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ABSTRACT

We consider here the problem of blind sources separation.
During the last decade, many solutions have been proposed
among which contrasts functions, maximum likelihood func-
tions, information-theoretic criteria, etc... More recently, a
new method based on some time-frequency (t-f ) represen-
tations has been introduced by Belouchraniet al. It consists
in joint-diagonalizing a combined set of “spatialt-f distribu-
tions (stfd)” matrices. However,t-f representations proper-
ties still not have been widely exploited to solve the sources
separation problem. Our aim is to develop this point to take
better advantage of bilinear and quadratic time-frequency
representations properties. Hence, we derive new criteria of
choice ofstfd matrices sets to be joint-diagonalized and/or
joint anti-diagonalized. Finally, some computer simulations
are presented in order to demonstrate the effectiveness of
the proposed algorithm.

1. INTRODUCTION

In the past ten years, many “blindly” operating approaches
have dealt with a model commonly known assources sep-
aration. In such a problem, the coupling channels are as-
sumed to have unknown constant gains. The goal is then
to recover the inputs from the only outputs, without the ex-
plicit use of the unobservable sources assumed independent.
Many solutions have been proposed to solve this problem
among which contrasts functions [7], maximum likelihood
functions or information-theoretic criteria [4]... In this com-
munication we focus on a method recently introduced in
[2], based on the joint-diagonalization of a combined set
of “spatialt-f distributions” matrices (joint- diagonalization
methods being classically used in sources separation [3] [2]
[6]). Yet, t-f representations properties still not have been
widely exploited to solve the sources separation problem.
That is the main goal of this paper.

After recalling some of the properties of the bilinear
and quadratic time-frequency representations we use, we
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explain how it is possible to take advantage of these prop-
erties to derive new criteria of choice ofstfd matrices sets
to be joint-diagonalized and/or joint anti-diagonalized for
sources separation. Finally, some computer simulations are
presented in order to demonstrate the effectiveness of the
algorithm and a discussion on which kind of quadratict-f
representation to choose is also proposed.

2. PROBLEM STATEMENT

2.1. Model and assumptions

We consider the blind sources separation problem wheren
sources signals are received onm sensors (assuming that
m ≥ n). In matrix and vector notations, the input/output
relationship of the mixing system reads:

x(t) = y(t) + b(t) = As(t) + b(t) (1)

with A them×n instantaneous mixing matrix,x(t) = [x1(t),
..., xm(t)]T them×1 observations vector (superscriptT de-
noting transposition),s(t) = [s1(t), ..., sn(t)]T the n×1
sources vector andb(t) = [b1(t), ..., bm(t)]T the additive
noise.
The noise is assumed to be stationary, zero mean, with com-
ponents independent of the sources and mutually indepen-
dent ; the correlation matrix of the noise is then:

Rb(τ) = E[b(t + τ)b∗(t)] = σ2δ(τ)In (2)

whereIn is then × n identity matrix,δ(·) the dirac distri-
bution andE[·] the mathematical expectation operator.
In the following, we limit ourself to the case of a real mixing
matrix and real sources. The random sources are assumed
non-stationary and independent having as correlation ma-
trix:

Rs(τ) = diag[r11(τ), . . . , rnn(τ)] (3)

with diag[.] standing for a diagonal matrix. These sources
are supposed to have structures such as their realizations
have different localization properties in thet-f plane.

The problem of blind sources separation is then to iden-
tify the mixing matrix in order to restore the source signals.
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2.2. Problem indeterminacies

It is well known that the sources separation problem can be
solved only up to a diagonal matrixD (which corresponds
to arbitrary attenuations for the restored sources), and a per-
mutation matrixP (which corresponds to an arbitrary order
of restitution). That is why the unit power assumption on
sources can be done without loss of generality ; it finally
leads to:Rs(τ) = In involving thatRy = AAT .

3. BILINEAR & QUADRATIC TIME-FREQUENCY
REPRESENTATIONS

3.1. Some recalls

3.1.1. Bilinear and Quadratic TFR

A Quadratic Time-Frequency Representation (Q-TFR) as-
sociated to a signalxi(t), is [5] the restriction toxi(t) =
xj(t) of a bilinear transform applied to a couple(xi, xj) :

xi
Q−TFR←→ Dxi = Dxixi such as(xi, xj)

B−TFR←→ Dxixj

(4)

Dxixj (t, ν;R) =
∫

R2
xi(θ)x∗j (θ

′)R(θ, θ′; t, ν)︸ ︷︷ ︸
kernel

dθdθ′. (5)

To simplify, we will omit the dependence on the kernel
R in the notations ofDxixj andDxi .

