matrix pencil.

Theapplicationof thisstrategy toconstruct abatch (���

and ��� are computed before starting the eigendecomposi-
tion) algorithm can be resumed into the following steps

Given initial estimates:

- to the set of eigenvector �	��� �� �	����� � � � �� �����
of thematrix ��� � �	�	

- to the set of eigenvectors �	��� �� �	����� � � � �� �����
of the transformed matrix ���

��� � � � ����

% On-lineestimation of ��� and ���

-Estimate ���� ��� and ��� � �  � � � � (see ap-
pendix)

��� � �

��� � �  to �

� � �

�� ��
��� 	 � ��� �
��� � �� �

��� ���� 
 �
�����
�����!
�

�
���

� � �
 

���

-Transformthesecond atrix �� � �������
��

-Estimate the ���� ��� � � ���� of matrix ��

���

-�� arethe� eigenvaluesof ����� ���� andtheeigen-
vectorsare����� (which might benormalized
to unity length)

-� � � if thematricesarenot rank deficient.

���
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A GED on-line algorithm requires that the matrices are
computed within the iterative procedure, i.e. , the matrices
��� and ��� must be actualized whenever a new sample
of each signal is available. Then, at the beginning of the
main loop the proper actualization for each matrix must be
included.

3. NUMERICAL SIMULATION

Theexperimental study presented on thiswork concernsthe
evaluation of theGED approach, computing thecorrelation
matrices on filtered data, and the performance of the pro-
posed algorithm to achieve the eigendecompostion. The
experiences were realized with the FastICA toolbox demo
signals[9], using randomsquareand rectangular mixingma-
trices.

3.1. Separation using GED on filtered signals

In this experimental study both the matrices of the pen-
cil are correlation matrices computed at the input and at
the output of a finite impulse response(FIR). Considering
asegment of mixed signals"� an ��# matrix, thepencil
is � �� " " � � �� " $�$" � �� where " $� is the product of
each raw of " with thefilter convolution matrix $ [6]. The
filter used on thisexperiment isatwosamplesmean, then $
has only two diagonals with non-zero entries. The compu-
tation of the separation matrix was achieved using the eig
(A,B) command of Matlab.

Theperformanceof thismethodology iscompared with
FastICA performance. The evaluation of the methods is
achieved using the performance index parameter. The pa-
rameter computesthedegreeof diagonalization of theprod-
uct ��� of theseparation matrix by themixing matrix. This
parameter iscomputed for each raw � of � and isdefined by

%� �
����	��	�� 	��
 	

� (11)

If the matrix � is a permutation of a diagonal matrix,
the absolute maximum of each raw must belong to distinct
column. In what concerns the separation of the source sig-
nals, the column number where the maximum is found out
matchesthesourcesignal number. So, in atrial, aparticular
performance index, %� is considered valid if the maximum
belongs to column � with no maximum of other raw, other-
wise thesourcesignal � isnot extracted. Themean valueof
theperformance index for each sourcesignal, when asepa-
ration is achieved, is computed for the two methods (tables
1 and 2). Both methods separate all the sources in every
trial (of atotal 100) and theperformanceindex isvery close
both for squareand rectangular mixing matrix.

&��'�� �(� �(�� �(�� �(��
)�!*+� ���� ���� ���� ����
*���+�� ���� ���� ���� ����

Table 1. Using the signals of FastIca toolbox, with 4x4
mixing matrix -theseparation index

&��'�� �(� �(�� �(�� �(��
)�!*+� ���� ���� ���� ����
*���+�� ���� ���� ���� ����

Table 2. Using the signals of FastIca toolbox, with 6x4
mixing matrix -theseparation index

3.2. Algor ithm performance

Preliminary resultsconcerning theperformanceof thealgo-
rithm are discussed in this section. The performance was
evaluated for batch and on-line implementations. Thebatch
performanceof thealgorithm iscomparable to theeig com-
mand of Matlab as we can see in first and second columns
of thetables(3 and 4). Figure(1) showstheevolution of the
pencil eigenvalues along the first 50 iterations, and it can
be verified that the algorithm converges very fast towards
the final values. On both plots, it is visible the in�uence of
the transformation matrix on the convergence characteris-
tics, when ��� �� � but rank deficient, theeigenvaluesstart
equal to zero and sequentially change to a non-zero value.
But it can be seen that the first eigendecomposition starts a
convergence (tolerance for mean square error was ���� in
less than � iterations. Thefirst plot showsanon-rank defi-
cient casewhile thesecond plot showsarank deficient case
(thereareeigenvalues that remain equal to zero).

