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ABSTRACT explain how it is possible to take advantage of these prop-

We consider here the problem of blind sources separation.ert'es to derive new criteria of choice sffd matrices sets

During the last decade, many solutions have been propose(?::) Sri ég'ggd:lrggg?l'leﬁgaindéguglzgr?‘ntgg ?Si?:l?lléztﬁ)i;oa:re
among which contrasts functions, maximum likelihood func- P ' Y, P

tions, information-theoretic criteria, etc... More recently, a presented in order to demonstrate the effectiveness of the

new method based on some time-frequertef) fepresen- algorithm and a discussion on which kind of quadratic
tations has been introduced by Belouchretral. It consists representation to choose is also proposed.

in joint-diagonalizing a combined set of “spatidl distribu-

tions (stfd)” matrices. Howevert-f representations proper- 2. PROBLEM STATEMENT

ties still not have been widely exploited to solve the sources
separation problem. Our aim is to develop this point to take
better advantage of bilinear and quadratic time-frequencywe consider the blind sources separation problem where
representations properties. Hence, we deriVe new Cl’iteria Ofsources Signa's are received nsnsensors (assuming that
choice ofstfd matrices sets to be joint-diagonalized and/or ,;, > y). In matrix and vector notations, the input/output
joint anti-diagonalized. Finally, some computer simulations re|ationship of the mixing system reads:

are presented in order to demonstrate the effectiveness of

2.1. Model and assumptions

the proposed algorithm. w(t) = y(t) + b(t) = As(t) + b(t) 1)
with A themxninstantaneous mixing matrix,(t) = [x1(t),
1. INTRODUCTION s m (t)]T themx 1 observations vector (superscriptie-

noting transposition)s(t) = [s1(t), ..., sn(t)]T the nx1
In the past ten years, many “blindly” operating approaches Sources vector anbi(t) = [by(t), ..., b, (t)]" the additive

have dealt with a model commonly known ssurces sep- ~ Noise. o _ _
aration. In such a problem, the coupling channels are as- The noise is assumed to be stationary, zero mean, with com-

sumed to have unknown constant gains. The goal is thenPonents independent of the sources and mutually indepen-
to recover the inputs from the only outputs, without the ex- dent ; the correlation matrix of the noise is then:

plicit use of the unobservable sources assumed independent. Ry (1) = E[b(t + 7)b* (t)] = 025()1, )
Many solutions have been proposed to solve this problem

among which contrasts functiorig][ maximum likelihood : i X
functions or information-theoretic criterid[... In this com-  bution ancE[-] the mathematical expectation operator.

munication we focus on a method recently introduced in In the following, we limit ourself to the case of a real mixing
[2], based on the joint-diagonalization of a combined set matrix and real sources. The random sources are assumed

of “spatialt-f distributions” matrices (joint- diagonalization npr?-stationary and independent having as correlation ma-
methods being classically used in sources separ@id@] %

[5]()1. IYet, t-lf re;()jresentlaitionhs properties still no.t have Eleen Rs(7) = diag[r11(7), - . -, Tnn(7)] (3)
widely exploited to solve the sources separation pro M- with diag[.] standing for a diagonal matrix. These sources

That is the main goal of this paper. . R
. . o are supposed to have structures such as their realizations
After recalling some of the properties of the bilinear . R LT
have different localization properties in thé plane.

n ratic time-fr ncy representations w w . L .
and quadratic time-frequency representations we use, we The problem of blind sources separation is then to iden-

*This work was supported by Conseil Régional PACA tify the mixing matrix in order to restore the source signals.

wherel, is then x n identity matrix,dé(-) the dirac distri-

486



2.2. Problem indeterminacies

Table 1: A summary of Affine and Cohen’s class prop-
erties & definitions

It is well known that the sources separation problem can be
solved only up to a diagonal matri& (which corresponds

to arbitrary attenuations for the restored sources), and a per,
mutation matrixP (which corresponds to an arbitrary order
of restitution). That is why the unit power assumption on
sources can be done without loss of generality ; it finally
leads to:Rs(7) = I, involving thatR, = AA”.

3. BILINEAR & QUADRATIC TIME-FREQUENCY
REPRESENTATIONS

3.1. Some recalls
3.1.1. Bilinear and Quadratic TFR

A Quadratic Time-Frequency RepresentatigQht{FR as-
sociated to a signat;(t), is [5] the restriction tox;(t) =
x;(t) of a bilinear transform applied to a cougle;, z;) :

Q-TFR B-TFR

i Dy, = Dy, SUCh @8, 25) " Dgy,o,

(4)

Dia, (i R) = [ (023000, 0't. )bt (5
R2 —_—

kernel

To simplify, we will omit the dependence on the kernel
R in the notations oD,,,;, andD,, .

A Q-TFR D,(t,v), associated ta:(t) & X(v), is said
energeticif, Vz, it satisfies
Jre Do (t,v)dtdy = = [lz@®)dt = [, |X ()" dv

with E the energy of the signal and(v) its Fourier trans-
form.

