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ABSTRACT

In this contribution, convolutive blind source separation al-
gorithms are compared with the well studied theory of min-
imum variance beamforming. As a result, the equivalence
between the delay vector in the PCA (principle component
analysis) subspace and the column the of rotation matrix be-
longing to the the target sound is shown. That equivalence
yields a new semi-blind algorithm being more robust than a
minimum variance beamformer. The new algorithm is ap-
plied to the reconstruction of machine sounds (for classifica-
tion purposes) when they are corrupted by strong interfering
sources and a high noise level in a shop floor.

1. INTRODUCTION

Machine faults modify the machine sound characteristically,
therefore observing the machine sound can be a useful mean
for fault diagnosis and classification. In a production envi-
ronment, however, this machine sound is usually corrupted
by other interfering sources and non-directive noise, which
is often much louder. Negative SNR (Signal-to-Noise-Ra-
tios) occur frequently. The number of sources is not known
in advance. All this makes the enhancement of the ma-
chine sound a challenging application for blind source sep-
aration (BSS). Since most of ”true” blind algorithms failed
up to our experiments, this semi-blind approach combines
blind source separation and minimum variance beamform-
ing (MVB).

Blind source separation deals with the problem of recov-
ering several sources from their linear mixtures. No knowl-
edge about the mixture, i.e. time delay or geometrical re-
lation of sources and microphones is applied. The sources
only need to be statistically independent. Signals of differ-
ent physical sources satisfy this condition.

BSS algorithms can be applied to enhance the machine
sound considering the sound of the machine under test (d.u.t.
sound) and the (unwanted) interfering sources to be a set
of sources. Unlike most applications trying to recover all
sources, the recovery of one source is sufficient here. The
sound of a rotating machine is periodically (or at least first
order cyclostationary) and therefore stationary. The typical

interfering sources are normally not stationary, like human
speech, hammer blows or clicking of switches.

Most research is done for BSS with a linear instanta-
neous mixture model, see [1] and several other approaches
in [7]. Due to time-delayed superposition of the sources
and reflections from the walls, acoustical mixtures have to
be modeled with convolutive mixtures, which have been
studied by e.g. [6], [10], [12], [14]. For a comprehensive
overview, see [2].

The blind separation of convoluted mixtures (BSCM)
implies a separation and deconvolution [2]. The BSCM-
algorithms can be distinguished between ICA (independent
component analysis) and spatiotemporal BSCM-algorithms
[2]. ICA-based algorithms make use of the spatial statistics
in the mixtures, in general they need higher than second or-
der statistics to succeed, e.g. [6]. Spatiotemporal algorithms
make use of spatial and temporal statistics, e.g. [10].

Most of the approaches have in common that they re-
duce the problem to instantaneous separation problems for
frequency components. The ambiguities left in the recov-
ered frequency components (scaling/ permutation) become
a serious problem here. A different permutation of different
frequency components leads to mixed outputs and to de-
graded separation results. Several approaches exist to over-
come this problem, e.g. [8], [9], order the output chan-
nel according to the maximal correlation between the fre-
quency components or their envelopes [10]. [14] estimates
the fourth order cumulants for every frequency component.
These algorithms are very time consuming and need much
data due to the estimation of the many statistical parameters.

Another problem in this application is determining the
number of sources. The method most frequently used when
more microphones than sources are present is to separate the
signal’s subspace into a noise and a signal-plus-noise sub-
space according to the eigenvalues of the correlation matrix.
The background is that the eigenvalues equal to the power of
the signals and in the low noise case, the large eigenvalues
correspond to the signal and low eigenvalues to the noise.
Here, however, the noise’s power is in the same range to the
d.u.t. signal’s power

In contrast to the BSS, non-blind adaptive algorithms,
such as the minimum variance beamformer, employ a-priori-
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knowledge about the data or the mixture. The MVB needs
the direction of propagation of the target signal which is to
be estimated. In case of reconstructing the d.u.t. sound, its
direction of propagation can be estimated from the geome-
try of the setup.