A Q-TFR, Dx(t, ν), associated tox(t) F↔ X(ν), is said
energeticif, ∀x, it satisfies:∫
R2 Dx(t, ν)dtdν = Ex =

∫
R
|x(t)|2 dt =

∫
R
|X(ν)|2 dν

with Ex the energy of the signal andX(ν) its Fourier trans-
form.

3.1.2. Cohen’s & Affine classes

The Cohen’s class is the class of energeticTFRscovariant
under time and frequency shifts whereas the Affine class is
the class of energeticTFRscovariant under time scalings
and shifts. Their members, associated tox(t) and notedψx

and$x, satisfy the condition of definition of the class and
can be written in a general form characterizing the class.
They also conform to the energetic condition involving spe-
cific properties of the generating kernels (cf. Table 1). By
playing upon the kernel it is then possible to generate the
different elements of a given class (cf. Table 2). Finally, it
is possible to give some exemples of representations belong-
ing to the Cohen’s class: Spectrogram (Sp), Pseudo Wigner-
Ville (PWV), Smoothed Pseudo Wigner-Ville (SPWV), etc...,
to the Affine Class: Scalogramme (Sc) and to both classes:
Wigner-Ville (WV), Choï-Williams (CW) (see [5] for more
details about these representations).

Table 1: A summary of Affine and Cohen’s class prop-
erties & definitions

Cohen class condition of definition:
x(t) ↔ ψx(t, ν) ⇒
y(t) = x(t− θ)e2iπηt ↔ ψy(t, ν) = ψx(t− θ, ν − η)

Affine class condition of definition:
x(t) ↔ $x(t, ν) ⇒
y(t) = |a| 12 x(a(t− τ)) ↔ $y(t, ν) = $x(a(t− τ), ν

a )

General form of Cohen’s classTFR:
ψxy(t, ν) =

∫∫
x(θ + τ

2 )y∗(θ − τ
2 )K(t− θ, τ)e−2iπντdτdθ

ψx(t, ν) = ψxx(t, ν)

General form of Affine ClassTFR:
$xy(t, ν) =

∫∫
x(θ + τ

2 )y∗(θ − τ
2 ) |ν|K ′(ν(t− θ),−ντ)dτdθ

$x(t, ν) = $xx(t, ν)

Energetic condition satisfied by the kernels of:
Cohen’s class:

∫
K(t, 0)dt = 1.

Affine class:
∫∫∫

1
|ν|K

′(t, τ)e−2iπντdtdτdν = 1.

Table 2: Kernels of some Q-TFR.
Transf. KernelK(t, τ) in Cohen KernelK ′(t, τ) in Affine

class class
WV δ(t) δ(t)e2iπτ

PWV δ(t)H(τ) �
SPWV G(t)H(τ) �
Sp H(− τ

2 − t)H∗( τ
2 − t) �

Sc � | 1
ν0
|H∗

0 (−t− τ
2

ν0
)H0(

−t+ τ
2

ν0
)

CW
√

σ
4π

1
|τ |e

− σt2

4τ2
√

σ
4π

1
|τ |e

− σt2

4τ2 e2πiτ

3.2. SpatialB-TFR

In the case of a vectorial signalx(t) = [x1(t), . . . , xm(t)]T ,
the bilinear transform is spatial:

Dxx(t, ν) =
∫

R2
x(θ)xH(θ′)R(θ, θ′; t, ν)dθdθ′ (6)

or equivalently:

Dxx(t, ν) =




Dx1x1(t, ν) . . . Dx1xm(t, ν)
...

.. .
...

Dxmx1(t, ν) . . . Dxmxm(t, ν)


 . (7)

The terms on the diagonal are called auto-terms whereas the
other are called inter-terms.
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3.3. Some useful properties ofB- and Q-TFR

For source separation, the following two properties are of
particular interest.

