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ABSTRACT

In thiswork we address the generalized eigendecomposition
approach (GED) to the blind source separation problem. We
present an alternative formulation for GED based on the
definition of congruent pencils. Making use of this defi-
nition, and matrix block operations, the eigendecompostion
approach to blind source separation is completely charac-
terized. We also present an iterative method to compute the
eigendecomposition of asymmetric positive definite pencil.

1. INTRODUCTION

The Blind Source Signal Separation isaproblem that arises
in many application areas such as communications, speech
and biomedical signal processing. The objectiveisto extract
the source signal's from some sensor measurements. Gener-
ally, itisassumed that each measured (or mixed) signal isan
instantaneous mixture of the source signals. The extraction
must be carried on without knowing the structure of the lin-
ear combination (the mixing matrix) and the source signals.
The mathematical model for this problemis

y(t) = As(t)

Where A isthe mixing matrix, y(¢) and s(t¢) are vectors
of mixed and source signals at time ¢, respectively.

Most of the solutions, for blind source separation, com-
prise two stepg[1][3]. In the first step, called the whiten-
ing (sphering) phase, the measured data is linearly trans-
formed such that the correlation matrix of the output vec-
tor equals the identity matrix. This linear transformation
isusually computed using the standard eigendecomposition
of the mixed data correlation matrix. During this phase the
dimensionality of the measured vector is also reduced to
the dimension of the source vector. After that, the sepa
ration matrix, between the whitening data and the output,
is an orthogonal matrix which is computed applying differ-
ent strategies. In agorithms like AMUSE and EFOBI [1]
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a standard eigendecomposition is performed in amatrix de-
rived from fourth-order cumulant or time-delayed correla-
tion definitions. The global separation matrix, or an esti-
mate of the inverse of A, isthe product of the two matrices
computed on the two phases of the method.

Recently, the problem was aso addressed as a gener-
alized eigendecomposition (GED). The solution comprises
the simultaneous diagonalization of a matrix pencil (R,
Rz2) computed in the mixed signals. These matrices are
calculated with different strategies: Souloumiac [5] con-
sider two segments of signals with distinct energy; Lo [7]
considers different embedding spaces of the chaotic signals;
and Molgedey [8], Chang [4] computes time-delayed corre-
lation matrices and Tomé [6] considers filtered versions of
the mixed signals. Using this method the separation matrix,
i.e. the matrix that simultaneous diagonalizes the pencil, is
thetranspose of eigenvector matrix of the generalized eigen-
decomposition of pencil.

Inthiswork, wewill formulate the GED method to blind
source separation using alinear agebra approach based on
the definition of congruent pencils [10]. The use of con-
gruent pencil definition and of block matrix operations con-
stitute a very simple formulization of the GED approach to
the blind source separation. We also review methods that
perform the eigendecomposition of a matrix pencil based
on two consecutive standard eigendecompositions. We will
introduce an iterative algorithm to compute the GED of a
symmetric matrix pencil. The agorithm is based on the
power method and deflation techniques, to perform standard
eigendecompositions, and on the use of the spectral factor-
ization of a matrix to approximate a linear transformation.
This method can be an on-line agorithm for blind source
separation if the matrix pencil can be computed iteratively.

2. THE GENERALIZED EIGENDECOMPOSITION
APPROACH

Thegeneralized eigendecompositionformulatio of theblind
source separation problem is based on the relation of two
pencils: the source matrix pencil (Rs1, Rs2) and the mixed
pencil (R;1, Ry2). The two pencils are caled congruent



pencils[10] if there exists an invertible matrix A, such that

Rxl = ARSlAT and RmQ = ARSQAT (1)

In the blind source separation problem the matrix A is
the instantaneous mixing matrix and can be an m x n ma
trix, i.e., the number of mixed signals (m) is not equal the
number of sourcesignals (n). In that case we will show that
the properties which characterize congruent pencils are also
applied if m > n. Therefore, the inverse (or the pseudo-
inverse) of the mixing matrix can be estimated, using the
mixed pencil, if the eigenvector matrix of the source pen-
cil is diagonal. The following propositions congtitute the
required prove.