Minimum variance beamforming is widely used. Its
characteristics and properties is well studied [15]. It be-
longs to the group of adaptive beamforming (in contrast to
the sum-&-delay beamformer used in [16]) shows a good
improvement of the SNR as long as the input-SNR is not to
weak. Additionally its robustness against estimation errors
is limited.

Combining both concepts, BSS and MVB, yields a semi-
blind algorithm which tolerates poor estimations of the sour-
ce location. To derive the algorithm, the following section 2
contains the signal model and an analysis of the beamformer
from blind signal processing’s point of view. The results are
validated with a toy data set. The new algorithm and several
test with with toy data and real data are presented in section
3.

2. RELATION BETWEEN MV BEAMFORMING
AND BSS

2.1. Signal model

The target sound (d.u.t. sound) ��� and the interfering co-
herent sources are considered as one set of sources with�����	��
��� ���������	��
����������	��
��������������������	��
! �" . Without a loss of
generality, the first source is d.u.t and the others are interfer-
ing sources. The sound is measured with an array of N mi-
crophones # ���	��
$�%� &'���	��
�����������&)(*�	��
! �" . Due to time delays
and reflections from the walls, the microphones receive con-
voluted mixtures of the sources. This leads to mixing and
filtering, since the room acoustics impose a different im-
pulse response +-,/. between each source � , and each mi-
crophone � . . Furthermore, incoherent (non-directive) noise
is present in a shop floor and regarded as additive noise here
(eq. 1). # �0�21 34���65478� (1)3 is a ”matrix convolution” and 1 contains filter coeffi-
cients +9,/. as elements (instead of scalars):

To employ beamforming algorithms, the broadband wa-
ve is decomposed into a superposition of monochromatic
waves. Each monochromatic (narrowband) component can
be treated independently and formed into the beam signal
by applying a phase shift and an attenuation appropriate to
the desired delay [15].

#6: �;1 :< � : 547 : (2)

In (2), #6: is a narrowband signal component filtered from# � with a band pass centered at = . For the ease of read-
ing, the index f is omitted from here onwards. In case of

an anechoic environment 1 consists of the phase shifts and
attenuations caused by the time delays >�,/. of the sources:1?�@� A-B����������C�DA-B�(E . A-B . is the steering vector of the F �HG
source: A-B . �I� JCKDLDM :�NDO	P �������C�DJCKDLDM :�N�Q�P  "
When multipath mixtures are present, ARB . is the sum of the
set of paths. ARB�� is the delay vector of the d.u.t. sound.

2.2. MV Beamformer

The minimum variance beamformer (BF) uses a coefficient
vector S to reconstruct the d.u.t. sound:TU�WV�X�Y� S�Z[# (3)

To determine S ; a constrained optimization is aplied [15]:\^] _`ba^c-d S�Ze# d L�f subject to g J c S�Z A-B�� f �Ih (4)

Eq. (4) minimizes the variance of the beamformer output
while preserving the all-pass characteristic in the direction
of the d.u.t. sound. Using Lagrange multipliers, eq. (4) can
be solved to (5) S � i ��� A-B��A Z B�� i ��� A-B�� (5)

The BF signal reconstruction contains two steps, a projec-
tion step ( i ��� A-B�� ) and a normalization step
( hXj-�HA Z B�� i ��� A-B��C
 ). Finally, the signal components are com-
bined using a synthesis filter bank to get the broadband sig-
nal ������� .

The spatial correlation matrix ilk � a^c #e<�# Z f satisfies
the model of eq. (6)imk �21 <Xno< 1 Z 54p (6)

with C the coherence matrix between the narrowband source
signals

n � qr
s t �D� d �X�D� d L ����� t ���u�X���l�Xv�U�...

