
ON ADAPTIVE NOISE CANCELLING
BASED ON INDEPENDENT COMPONENT ANALYSIS

Hyung-Min Park, Sang-Hoon Oh, and Soo-Young Lee

Brain Science Research Center
and also Department of Electrical Engineering and Computer Science

Korea Advanced Institute of Science and Technology
Taejon 305-701, Korea
mhp@eeinfo.kaist.ac.kr

ABSTRACT

We present a method to deal with adaptive noise cancelling
based on independent component analysis (ICA). Although
popular least-mean-squares (LMS) algorithm removes noise
components based on second-order correlation, the proposed
ICA-based algorithm can utilize higher-order statistics. Ad-
ditionally, extending to transform-domain adaptive filtering
(TDAF) methods, normalized ICA-based algorithm is de-
rived to improve convergence rates. Experimental results
show that the proposed ICA-based algorithm provides much
better performances than conventional LMS approach in real-
world problems.

1. INTRODUCTION

Adaptive noise cancelling is an approach to reduce noise
based on reference noise signals [1]. Fig. 1 shows the typi-
cal adaptive noise cancelling system. In conventional adap-
tive noise cancelling systems, a signal � is transmitted over
a channel to a sensor and a noise ��� is added in the sen-
sor from the noise source so that the combined signal and
noise ��� ��� form the primary input signal. Another sensor
receives a noise signal ��� through another channel, and this
sensor provides the reference input signal. The goal is to get
a system output 	 which is the best least squares estimate of
the signal � .

The most popular algorithm for noise cancellation is
LMS algorithm [1][2], which adapts as


��������� 	 ���� ��� ���������� (1)

where the output 	 is

	 ������ � ���� � ��� ���������
 �! �

������ ��� ���������" (2)
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Fig. 1. Adaptive noise cancellation scheme

It decorrelates system output signal from the reference noise
signal and removes noise components of the primary in-
put signal based on second-order statistics only. However,
there may exist many other components in the primary input
signal which depend on the noise reference signal through
higher-order statistics.

In this paper, we present a method that improves perfor-
mances of adaptive noise cancelling systems by using ICA.
This method can remove noise components of the primary
input signal based on statistical independence, which incor-
porates both second-order and higher-order statistics. In ad-
dition, it is extended to TDAF methods to improve conver-
gence rates, and normalized version of the adaptation rule
is derived. Experimental results show that the performances
of the ICA-based algorithm are much better than those of
the popular LMS algorithm.

2. LEARNING RULE

ICA was proposed to recover independent sources from given
sensor signals in which the sources have been mixed through
unknown channels [3][4]. Bell and Sejnowski proposed
to learn the unmixing matrix # by minimizing the mu-
tual information among components of $ �&%�('��

, where%
is a nonlinear function approximating the cumulative den-
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sity function (cdf) of the sources and
'

denotes recovered
sources [3]. They showed that for super-Gaussian signals
minimizing the mutual information between components of
$ is equal to maximizing the entropy of $ . Lee et al. and
Torrkola have addressed blind separation of convolved sour-
ces [5][6].

Learning rules of adaptive filter coefficients in the noise
cancellation system can be derived by maximizing entropy.
To derive the learning rules conveniently, we set dummy
output � � ��� . It doesn’t make any difference during deriva-
tion using entropy maximization because noise � � is inde-
pendent of signal � and it doesn’t introduce any other pa-
rameters. In this system, the Jacobian can be expressed as� ����� ���� ������ ��� �	��� �� ��� �������� �
��� �� 	 ������ � � (3)

where � � � � ��� , and � � and ��� are outputs of nonlinear
functions approximating the cdfs of the signal and the noise,
respectively. By maximizing �� %�� � � , the learning rule of
each coefficients can be obtained as follows:


������� � �� ������ �� %�� � � ��� ��� �� 	���� � �� ������ � ��� �� 	�����  	 ������ ��� ���������� (4)

where the score function
�  	 � is�  	 ��� ��� ��� �� 	�� � � � � � �� 	 � " (5)

The difference between the LMS algorithm and the ICA-
based approach comes from existence of the score func-
tion. Introducing nonlinearity to the LMS algorithm has
been studied by many researchers to improve the properties
and the performances [7][8][9]. Especially, Douglas and
Meng generalized the LMS algorithm by using a nonlinear-
ity acting on the error for system identification problem [7].
They provided methods for optimizing the nonlinearity to
minimize the misadjustment for a given convergence rate.
Under i.i.d. signal assumption, the same nonlinearity was
derived using linearized approximation near convergence,
but in general derivation, nonlinearity was different assum-
ing zero-mean white Gaussian (noise) data. However, the
ICA-based learning rule can be derived only with indepen-
dency between the signal and the noise sources. And, Dou-
glas and Meng analyzed convergence behavior near conver-
gence with i.i.d. signal [7]. The coefficient-error vector� �������� ���������� can be expressed as�! � �� ��" �$#�� % ��& �! �('� � ������$#*) � �! � ����$# � (6)

where
)

is the correlation matrix of the reference input vec-
tor. It exactly matches the corresponding form derived for
the LMS algorithm, and an approximate bound on the step

size
&

can be determined to guarantee convergence in the
mean with eqn. (6).