Proposition 1 : Congruent pencils have the same eigenval -
ues.

The eigenvalues of a pencil are the roots of the charac-
teristic polynomial, x (),

If A isan invertible matrix, then

det(Ry1 — ARy2) = det(A) det(Ry; — ARy2) det(AT),

which as the same roots as characteristic polynomia of the
source matrix pencil

X(A\) =det(Rs1 — ARs2) =0 (3)

When A is a rectangular matrix (m > n), if ATAis
an invertible matrix, the congruent pencil (AT AR, AT A,
AT AR AT A) has dso the same eigenvalues, and so the
mixed pencil (with m x m matrices) hasaso n eigenvalues
equal to the eigenvalues of the source pencil.

Proposition 2 : The eigenvectors of the source pencil are
related with the eigenvectors of the mixed pencil

The generalized eigendecomposition statement of the
mixed pencil

where E is the eigenvector matrix and it will be an unique
meatrix (with the columns normalized to unity length) if the
diagonal matrix D has distinct eigenvalues, \;. Otherwise
the eigenvectors which correspond to the same eigenvalue
might be substituted by their linear combinations without
affecting the previous equality. So, supposing that D has
distinct valuesin its diagonal, rewriting the equation (4)

ARG ATE = AR,ATED (5)
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if A isaninvertible matrix, we can multiply both sides of
the equality by A—! and changing
E,=ATE (6)
The new equality, Rs1 Es = RsED, isthe eigendecom-
position of the source pencil and E isits eigenvector ma-
trix. The normalized eigenvectors for a particular eigen-
value are related by e, = AT e where o is a constant that
normalizes, to unity the length, the eigenvectors

In what concerns the blind source separation problem
the eigenvector matrix E will be an approximation to in-
verse of mixing matrix, if the E; is the identity matrix (or
apermutation). Thisis afact when the matrix pencil of the
source signals are both diagonal.

When the mixing matrix isam x n (m > n) the equa
tion (5) might written using block matrix notation. Consid-
ering A and E divided into two blocks: A into Ay, n x n,
and Az, (m —n) xn; Einto Eg,n x mand Er, (m —
n) x m. Therefore, performing matrix block operations the
equation (5) can be written as

AgRs1® = AgRsx®D
ApR1® = AL Rs2®D 0

where ® = AL, Ey + ATE;, = ATE isn x m matrix.
The first equation shows that this case also resumes the re-
lation among congruent pencils. ® isamatrix that also rep-
resents the eigenvector matrix of the source matrix pencil
having (m — n) columns of zeroes paired with the eigenval-
uesin D that does not belong to eigenvalue decomposition
of (Rs1, Rs2). Using this direct approach to solve the blind
source separation, it is possible to find out the number of
sources because after the separation (m — n) zero ampli-
tude signals are obtained. Nevertheless, the solution is also
found using a subset of mixed signals (n signals) to compute
the mixed matrix pencil.

In resume, the GED approach to Blind Source Separa-
tion is feasible if the congruent pencils have distinct eigen-
values and that the source pencil is the identity matrix (or
a permutation). In a practical situation the first condition
may not be areal restriction nevertheless, Chang discusses
a recursive implementation where the signals are separated
into digoint groups that can be further separated computing
additional matrix pencils within the a subset of separated
signals corresponding to multiple eigenvalued[4].

2.1. Computingtheeigendecomposition of symmetric pen-
cils

There are severad ways o0 compute the eigenvalues or the
eigenvectors of amatrix pencil, if at least one of the matri-
ces a symmetric positive definite pencil [10]. A very com-
mon approach is to reduce the GED statement to the stan-
dard form, i.e. , to the eigenvalue decomposition problem.