Cohen class condition of definition:

Fa(t) < Y (t,v) =
y(t) =t — )™y (t,v) = Yu(t — 0,0 — )
Affine class condition of definition:
x(t) « wy(t,v) =
y(t) =lal? z(a(t — 7)) <  wy(t,v) =w(alt —71), %)

General form of Cohen s cla§FR
wwy (t,v) ff “(0 — *)
wz(t V) 1/Jm(t V)

(t —6,7)e ™7 drdp

General form of Affine CIas§FR
way(t,v) = [[a( y (0 — ) || K'(v(t — 0), —vT)drdf
. (t, V) wm(t y)

Energetic condition satisfied by the kernels of:
Cohen's class] K (t,0)dt = 1.

Affine class: [/ ﬁK'(t7 e AT dtdrdy = 1.

Table 2: Kernels of some Q-TFR.

3.1.2. Cohen's & Affine classes

The Cohen’s class is the class of energ@&fdrscovariant
under time and frequency shifts whereas the Affine class is
the class of energetitFRscovariant under time scalings
and shifts. Their members, associated (o) and noted),
andc,, satisfy the condition of definition of the class and
can be written in a general form characterizing the class.
They also conform to the energetic condition involving spe-
cific properties of the generating kernels (cf. Table 1). By
playing upon the kernel it is then possible to generate the
different elements of a given class (cf. Table 2). Finally, it
is possible to give some exemples of representations belong

ing to the Cohen’s class: Spectrogram (Sp), Pseudo Wigner-

Ville (PWV), Smoothed Pseudo Wigner-Ville (SPWV), etc...,

Transf. | Kernel K (¢, ) in Cohen| Kernel K'(¢t, 7) in Affine
class class
WV o(t) S(t)e*
PWV | §(t)H(7) /
SPWV | G(t)H(T) /
S| Hs-0mG-0 |
sc |/ 2 [ H (52 o505
— Ut 1 _— 25 orir
cw Vix |T Ve e
3.2. SpatialB-TFR
In the case of a vectorial signalt) = [z1(t), ..., 2, (t)]7,

the bilinear transform is spatial:
Dux(t, V) :/ x(0)x™(0)R(0,6';t,v)d0ds’  (6)
R2

or equivalently:

DZ‘lZ‘l (t7y) Dﬂflﬂfm(t’l/)

Dxx(t7 V) = (7)

Dy, (t,v) Dy, (t,v)

to the Affine Class: Scalogramme (Sc) and to both classes:

Wigner-Ville (WV), Choi-Williams (CW) (se€d] for more
details about these representations).

The terms on the diagonal are called auto-terms whereas the
other are called inter-terms.
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3.3. Some useful properties oB- and Q-TFR 4.2. Second stage: use of spatial bilinear time-frequency

. : . distributions
For source separation, the following two properties are of

particular interest. 4.2.1. Spatial bilinear t-f distribution of a linear mixtures
Property 1: Hermitian symetry of B-TFR - A bilinear of sources

time-frequency representation exhibits hermitian symetry if
and only if it satisfies: In the noiseless case, the spatial quadtatidistribution of
the whitened signals reads:

Drﬂj (t,v) = D;jxi (t,v) (8)
which for the kernel, leads tB(6, 0 t, v) = R*(#', 0;t,v). Dy(t,v) = WD(t,v)W? = WADg(t,v)ATWT

This property also involves conditions for the kernels of
Cohen’s class:

UDs(t,n)UT  (13)

K({t—0,7)=K(t—0,—7) 9) whose(k, p)-th elementisD., ., (t,v) = 31", ukiup;
i _ Dy, (t,v).
Affine class: In the following the time and the frequency will be omit-
K'(t—0,—vr)=K"(t—0,vT). (10) ted to simplify the notations.

One can check that these properties are satisfied by many Casek = p (auto-terms of spatiatf distribution):
transformations among which Wigner-Ville, spectrogram,

scalogram and Choi-Williams distribution. With regard to "

smoothed versions of Wigner-Ville, the smoothing window Dz = Z UkitkjDs, s, (14)
also has to present hermitian symmetry. hj=1

Property 2: Reality of Q-TFR - A quadratic time-frequency = ukitkiDso, + > gtk D, (15)
representation is real if and only if it satisfies: i=1 i,j(j#i)=1

On can check that this property is satisfied by m@ayFR Using Property 2 and the fact tha;uy; is real, T is found
among which Wigner-Ville and its smoothed versions, the to be real. Now, we calculafé:
spectrogram, scalogram and the Choi-Williams distribution.