Property 1: Hermitian symetry of B-TFR - A bilinear
time-frequency representation exhibits hermitian symetry if
and only if it satisfies:

Dxixj
(t, ν) = D∗

xjxi
(t, ν) (8)

which for the kernel, leads toR(θ, θ′; t, ν) = R∗(θ′, θ; t, ν).
This property also involves conditions for the kernels of
Cohen’s class:

K(t− θ, τ) = K∗(t− θ,−τ) (9)

Affine class:

K ′(t− θ,−ντ) = K ′∗(t− θ, ντ). (10)

One can check that these properties are satisfied by many
transformations among which Wigner-Ville, spectrogram,
scalogram and Choï-Williams distribution. With regard to
smoothed versions of Wigner-Ville, the smoothing window
also has to present hermitian symmetry.

Property 2: Reality of Q-TFR - A quadratic time-frequency
representation is real if and only if it satisfies:

Dxixi(t, ν) = D∗
xixi

(t, ν) (11)

On can check that this property is satisfied by manyQ-TFR
among which Wigner-Ville and its smoothed versions, the
spectrogram, scalogram and the Choï-Williams distribution.

4. BLIND SOURCES SEPARATION USING
BILINEAR TFR

4.1. First stage: spatial whitening

The mixing matrixA can be parameterized asV ∆
1
2 U with

V andU unitary matrices and∆ a diagonal matrix [8]. The
correlation matrix of the observed signals atτ = 0 is given
by: Rx(0) = ARs(0)AT + Rb(0) = AAT + σ2In

⇒ AAT = V ∆V T = Rx(0)− σ2In.
Moreover, the eigenvalues decomposition ofRx(0), which
is unique, writes:Rx(0) = QΣQT with Q a unitary matrix
andΣ a diagonal matrix. By identification, it is found that:
V = Q and∆ = Σ− σ2In. The spatial whitening matrix
W is then defined as:W = ∆− 1

2 V T and the whitened
signals are defined as:

z(t) = Wx(t) = WAs(t) + Wn(t) = Us(t) + Wn(t)
(12)

In the noiseless case, it simply gives:z(t) = Us(t) which
leads toRz(τ) = URs(τ)UT = In. The problem has been
reduced to the case of a unitary mixing of signals: the uni-
tary matrixU still has to be estimated to be able to perform
separation.

4.2. Second stage: use of spatial bilinear time-frequency
distributions

4.2.1. Spatial bilinear t-f distribution of a linear mixtures
of sources

In the noiseless case, the spatial quadratict-f distribution of
the whitened signals reads:

Dzz(t, ν) = W Dxx(t, ν)W T = WADss(t, ν)AT W T

= UDss(t, ν)UT (13)

whose(k, p)-th element is:Dzkzp
(t, ν) =

∑n
i,j=1 ukiupj

Dsisj
(t, ν).

In the following the timet and the frequencyν will be omit-
ted to simplify the notations.

• Casek = p (auto-terms of spatialt-f distribution):

Dzkzk
=

n∑

i,j=1

ukiukjDsisj
(14)

=
n∑

i=1

ukiukiDsisi

︸ ︷︷ ︸
T

+
n∑

i,j(j 6=i)=1

ukiukjDsisj

︸ ︷︷ ︸
V

(15)

Using Property 2 and the fact thatukiuki is real,T is found
to be real. Now, we calculateV :

V =
n∑

i,j(i<j)=1

ukiukjDsisj +
n∑

i,j(i>j)=1

ukiukjDsisj

=
n∑

i,j(i<j)=1

ukiukjDsisj +
n∑

i,j(i<j)=1

ukjukiDsjsi

=
n∑

i,j(i<j)=1

(ukiukjDsisj + ukiukjDsjsi)

Introducing Property 1, it is found that:

V =
n∑

i,j(i<j)=1

ukiukj(Dsisj + D∗
sisj

)

=
n∑

i,j(i<j)=1

ukiukj(Dsisj + Dsisj )
∗)

= 2
n∑

i,j(i<j)=1

ukiukjReal{Dsisj}

As a consequenceV and finally the auto-termsDzkzk
are

real.
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• Case k6= p (inter-terms of thet-f distribution):

Dzkzp =
n∑

i,j=1

ukiupjDsisj

=
n∑

i=1

ukiupiDsisi +
n∑

i,j(i 6=j)=1

ukiupjDsisj

ukiupi is real, so the first term too. With regard to the sec-
ond term, it is easy to show that it is generally complex be-
causeDsisj

is complex.
It implies that the imaginary part of the spatial t-

f representation only corresponds to the interferences
between sources signals whatever the considered point
in the time-frequency plane. As consequence, we pro-
pose to use this result to decide what points in the time-
frequency plane correspond to signals and what points
correspond to interferences.

