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ABSTRACT

We propose new absolute moment based estimating func-
tions for blind source separation purposes. Absolute mo-
ments are a computationally simple choice that can also
adapt to the skewness of source distributions. They have
lower sample variance than cumulants employed in many
widely used ICA (Independent Component Analysis) meth-
ods. The complete estimating function consists of two parts
that are sensitive to peakedness and asymmetry of the distri-
bution, respectively. Expression for optimal weighting be-
tween the parts is derived using an efficacy measure. The
performance of the proposed contrast and employed effi-
cacy measure are studied in simulations.

1. INTRODUCTION

This paper deals with the problem how skewness of source
distributions can be exploited in Blind Source Separation
(BSS) or Independent Component Analysis (ICA). Tradi-
tionally, BSS methods assume implicitly that source dis-
tributions are symmetric [1, 2, 3]. However, in many ap-
plication areas, such as in biomedical signal processing
and telecommunications, the source distributions may be
skewed. As an example, fast and slow fading encountered
in mobile digital communication systems are often charac-
terized using Rayleigh and log-normal distributions that are
both asymmetric.

In this paper we show how skewness information may
be used to improve the estimator needed in finding the inde-
pendent components and consequently improve the quality
of separation. More dramatically, we demonstrate that in
some cases ignoring the skewness information may lead to
total failure in separation. We propose an estimating func-
tion based on absolute moments. It is composed of two
parts: one associated with lack of symmetry (skewness)
and the other characterizing peakedness (kurtosis) property
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of the distributions. We also derive expressions for opti-
mal weighting of these properties in the estimating function
based on an efficacy measure. Absolute moments are com-
putationally simple and have lower sample variance com-
pared to cumulants. The source distributions can be sub-
Gaussian or super-Gaussian or even have a zero kurtosis.
The skewness may be positive or negative or zero provided
that only one source has both zero kurtosis and zero skew-
ness. The properties of the contrast are studied by simu-
lations. The usage of the proposed contrast is particularly
easy since we can directly incorporate it to widely used
blind separation algorithms.

This paper is organized as follows. In Section 2 contrast
functions composed of symmetric and asymmetric parts are
introduced. A contrast based on absolute moments is then
proposed. Optimal weighting for combining symmetric and
asymmetric part is derived in general case and for the pro-
posed contrast. Simulation results demonstrating the per-
formance gain obtained by using skewed contrasts are pre-
sented in Section 3. The performance of the weighting be-
tween symmetric and asymmetric parts is studied as well.

2. ICA CONTRASTSCOMBINING SYMMETRIC

AND ASYMMETRIC NON-LINEARITIES

We consider the ICA model with instantaneous mixing

X = As, 1)

where the sources s = [s1, 82,... ,5,]7 are mutually in-
dependent random variables and A ,,, »,, is an unknown in-
vertible mixing matrix. The goal is to find only from the ob-
servations, x = [z1,Z2,... ,Z,]", @ matrix W, ., such
that the output

y = Wx (2

is an estimate of the possibly scaled and permutated source
vector s. The components of y are denoted y;



>y wijr; where (wg;) is the 4,5 element of matrix
W. An ICA method consists of three parts: a theoretical
measure of independence; an estimator (contrast, objective
function) for the chosen theoretical measure, and finally an
algorithm for minimizing or maximizing the selected objec-
tive function (see, [4]).

Because we are interested in separating source distri-
butions that may also be asymmetric, we consider contrast
functions that can be presented as a sum of absolute val-
ues of symmetric (even function) and asymmetric contrast
(odd function). In general, these contrast functions can be
presented as follows

(P(yla w1, w?) = w1 |‘bsymmetric (yz)| + wo |(I>asymmetm'c (yz) |7

©)

where wy,wsy are weighting parameters between the sym-
metric and the asymmetric contrast. Optimal values of the
parameter wy , w, are data dependent. In this section we pro-
pose a choice for the contrast function and a method to de-
termine the optimal w’s iteratively.

2.1. Optimal weighting in combined I CA contrast

The performance analysis of contrast functions is consid-
ered in [4], [1], [5] and [6]. It is usually assumed in the
analysis that all sources are identically distributed. Local
stability is found to depend on the following non-linear mo-
ments

Vi = B{p (s1)} = E{sip(si)} (4)

and the variance of separation solution is found to depend
on

& = E{o(s:)’} — E{sip(si)}? ®)

In [5] it is proposed that the following measure can be used
as a performance criterion

V3
&
This measure is called BSS efficacy and it is independent
of the scaling of estimating function ¢. The BSS efficacy
gives us an analytical way to compare contrast functions.
By maximizing the BSS efficacy we can find the optimal
values for the weighting parameters.
Now we consider efficacy maximization in the case
where the estimating function is weighted sum of two es-
timating functions

T (6)