Consider the problem of computing the eigenvalues and the
eigenvectors of the pencil (R;1, Ry2)

R.oFE =R, ED (8)
The reduction of the previous equation to the standard form
CZ = ZD, is achieved by solving the eigendecomposition
of the matrix R,;. Then, if the matrix is positive definite,
R,1 = SAST = SAY/28TSAY2ST — WW , and con-
sidering Z = W E ,we can write equation (8) as

W 'RW™'Z=2D 9)

The previous equation is an elgendecomposition state-
ment of a real symmetric matrix ¢ = W R,,W ! if
R, isalso symmetric positive definite. The transformation
matrix (W—! = SA=1/287) should be computed with the
non-zero eigenvalues and the corresponding eigenvectors.
With the eigendecomposition solution of C, the eigenval-
ues of pencil (8)are also available, while the eigenvectors
are computed solving the equation E = W1 Z.

Usually, the matrix R, is decomposed using Cholesky
approach [10], but with the proposed decomposition TV 1
can be written using spectra factorization what can be an
advantage when an iterative algorithm is required as will
show in next section. The Cholesky decomposition (W~ =
A~1/28T) isaso used in agorithms like AMUSE, EFOBI
[1] and FastICA [9] to achieve the so called data whitening,
but instead of performing a linear transformation on a ma-
trix, the transformation is used on the raw data. In AMUSE
and EFOBI agorithms, the second step is a standard eigen-
decomposition of a matrix which can also be written as a
product of matricesvery similar to those found in equations
(9) and (1). The transformation matrix and the mixing ma-
trix can be identified multiplying, on left and on right, a
matrix related with the source signals.

2.2. lterative eigendecomposition algorithm

The strategy to compute the generalized eigenval ue decom-
position of two symmetric positive-definite matrices can be
resumed as follows:

e Compute the eigenval ue decomposition (.S, A) of one
of the matrices.

e Compute the matrix W—! = SA=1/28T and trans-
form the second matrix

e Compute the eigenvalue decomposition of the trans-
formed matrix C

Usually the solution to elgendecomposion of the pencil
is achieved by finding a solution for each step but each one
has effectively an iterative solution. The standard eigende-
composition, of the first and third steps, can be achieved
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with power method and deflation techniques as briefly de-
scribed in appendix, and the transformation matrix can be
written as a spectral factorization
W= Z LS-S-T (10)
Therefore, the spectral factorization turns the computa-
tion of the transformation matrix into an iterative procedure
using a criterion to include a pair (s;, 6;) of thefirst eigen-
decomposition. The criterion can be the mean square error
ele;, where e; = R,1s; — &;s;. Then, after having an es-
timative to the transformation matrix, the eigendecomposi-
tion of C' can start. This matrix is a rank deficient matrix,
during the first iterations, since W~ isrank deficient. The
number of eigenvalues used to compute the transformation
matrix will be the number of eigenvalues eigenvectors of
matrix pencil.
The application of thisstrategy to construct abatch (R,

and R, are computed before starting the eigendecomposi-
tion) algorithm can be resumed into the following steps

Giveninitia estimates:

- to the set of eigenvector s,,,(0) # $;u—1(0) -+ # s1(0)
of the matrix R, € R™M&™

- to the set of eigenvectors z,,(0) # zm-1(0) - - - # 21(0)
of the transformed matrix C.
fork=1,2..
% On-line estimation of R,; and R,
-Estimate (s;,6;) ande;, ¢ = 1...m (see ap-

pendix)
W-1t=0
forj=1tom
n=>0

if (6;(k) > 0ande;(k) < tol)
Wt =W+ s;(k)(s;(k)"//8;(F)
n=n+1
end
-Transformthesecond  atrix C' = W1 R, W1
-Estimate the (z;, \;) i = 1...m of matrix
end

-)\; arethen eigenvaluesof (R, R.2) andtheeigen-
vectors are W1 z; (which might be normalized
to unity length)

-n = m if the matrices are not rank deficient.

end



A GED on-line algorithm requires that the matrices are
computed within the iterative procedure, i.e. , the matrices
R,1 and R, must be actualized whenever a new sample
of each signal is available. Then, at the beginning of the
main loop the proper actualization for each matrix must be
included.