Moreover, this approach can be generalized to the case
of complex sources or complex mixing matrices, by treating
the real part and the imaginary part independently of each
other.

4.2.2. New diagonalization & anti-diagonalization separa-
tion criteria

As we have:
Dzkzp(t, ν)

=
n∑

i=1

ukiupiDsisi(t, ν) +
n∑

i,j(i6=j)=1

ukiupjDsisj (t, ν)

(16)
different cases have to be considered, depending on the time-
frequency point(t0, ν0) considered in the time-frequency
plane:

• When at least one signal is present, without any in-
terference between sources (the imaginary part of the
stfd is null whereas its real part is different from 0 in
such at-f point) then the set{Dzz(t0, ν0),∃ {i} 6=
{∅} /Dsisi(t0, ν0) 6= 0, Dsksj (t0, ν0) = 0, ∀ (k, j),
k 6= j} has to bejoint-diagonalized. The spatialt-f
distribution of the whitened signals writes:

Dzz(t0, ν0) =



∑
i u1iu1iDsisi . . .

∑
i u1iuniDsisi

...
.. .

...∑
i uniu1iDsisi . . .

∑
i uniuniDsisi


 (17)

and it is real.

• When there is no signal, but only interferences (the
stfd is complex in such at-f point) then the set

{Dzz(t0, ν0),∀i,Dsisi(t0, ν0) = 0, ∃{(i, j); i 6= j} 6=
{∅}/Dsisj

(t0, ν0) 6= 0}, has to be joint anti-diagonalized.
The diagonal terms of thestfdDzz(t0, ν0) of the whitened
signals have the following form:
2

∑
i,j(i<j) ukiukjReal{Dsisj

}
whereas the other terms have the following form:∑

i,j(i 6=j) ukiupjDsisj
. Terms on the diagonal of the

matrix are real, whereas the other ones are complex.

• When both signals and interferences are present or
absent in(t0, ν0), it is better not to take thist-f point
into account. The estimation of the unitary matrix
would be degraded.

5. COMPUTER SIMULATIONS

In this experiment, we consider three real modulations of
frequency: two linear ones and a sinusoïdal one. The mix-
ing matrix is:

A =




1 0.8 0.9
0.7 1 0.85
1.3 0.5 1




The number of points is 256 and the number of fre-
quency bins used in thet-f representations is 64. The plots
of the three individual modulations are shown on Fig. 1.
On Fig. 2, the mixed signals are displayed. The Wigner-
Ville distributions of the mixtures are depicted in Fig. 3
and 4 (real and imaginary part resp.). On Fig. 5 and 6 are
displayed thet-f points retained by the new criteria of de-
cision between signals and interferences. Finally, Fig. 7,
8, 9 and 10 represent the estimated signals thanks to joint-
diagonalization (Fig. 7) and joint anti-diagonalization (Fig.
8). The sources are well estimated as it appears on the spa-
tial Wigner-Ville distributions of the signals estimated by
joint anti-diagonalization which are depicted in Fig. 9 (real
part) and 10 (imaginary part).

6. CONCLUSION

As a conclusion, in this communication, we have focused
on blind sources separation based on spatial bilinear time-
frequency representations. New criteria of choice between
signals and interferences have been introduced, determining
which matrices set has to be joint-diagonalized and which
matrices set has to be anti joint-diagonalized. These crite-
ria have been experimented on real non stationary signals in
order to illustrate their effectiveness. Concerning the choice
of the bilinearTFRsto use with such criteria: we have given
the conditions that theTFRshave to satisfy. It also impor-
tant that the usedTFR presents a lot of interferences be-
tween sources. That is why we have used the Wigner-Ville
distribution rather than the spectrogram for example...
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Fig. 1. The three sources
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Fig. 2. The three mixed signals
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Fig. 3. Real part of the spatial Wigner-Ville distribution of
the whitened mixture
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Fig. 4. Imaginary part of the spatial Wigner-Viller distribu-
tion of the whitened mixture
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Fig. 5. Points in the t-f plane kept for joint anti-
diagonalization (left) and joint diagonalization (right)
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Fig. 6. Sources estimated by joint anti-diagonalization
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Fig. 7. Sources estimated by joint-diagonalization
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Fig. 8. Real part of the spatial Wigner-Ville distribution of
the signals estimated by joint anti-diagonalization
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Fig. 9. Imaginary part of the spatial Wigner-Ville distribu-
tion of the signals estimated by joint anti-diagonalization
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