¢(si) = wip1(8:) + wap2(si). (7

When performance criterion (6) is maximized under the
constraint

Vi =w¥i1 +widie =1, (8)
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where
Uik = B{py(si)} — E{sipr(s:)} 9)
we obtain
wr =(2B{¢3(s0) Wi — 2B{1(s5)a(s0) Wiz +
P2 E{sier(s:)} = DiavioE{sion(s))} ) |
(2(B{e3 (500102, = 2B{p1(s:)a(s0) WiV +
E{a(s:) 12, (51)))
wa = (2B{p3 ()02 = 2B{i1 ()0 (5} +
O B{sipa(si)} = diadiaBlsigr (1)) /
(2(B{e3(5:) 102, = 2B{p1(s:) 2 (5) WiV +

E{p3 (5:)}02a(5:)) )

(10)

(11)

2.2. Contrast based on absolute moments

The simplest ICA contrasts are based on cumulants. Cumu-
lant based skewness and kurtosis are defined as follows

) L 3
w3 (i) = —K“fy(y)g)/ =B { (L U”) } (12)
R (y:) = ’24(;?3)2 =E { (—y" ~ “y) } -3, (13

where 1, and o, are the expected value and the standard
deviation of y;, respectively. Cumulant based contrasts can
be easily modified to contrast functions that possess more
complicated theoretical properties but may in some cases
have better performance in practice. Instead of cumulants
we can use measures derived from the absolute moments
[7] defined by

ve(yi) = E{|y: — p|},

where 1 is the expected value of the distribution. The even
absolute moments are equal to conventional central mo-
ments of the same order but the odd absolute moments can-
not be directly written in terms of central moments. In ad-
dition, we may define the gth skewed absolute moment by

vi(y)) =E{(yi —p)lyi —p|*"'} =
E {sign(y; — p)|y: — p|} .

(14)

(15)

Analogously to the absolute moments, the odd skewed ab-
solute moments are equal to usual central moments of the
same order but the even skewed absolute moments cannot
be directly written in terms of the central moments.



The kurtosis of a distribution with unit variance can be
measured by the third absolute moment

vs(yi) = E{ly: — ul*} . (16)

As a measure for skewness we can use the second skewed
absolute moment

vs(yi) = E{lyi — pl(yi — )} (17)

Exploiting »3 and v we may construct an ICA contrast.
First, we find that for Gaussian random variable y; with p, =

Oando? =1
. 2
e~V 2y, = 2\/; ~ 1.59577

/
(18)

| 3

o
|yi

o

V3(yi) \/ﬂ

and v; (y;) = 0. Furthermore, we define measures resem-
bling the cumulant based kurtosis and skewness

o)

v3(yi) = vs( (19)

Yi — [
g

vy (y:) = vy ( (20)

The behavior of v§ and v appears to be analogous to the
behavior of cumulant based kurtosis and skewness, respec-
tively. Usually, the sign of v$ equals to the sign of 3 and
the sign of v5 equals to the sign of 5. The polynomial or-
ders of v3 and v5 are lower than the polynomial orders of
kg and k5. This suggests that estimators of v5 and 3 have
lower variance than estimators of x3§ and x5 and smaller
sample sizes are needed. We propose the contrast

D, (yi;wi,w2) = wi|vs (ys)] + walvg (1)) (21)

The estimating function related to contrast (21) and the
derivative of the estimating function are given by

Pu(Yis w1, w) = wisign(vg)3lyilyi + wasign(vy)2[yil
(22)

@, (yiswi,wa) = wisign(vg)6ly:| + wosign(v3)2sign(y;).
(23)

Based on the efficacy measure (6) the optimal weighting
parameter for the absolute moment based contrast function
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can be given as follows
w1 :<219?’1 — 2sign(vg )sign(vy )2usV; 2 +
sign(v) 2, — sign(v5)v; V;.10,2 ) /

(2002, — 2sign(v5)sign(v5)2p130; 1952 +

muu??z)) (24)
ws =(2u419'i2 — 2sign(13)sign (1323950 +

sign(v3)vs V2, — sign(yg)ugm,mm) /

(2(19?’1 — 2sign(vs)sign(vs)2us i 19: 2 +

musd?y)), (25)

where 1, is the gth central moment, v, is the gth absolute
moment, v, is the gth skewed absolute moment and

Vi1 =2sign(vs)vy — sign(vy)vs
V40 =sign(vy) (vg — v3).

(26)
(27)

Instead of trying to estimate the optimal weighting for
sources, we estimate the optimal weighting parameters for
the current data y. Because y is known, the statistics in
(24) and (25) can be replaced by their sample counterparts.
It is clear that this approach does not always lead to optimal
estimates but in the weighting problem an approximate so-
lution provides sufficiently good performance and the com-
putation is straightforward.

3. EXAMPLES

3.1. Weighting between symmetric and asymmetric
contrasts

Examples on weighting between symmetric and asymmet-
ric parts in the combined contrast are presented next. The
converge of (24) and (25) is demonstrated in three differ-
ent situations: Uniform distributed source (i.e. symmetric
case) and two cases with different values of skewness. The
convergence of the weighting parameters are presented as a
function of the sample size in Figure 1.