3. NUMERICAL SIMULATION

The experimental study presented on thiswork concernsthe
evaluation of the GED approach, computing the correlation
matrices on filtered data, and the performance of the pro-
posed algorithm to achieve the eigendecompostion. The
experiences were realized with the FastICA toolbox demo
signalg[9], using random sguare and rectangular mixing ma-
trices.

3.1. Separation using GED on filtered signals

In this experimental study both the matrices of the pen-
cil are correlation matrices computed at the input and at
the output of a finite impulse response(FIR). Considering
asegment of mixed signasY, anm x N matrix, the pencil
is(%YYT, LYHTHYT), where Y H” is the product of
each raw of Y with thefilter convolution matrix H [6]. The
filter used on this experiment is atwo samples mean, then H
has only two diagonals with non-zero entries. The compu-
tation of the separation matrix was achieved using the eig
(A,B) command of Matlab.

The performance of this methodology is compared with
FastICA performance. The evaluation of the methods is
achieved using the performance index parameter. The pa
rameter computes the degree of diagonalization of the prod-
uct (C) of the separation matrix by the mixing matrix. This
parameter is computed for each raw i of C' and is defined by

~ max(|Cy))
> 1C51

If the matrix C' is a permutation of a diagonal matrix,
the absolute maximum of each raw must belong to distinct
column. In what concerns the separation of the source sig-
nals, the column number where the maximum is found out
matches the source signal number. So, inatrial, aparticular
performance index, p;. is considered valid if the maximum
belongs to column 5 with no maximum of other raw, other-
wisethe source signa j is not extracted. The mean value of
the performance index for each source signal, when a sepa-
ration is achieved, is computed for the two methods (tables
1 and 2). Both methods separate all the sources in every
trial (of atotal 100) and the performanceindex isvery close
both for square and rectangular mixing matrix.

(11
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Method Sc#1 | Sc#2 | Sc#3 | Sc#4
GED/FIR | 0.98 0.94 0.96 0.90
FastICA 0.95 0.95 0.94 0.87

Table 1. Using the signals of Fastlca toolbox, with 4x4
mixing matrix -the separation index

Method Sc#1 | Sc#2 | Sc#3 | Sc#4
GED/FIR | 0.99 0.94 0.96 0.90
FastICA 0.96 0.95 0.95 0.87

Table 2. Using the signals of Fastlca toolbox, with 6x4
mixing matrix -the separation index

3.2. Algorithm performance

Preliminary results concerning the performance of the algo-
rithm are discussed in this section. The performance was
evaluated for batch and on-line implementations. The batch
performance of the algorithm is comparable to the eig com-
mand of Matlab as we can see in first and second columns
of thetables (3 and 4). Figure (1) showsthe evolution of the
pencil eigenvalues along the first 50 iterations, and it can
be verified that the algorithm converges very fast towards
the fina values. On both plots, it is visible the influence of
the transformation matrix on the convergence characteris-
tics, when W —1 £ 0 but rank deficient, the el genvalues start
equal to zero and sequentially change to a hon-zero value.
But it can be seen that the first eigendecomposition starts a
convergence (tolerance for mean square error was 0.01) in
lessthan 15 iterations. The first plot shows a non-rank defi-
cient case while the second plot shows arank deficient case
(there are eigenvalues that remain equal to zero).