4. BLIND SOURCES SEPARATION USING Vo= X wiwgDas + 3wk D,
BILINEAR TFR <=t bili>g)=1
4.1. First stage: spatial whitening = Z UkiUkj Ds,s; + Z UkjUkiDs; s,
L i,7(i<j)=1 i,j(i<j)=1
The mixing matrixA can be parameterized ¥A 2 U with n
V andU unitary matrices and\ a diagonal matrixg]. The = Z (uritpjDs,s; + Uritin; Dy, s;)
correlation matrix of the observed signalsrat 0 is given i,j(i<g)=1
by: R, (0) = AR (0)A” + Ry, (0) = AAT 4671,
= AAT = VAVT = R, (0) — 0?I,. Introducing Property 1, it is found that:
Moreover, the eigenvalues decompositiorRaf(0), which
is unique, writesR(0) = QXQ” with Q a unitary matrix i y
andX a diagonal matrix. By identification, it is found that: V.= Z ukittj(Ds;s; + D5,)
V = Q andA = X — ¢2I,,. The spatial whitening matrix i-j(i<j)=1
W is then defined asW = A2V and the whitened = .
signals are defined as: - (;) 1 it (Dsis; + Dsis;)”)
1,J1<J)=
z(t) = Wa(t) = WAs(t) + Wn(t) =Us(t) + Wn(t) n
(12) = 2 Y ugugReal{D,,,}
In the noiseless case, it simply gives(t) = U s(t) which i,5(i<j)=1

leads toR,(7) = UR(7)U” = I,,. The problem has been

reduced to the case of a unitary mixing of signals: the uni- As a consequenck and finally the auto-term®., ., are
tary matrixU still has to be estimated to be able to perform real.

separation.
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e Case k- p (inter-terms of the-f distribution):

n
E uk,iuijsisj

ij=1
n n
i=1 i, (i#)=

UkiUp; IS real, so the first term too. With regard to the sec-
ond term, it is easy to show that it is generally complex be-
causeD;,,; is complex.

It implies that the imaginary part of the spatial t-
f representation only corresponds to the interferences
between sources signals whatever the considered point
in the time-frequency plane. As consequence, we pro-
pose to use this result to decide what points in the time-
frequency plane correspond to signals and what points
correspond to interferences

Moreover, this approach can be generalized to the cas
of complex sources or complex mixing matrices, by treating

Dzkzp

Uk Upy Dsqﬂ,s]‘
1

the real part and the imaginary part independently of each

other.

4.2.2. New diagonalization & anti-diagonalization separa-
tion criteria

As we have:
DZkZp (ta V)

n

Z ukiuijSiS_j (tﬂ V)

n
= Z ukiupiDsisi (tv V) +
=1 i,§(i#j5)=1

(16)

{Dzz(t07 Vo),Vi, Dsisi (th VO) =0, 3{(173)77’ 7& .7} 7é

{0}/ Dy, (to, v0) # 0}, has to be joint anti-diagonalized.
The diagonal terms of thetfd D, (¢9, 1) of the whitened
signals have the following form:
QZiﬁj(Kj)ukiuijeaI{Dsisj} -

whereas the other terms have the following form:
Ziyj(#j) uritp; Ds, ;. Terms on the diagonal of the
matrix are real, whereas the other ones are complex.

e When both signals and interferences are present or
absent in(ty, 1), it is better not to take thisf point

into account. The estimation of the unitary matrix
would be degraded.

5. COMPUTER SIMULATIONS

In this experiment, we consider three real modulations of

drequency: two linear ones and a sinusoidal one. The mix-

ing matrix is:
1 08 09
=107 1 0.85
1.3 05 1

The number of points is 256 and the number of fre-
quency bins used in thef representations is 64. The plots
of the three individual modulations are shown on Fig. 1.
On Fig. 2, the mixed signals are displayed. The Wigner-
Ville distributions of the mixtures are depicted in Fig. 3
and 4 (real and imaginary part resp.). On Fig. 5 and 6 are
displayed thd-f points retained by the new criteria of de-
cision between signals and interferences. Finally, Fig. 7,
8, 9 and 10 represent the estimated signals thanks to joint-
diagonalization (Fig. 7) and joint anti-diagonalization (Fig.

different cases have to be considered, depending on the timeg)_ The sources are well estimated as it appears on the spa-

frequency point(ty, 1) considered in the time-frequency
plane:

e When at least one signal is present, without any in-

terference between sources (the imaginary part of the

stfdis null whereas its real part is different from 0 in
such at-f point) then the sefD,, (o, 1), 3 {i} #

{@} /DSiSi(tO’VO) # 0, DSij (tOvVO) =0,V (k’j)7
k # j} has to bgoint-diagonalized. The spatiat-f
distribution of the whitened signals writes:

Dzz(t07 VO) =

Zi UliuliDsisi Zi UliuniDsq,s,y
: 17)

Zi UniuliDsisi Zi UmluniDsj,s,y

and it is real.

e When there is no signal, but only interferences (the
stfd is complex in such a-f point) then the set

tial Wigner-Ville distributions of the signals estimated by
joint anti-diagonalization which are depicted in Fig. 9 (real
part) and 10 (imaginary part).

6. CONCLUSION

As a conclusion, in this communication, we have focused
on blind sources separation based on spatial bilinear time-
frequency representations. New criteria of choice between
signals and interferences have been introduced, determining
which matrices set has to be joint-diagonalized and which
matrices set has to be anti joint-diagonalized. These crite-
ria have been experimented on real non stationary signals in
order to illustrate their effectiveness. Concerning the choice
of the bilinearTFRsto use with such criteria: we have given
the conditions that th& FRshave to satisfy. It also impor-
tant that the usedFR presents a lot of interferences be-
tween sources. That is why we have used the Wigner-Ville
distribution rather than the spectrogram for example...
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