. . .
...

t v��� �Xv��� ���U�w����� t �^� d ���^� d L
x�y
z

and p the correlation matrix of the incoherent noise com-
ponents that are assumed to be mutually uncorrelated p{�| ,} .

A precondition for that method is a good estimation of
the delay vector ARB�� . Therefore, the location of the target
sound has to be estimated. Several methods have been pro-
posed for sound localization from measured data [15].

When examining rotating machines, the distances be-
tween the d.u.t. and the microphone array are known from
the geometry of the experimental setup. Unfortunately, in
reverberative environments ARB�� does not only correspond to
the delay. Furthermore, small errors in the delay estimation
lead to a misalignment and therefore to a distortion of the
output.
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2.3. Coefficient vector in the PCA subspace

Since imk is a Hermitian matrix, it has N non zero eigenval-
ues � ����� +�� � �����������C��� (E and N orthogonal eigenvectors� � � A9���X�������C�DA9��(E belonging to them. The eigenvalue
decomposition of i ��� isi ��� �I� � <	�o< � Z 
 ��� �I� � <	� ��� < � Z 

Since the normalization step in (5) does not change the di-
rectivity pattern of the beamformer, this section focuses on
the projection step. Using the eigenvalue decomposition ofi ��� , the projection step of (5) can be rewrittenS �I� � <
� ��� < � Z 
 < A-B��Y� � <
� � O� <
� � O� < � Z < A-B�� (7)

Defining � as

� � � � O� < � Z;< A-B��E� ���� O� O��� �� ��� < A-B�� (8)

� ��j � L are the coordinates of ARB�� in the subspace spanned
by
��� O� O and

��� �� � . With other words, � is the steering vector
transformed by the Karhun-Loeve-Transformation. Finally,
rewriting eq. 3 yields (when the normalization step is incor-
porated into �� )V�X�Y� S Z ���� Z <	� � O� < � Z <C# (9)

2.4. Blind source separation

In contrast to the MV beamforming algorithm (3) where the
direction of the d.u.t. signal is used, the blind source sep-
aration algorithms do not need any information about the
signal or mixing. Furthermore, their goal is to recover all
sources.

As stated in (2) the mixing matrix of the narrowband
signal component only consists of (complex) scalars. The
unmixing matrix � in (10) will recover these sources:� �	��
0� � <C# �	��
 (10)

Instantaneous BSS/ICA can be employed for every nar-
rowband signal component. Those ICA-algorithms based
on order statistics are described in e.q. [1] and those BSS-
algorithms based on spatio-temporal statistics in e.g. [13].
They guarantee that � � � < 1 ��� <�} is a permutation
of the unity matrix. The source signals (or their bandpass
components) can be recovered up to two ambiguities: per-
mutation and scaling. The estimated source signals are the
superposition of the reconstructed bandpass components.
A different permutation of different frequency components,
therefore, leads to mixed outputs and to degraded separation
results. The scaling ambiguity causes distorted outputs.

The main assumption of BSS algorithms is that the sour-
ce signals are statistically independent. A necessary condi-
tion for the independence is t ���� K �! in (6). The matrix p
is also assumed to be diagonal.

The estimation of " consists of two steps: sphering and
rotating: � �$# Z;<&% (11)

In the first step (sphering), the matrix O is determined by
the principle component analysis (PCA):'*� � � O� < � Z;<�# (12)

In the second step (rotation) # a spatio-temporal decorrela-
tion [12],[10] is used. The alternative estimation of # is the
use of higher order statistics e.g. [14].