In the on-line implementation the correlation matrices
are computed iteratively, assuming that each sampl e of mixed
signals and filtered signals are available on iteration i. For
instance, the correlation matrix of the mixed signasin iter-
aioni is

Ro1 (i) = (1 = 1/i) Roa (i — 1) + (1/0)y(:, D)y (-,9) T
(12)

and the correlation of the filtered mixed signal is com-
puted in a similar way, substituting the vector y(:, 7) by the
vector of filtered signals

Thethird column of tables (3 and 4) shows the eigenval-
ues at the end of the segment of 1000 samples and figure 2
shows the evolution, aong the data segment, of the eigen-
values of the pencil. We can see that the convergence starts
later than in batch implementaion, but in very short seg-
ments the signals are not stationary. It can be aso verified
that in rank deficient matrices (second plot of figure 2) the
convergeis not so fast asin the non-rank deficient matrices.
It also presents a more instable behavior on the beginning,



square mixing matrix
T T T

0.8- B

0.6r R

0.4- 1

0.2~ i

rectangular mixing matrix
1 T T T
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0.6 R
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Fig. 1. Batch implementation- evolution of the pencil eigen-
values

Numerical Batch(1000) On-line

0.479015705044

0.479015705044

0.478540881424

0.644916582931

0.644916582931

0.644362375553

0.891072116503

0.891072116503

0.893695758628

0.938799917384

0.938799917384

0.937778462743

Table 3. Square mixing matrices. pencil eigenvalues

it was also verified that in thefirst iterations extremely large
eigenvalues can be estimated.

The experiences also show that the eigenvectors are al-
way's estimated in descending order of magnitude of the cor-
responding eigenvalues. Thisis justified by the application
of the power method and deflation techniques applied in the
standard el gendecompositions.

In what concerns blind source separation the eigenvec-
tor matrices, corresponding to the eigenvalues in the tables,
were used to separate the mixed signals. In spite the dif-
ferencesin the eigenvalues, estimated by the on-line and on
batch implementation of the algorithm, the performance in-
dexesarevery similar (lessthan 1% for every source signal).
Figure 3 shows an example of the separation achieved with
the on-line implementation of the algorithm.

4. CONCLUSIONS

The congruent pencil definition, and its extension to pen-
cils with different dimensions, turns the GED formulation
to blind source very simple. The method is reliableif equa
tion (6) isapplicable, but working with estimates, the source
meatrix pencil can have very small values off the main diago-
nal and, its eigenvector matrix isfar from being the identity.
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Numerical Batch On-line

-0.004628569602 | 0.000000000000 | 0.00000000000
19.19389810755 | 0.000000000000 | 0.00000000000
0.506103128425 | 0.506103128425 | 0.50621164467
0.644979148253 | 0.644979148253 | 0.64389926903
0.891111773836 0.891111773836 | 0.89357466723
0.938799777695 | 0.938799777695 | 0.93758168367

Table 4. Rectangular mixing matrix: pencil eigenvalues

square mixing matrix
T T T

I I I
100 200 300

| I I
400 500 600

rectangular mixing matrix

I I I
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Fig. 2. On-line implementation- evolution of pencil eigen-
values

The proposed dgorithm is efficient and produces results
comparableto eig Matlab command, but we are working on
the development of other versions that might be less com-
plex. For instance, the mean square error can be avoided
as acontrol parameter if the eigenvalues always present the
regular behavior shown in the previous experiences.

One aspect that must be further studied is the influence
of noise, both in the GED approach to blind source sep-
aration and in the algorithm performance. We think that
in cases where the number of mixed signals is higher than
the number of source signals the formulation can be easily
adapted reformulating the mathematical model to y(t)
A’s'(t), where the vector s'(¢) includes the noise signas
and A’ will be the mixing matrix. In what concerns the
algorithm, using the correlation matri in the first eigende-
composition, astrategy similar to that used in the whitening
phase, the number of source signals can be estimated.

5. APPENDIX

The power method constitutes a systematic and iterative ap-
proach to look for vectors in 8™ which can be the prin-