3.2. Two source example

Quality of separation of the proposed ICA criterion is stud-
ied in simulation experiments. The absolute moments based
contrast is straightforwardly implemented to FastICA al-
gorithm [3]. Other gradient type algorithms are suitable,
too. Comparisons are made with the standard FastICA con-
trasts. Differences in performance between symmetric con-
trast and its asymmetric generalization are illustrated. As a
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Fig. 1. An example on convergence of the optimal weight-
ing in the case of absolute moment contrast. Parameters
(24) and (25) are estimated from a single source and the
ratio |wa|/(|wi| + |w=]|) is plotted. Uniform distribution is
symmetric and thus the ratio of the weighting parameters
converges towards zero when the number of observations
increases. The other examples generated from Generalized
Lambda Distribution (GLD) [8, 9] are asymmetric and con-
sequently the asymmetric estimating functions have large
weights. The values presented are means over 100 realiza-
tions.

benchmark we use a simple case where two skewed sources
are mixed. The overall goal of the simulations is to demon-
strate that the proposed contrast separates reliably both sym-
metric and asymmetric sources. In the case of symmet-
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ric sources the the proposed asymmetric contrast reduces
to the symmetric contrast and it is expected that its perfor-
mance is approximately equal to that of conventional con-
trasts. When the source distributions are asymmetric, it
is expected that the asymmetric contrast will outperform
the conventional contrasts. Both sub-Gaussian and super-
Gaussian sources are used in simulations. The details of
source signal statistics are given in Table 1 and the den-
sity functions of the theoretical distributions are presented
in Figure 2. In each simulation the length of signals is 10000
and the number of realizations is 1001. A full rank random
mixing matrix is generated for each realization.

Simulation Source 1 Source 2

pdf K3 K4 pdf K3 K4
A Laplace 0 3 Laplace O 3
B Uniform 0 -1.2 | Uniform 0o -12
C GLD 0.5 1 GLD 03 05
D GLD 0.5 1 GLD 03 -05
E GLD -05 -01 GLD 03 -05
F GLD 0.3 0 GLD 0.3 0
G GLD 0.8 0 GLD 0.8 0
H GLD 08 0.1 GLD 08 01

Table 1. The theoretical third and fourth cumulants of
source signals for the simulation experiments. The sources
have zero mean and unit variance. In simulations from C
to H, sources are generated from the Generalized Lambda
Distribution (GLD) [8, 9] with the corresponding theoret-
ical cumulants. The density functions are visualized in in
Figure 2.

The quality of the separation is measured by Signal to
Interference Ratio SR(dB)= —101og,,(MSE), where MSE
stands for Mean Square Error MSE= E {(s(t) — y(t))?}).
To eliminate scaling differences both original signals and
extracted signals are normalized to have zero mean and unit
variance before the calculation of the SIR. After that source
signals are matched to the extracted signals so that the re-
sulting MSE values are as small as possible.

Boxplots are used to describe the SIR-values in simula-
tions. The boxplot is graphical presentation tool for sample
distributions and it is widely utilized in applied statistics.
In a boxplot the box defines the quintile range (from 25%
percentile to 75% percentile). The line inside the box is the
median. The "whiskers’ are lines extending from each end
of the box to show the extent of the rest of the data. The
length of a whisker is defined as 1.5 times the length of the
quintile range. Nevertheless, the whiskers are always bound
by sample minimum and maximum. The possible outliers,
outside the whiskers area, are marked by crosses.

In Figure 3, the SIR values of the first extracted signals
are presented. In simulations A-E all contrast functions did
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Fig. 2. The theoretical density functions of source distribu-
tions. The letter of the simulation and the number of source
are given on the left side of each plot. The cumulants of

distributions are summarized in Table 1.

well: median SIR values are over 30 dB. In simulations F,
G and H the symmetric contrasts are outperformed by the
skewed absolute moment. The overall results indicate that
the skewed absolute third moment contrast (3) are the most
reliable among the methods considered. This is a reasonable
result because even if the weighting parameter estimators
(24) and (25) are not simple, they use only statistics up to
the fourth order. These simulations are only simple special
cases but they do, nonetheless, strongly support the idea that
skewness information may significantly improve the quality
of separation.

4. CONCLUSION

We considered blind separation using absolute moments as
estimating functions. Absolute moments are computation-
ally simple and have lower sample variance compared to cu-
mulants. The proposed estimating function combines abso-
lute moments (symmetric estimating function) and skewed
absolute moments (asymmetric estimating function). Con-
sequently, the separation remains good even if the source
distributions are skewed. The optimal weighting between
the symmetric and asymmetric estimating function is ob-
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tained using the concept of BSS efficacy. In practice, the
weighting is adaptively estimated from data. Simulation
examples demonstrate the reliable performance of the pro-
posed method for various different sources.
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Fig. 3. Boxplots of the SIR-values of first separated signal. The non-linearities in comparison are kurtosis (1), tanh (2) and
skewed absolute moment (3). The source distributions used in simulations are summarized in Table 1 and in Figure 2.
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