In the on-line implementation the correlation matrices
arecomputed iteratively, assuming that eachsampleof mixed
signals and filtered signals are available on iteration �� For
instance, the correlation matrix of themixed signals in iter-
ation � is

������ � �� !�������� �� 
 �!��,��� ��,��� ��� �
(12)

and the correlation of the filtered mixed signal is com-
puted in a similar way, substituting the vector ,��� �� by the
vector of filtered signals

Thethird column of tables(3 and 4) showstheeigenval-
ues at the end of the segment of ��� samples and figure 2
shows the evolution, along the data segment, of the eigen-
values of thepencil. We can see that theconvergence starts
later than in batch implementa ion, but in very short seg-
ments the signals are not stationary. It can be also verified
that in rank deficient matrices (second plot of figure 2) the
convergeisnot so fast as in thenon-rank deficient matrices.
It also presents a more instable behavior on the beginning,
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Fig. 1. Batch implementation- evolutionof thepencil eigen-
values

Numerical Batch(1000) On-line
0.479015705044 0.479015705044 0.478540881424
0.644916582931 0.644916582931 0.644362375553
0.891072116503 0.891072116503 0.893695758628
0.938799917384 0.938799917384 0.937778462743

Table3. Squaremixing matrices: pencil eigenvalues

it wasalso verified that in thefirst iterationsextremely large
eigenvaluescan beestimated.

The experiences also show that the eigenvectors are al-
waysestimated indescendingorder of magnitudeof thecor-
responding eigenvalues. This is justified by the application
of thepower method and de�ation techniquesapplied in the
standard eigendecompositions.

In what concerns blind source separation the eigenvec-
tor matrices, corresponding to theeigenvalues in the tables,
were used to separate the mixed signals. In spite the dif-
ferences in theeigenvalues, estimated by theon-lineand on
batch implementation of thealgorithm, theperformance in-
dexesarevery similar (lessthan� for every sourcesignal).
Figure 3 shows an example of the separation achieved with
theon-line implementation of thealgorithm.

4. CONCLUSIONS

The congruent pencil definition, and its extension to pen-
cils with different dimensions, turns the GED formulation
to blind sourcevery simple. Themethod is reliable if equa-
tion (6) isapplicable, but working withestimates, thesource
matrix pencil can havevery small valuesoff themain diago-
nal and, itseigenvector matrix is far from being theidentity.

Numerical Batch On-line
-0.004628569602 0.000000000000 0.00000000000
19.19389810755 0.000000000000 0.00000000000
0.506103128425 0.506103128425 0.50621164467
0.644979148253 0.644979148253 0.64389926903
0.891111773836 0.891111773836 0.89357466723
0.938799777695 0.938799777695 0.93758168367

Table4. Rectangular mixing matrix: pencil eigenvalues
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Fig. 2. On-line implementation- evolution of pencil eigen-
values

Theproposed algorithm isefficient and producesresults
comparableto eig Matlab command, but weareworking on
the development of other versions that might be less com-
plex. For instance, the mean square error can be avoided
as acontrol parameter if theeigenvaluesalwayspresent the
regular behavior shown in thepreviousexperiences.

One aspect that must be further studied is the in�uence
of noise, both in the GED approach to blind source sep-
aration and in the algorithm performance. We think that
in cases where the number of mixed signals is higher than
the number of source signals the formulation can be easily
adapted reformulating the mathematical model to ,��� �
�������, where the vector ����� includes the noise signals
and �� will be the mixing matrix. In what concerns the
algorithm, using the correlation matri in the first eigende-
composition, astrategy similar to that used in thewhitening
phase, thenumber of sourcesignalscan beestimated.

5. APPENDIX

Thepower method constitutesasystematic and iterativeap-
proach to look for vectors in �	 which can be the prin-
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