For statistically independent components, the the time-
delayed covariance matrices are diagonal, since i)( � > 
l�a^c � �	��
 < � Z �	�+* > 
 f �,��� +�� � �R�HB����X�������C���R�HB���(e contains
the auto-covariances as diagonal elements and the cross-
covariances as off-diagonal elements. Therefore, minimiz-
ing the off-diagonal elements finally leads to the right cor-
rect rotation matrix # . There are several algorithms solv-
ing this constrained optimization problem. The orthogo-
nal matrix T (the orthogonality is shown in [13]) is deter-
mined by a simultaneous diagonalization (with i.- � > 
 �% < imk � > 
 <&% Z ).# �0/2143 \^] _576 N 6 ���� K9888

: # i;- � > 
<# Z9= � K 888
L

(13)

Integrating eq. 11, 10 and 12 yields:� �$# Z <	� � O� < � Z <C# (14)

To reconstruct the broadband d.u.t. signal, the appropri-
ated components of the output vector � with a proper scal-
ing have to assembled. Although various methods to over-
come the permutation/scaling problem have been presented
[9],[8], it is still the main obstacle to that method.

2.5. BSS vs. MV Beamforming

Comparing the eq. (9) and (14) shows the equivalence of
the two concepts:�� shares the direction of the column of # that belongs
to the d.u.t. sound.

Or, with > �%�HA " �����������DA " (
��)? A "A@CB � (15)

With this equivalence, the BSS algorithm can be im-
proved. The knowledge of �� helps to choose the right com-
ponent. Furthermore, it gives some information about the
amplitude of the band passed component by the normalized�� . However, the algorithm is not blind anymore.

The array gain of the beamformer can also be increased.
When the estimation of ARB�� is not precise, the coefficient
vector may be adjusted with # . Combining both concepts
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Fig. 1. Band passed source signal: (a) Machine signal,(b)
Interfering signal

yields an algorithm that needs prior information but is less
sensitive to them.

The equivalence of the two concepts can be demonstrat-
ed with a toy data set. Two band passed signals � � and � L
are mixed by a mixing matrix 1 . The band pass has a band
width of 160 Hz and is centered at 1470 Hz. The sampling
rate is 11.025 kHz. Although in reality the source vector �
and the mixing matrix 1 are complex valued, real valued
data are used for visualization purposes. Fig. 1 shows the
demonstration signals.

The signal �X� is derived from a machine sound of a small
d.c. motor. The motor signal is a very broadband signal
covering a frequency range from several Hz (rotational fre-
quency =�� ���� +* h	 � ���� ) to several kHz.

As stated in [11] band passed signal components of elec-
trical motors are modulated by the rotation frequency (fig.
1a). The amplitude modulation can be written as in eq. (16):
�
	�� ���� = ��
 is the carrier signal with the modulation of the ro-
tating frequency � h 5 �
	�� ���� =�� ��
�
 . Other modulations may
occur and are modeled by ��: �	��
 .

� c � �	��
 f � �
	�� ���� = ��
 <��': �	��
 < � h05 �
	�� ���� =�� ��
�
 (16)

This periodic modulation distinguishes the motor sig-
nal from the interfering sounds. Non-periodic interfering
sounds, such as human speech, hammer blows and other
noises in a shop floor, do not show periodic modulations.
Other rotating machines have a different rotational frequency
and therefore a different modulation. � L is the band pass sig-
nal of a non-periodic signal of the same band pass (fig 1b).

The scatter plot of the of the mixed signals is shown in
fig. 2 with the PCA vectors A-����jXA9� L . They point in the di-
rections of the greatest variances, which are not equal to the
direction (in the statistical sense) of the sources. The steer-
ing vector S is orthogonal to the interfering component, so
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Fig. 2. Scatter plot of the mixed signals with the vectors of
the sphering matrix A-����jXA9� L and the coefficient vector S
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Fig. 3. Scatter plot of the mixed signals in the PCA sub-
space with the vectors of the rotation matrix A " ��jXA " L and
the transformed delay vector S
that it minimizes the interfering source’s contribution to the
beamformer’s output.

Fig. 3 shows the data in the PCA subspace. � and A " �
point in the same direction as expected.

3. ALGORITHM AND RESULTS

The principle of the algorithm is already stated in eq. (15).
The PCA and the transformation of the delay vector into
that subspace in the first step. The second step is to choose
the best column of # (17).A "A@CB � � \^] _�
����� 5 � � � �DA "�� 
 (17)

The third step is to rescale A "A@CB � (18)�A "A@CB � �;A "A@CB ��j-�HA Z B�� i ��� A-B��C
 (18)

The algorithm is applied to several sets of data. First, the
evaluation data from 2.5 with an artificial mixture is used.
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MV BSS New Al-
gorithm> correctly es-

timated
19 dB 3 dB 10 dB

> incorrectly
estimated (er-
ror 5%)

5 dB 3 dB 8 dB

Table 1. SNR improvement of the semi-blind algorithm

Secondly, the algorithm is applied to real data measured in
an office room.

In the evaluation data set, the source data vector is pro-
jected to eight ”microphones” by a mixing matrix contain-
ing short FIR-filters (actually an extension T. W. Lee’s test-
ing filters [6] to a ���  -matrix.) The delay vector is known
by the number of leading sources of the elements in the first
column of 1 . It is varied to study the robustness of the al-
gorithms. To remain close to the application, the interfering
source ( � L ) is five times higher than the d.u.t. sound ( � � ).
The additive noise is band limited because it is supposed to
model the incoherent noise in the production site.

The numerical results are shown in table 1. The signal
separation is measured by a frequency dependent signal to
noise-ratio as in other publications (e.g. [8]). It is defined
by the ratio of the d.u.t. sound’s power and the power of the
interfering components. When the correct delay vector is
utilized, the best results are achieved by the minimum vari-
ance beamformer. That is not very surprising because the
algorithm exploits the whole available information. When
the estimation of the delay vector becomes less reliable the
coefficient vector of MV points into a wrong direction. The
results of the new combined algorithms are superior. The
standard BSS algorithm facing the problems of scaling and
permutation yields almost no improvement of the SNR.

The case of an incorrect estimation of the delay vec-
tor is illustrated with fig. 4 and fig. 5. The spectrograms
in fig. 5 have high time and low frequency resolution so
that the periodic intensity modulation of the rotational ma-
chine’s spectral lines (already stated in 16) become visible
in fig. 5a. Their height and strength can be exploited for
the extraction of meaningful features. While invisible in the
mixed signal 5b, fig. 5c show its successful reconstruction.

The power spectra (fig. 4) have a high spectral resolu-
tion. For rotating machines, the spectrum vanishes between
the order lines. The spectral parts of the harmonic frequen-
cies are significantly higher. The spectrum is significantly
improved, since harmonic frequencies are not dominant in
the mixed signal while they do so in the reconstructed sig-
nal. Informal hearing tests showed a similarity between the
motor signal and the reconstructed signal. The interfering
sources almost vanished.

A drawback is that the amplitudes of the harmonics are
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Fig. 4. Power spectra: Mixed (a), and source (c) signal

not perfectly recovered. One reason might be the deploy-
ment of the incorrect delay vector in the normalization step
of the new algorithm (18)

The results with real world data are shown in fig. 6. The
setup was an equally spaced linear microphone array (4 mi-
crophones, � ���  � ���� ) in a small office room. The tar-
get sound was a human voice and recorded music served as
the interfering sound. The known delay vector was slightly
modified. The figure shows the improvement qualitatively.
Unfortunately, we still do not have a quantitative assessment
(including the influence of the reflections) or a motor test
with real world data.

4. SUMMARY

The new approach introduced here is the utilization of a-
priori-knowledge for BSS algorithms to reconstruct the sound
of rotating machines. This utilization restricts the range of
the new method and actually leads to a semi-blind algo-
rithm. Nevertheless, it bears a solution of several problems
of BSCM-algorithms: the permutation and the scaling prob-
lem as well as the unknown number of sources.

Due to its robustness against unprecise assumptions, the
proposed system is applicable to a wide range of classifica-
tion problems of highly noise-corrupted data. Especially in
cases where conventional methods fail, the employment of
the new approach as a preprocessor allows improved classi-
fication results.
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