The LMS algorithm decorrelates output signal from the
reference input to remove corrupting noise component which
is correlated to the reference input. However, the ICA-based
approach makes output signal independent of the secondary
input. The independence involves higher-order statistics in-
cluding the second-order statistics, i.e. correlation. When
noise signals are obtained from a noise source through dif-
ferent channels, there may exist many components which
depend on each other without correlation. When the ICA-
based approach is used for adaptive noise cancelling, these
noise components can be cancelled, being different from the
LMS algorithm. Therefore, the ICA-based approach pro-
vides better performances than the conventional LMS algo-
rithm.

3. EXTENSION TO TRANSFORM-DOMAIN
ADAPTIVE FILTERING (TDAF) METHODS

The LMS algorithm is the most widely used real time adap-
tive filtering algorithm due to its low computational com-
plexity and memory requirement. The convergence speed of
the LMS algorithm is governed by the spread of eigenvalues
of the autocorrelation matrix of the input data, and by re-
ducing the eigenvalue spread, the convergence speed can be
enhanced [10][11]. The recursive least squares algorithm is
known to achieve near optimum convergence rates by form-
ing an estimate of the inverse of the input autocorrelation
matrix and automatically whitening the input data. Unfor-
tuately, the computational complexity is large and is not eas-
ily carried out in real time within the resource limitations of
practical applications. TDAF methods have been devised to
pre-whiten the input data using unitary transforms. The best
transform for this purpose is the Karhunen-Loéve transform
(KLT). However, the KLT is signal-dependent, and usually
cannot be computed in real time. Therefore, it is replaced by
simpler transforms. Marshall et al. compared several com-
putationally appealing unitary transforms for convergence
enhancement [10].

Fig. 2 shows the TDAF structure. In the TDAF struc-
ture, a vector of + past input samples is processed by a
unitary transform , to produce the transform output vector- ���� which is given by- ������  . � ���� . � ����0/1/1/ . � ����$#*2 � ,43 � ������ (7)

where 3 � ���� �  ��� ���� " � ��� ����65 �7/1/1/ ��� ���� + �$# 2 .
The filter output can be expressed as8 ���� ��� 2 - ������ (8)

where
�&�  �� " � ��95 �
/1/1/ �� + �$# 2 is an adaptive filter

coefficient vector.
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Fig. 2. The TDAF structure

The LMS algorithm for TDAF must have power normal-
ization for improved convergence. In this structure, normal-
ized LMS algorithm is [11]


��������� "
�� � ���� 	 ���� .  ������ (9)

where
�� � ���� is estimates of the input power at

�
th branch

given by

�� � �������� �� � ���� " � �  " ����� . � ����������	�
� " " (10)

If the power in a branch is too small, the effective step size
becomes too large resulting in convergence failure. To pre-
vent such situations, lower bound of the effective step size
was set.

In the same procedure, normalized ICA-based learning
rules for TDAF were derived with the same notation for the
normalized LMS algortihm as follows:


��������� "� ��  ����1� � �  	 ������ .  ������ (11)

where � depends on the form of the score function
�  / �

[12].� ��  ����1� � is estimates of the “ � th input power” at
�

th branch
expressed as� ��  ����1� � �� � ��  ���� " �1� � �  " �����1� .  ����1� � ��������� " "

(12)
In the same way with the normalized LMS algorithm, lower
bound of the effective step size was set.

In addition, Mahalanobis et al. provided a method which
decomposed an adaptive filter [11]. The overall transform
matrix ,�� by decomposing an adaptive filter is discussed
in Appendix. Examining ,�� , it can be divided into Walsh-
Hadamard transform (WHT) matrices, each of which is sub-
matrix with smaller number of rows and columns, by rear-
ranging rows. The WHT sub-matrix can be replaced with
any unitary transform matrix since it also produces unitary
matrix ,�� which can be applied to the TDAF methods. Us-
ing the sub-matrix transform, efficient TDAF methods can
be implemented for the adaptive filter with long length. In
this paper, this method is applied with an ����� unitary sub-
matrix transform.
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Fig. 3. The measured transfer function in a normal office
room

4. EXPERIMENTAL RESULTS

We have compared the performances of the ICA-based ap-
proach with those of the LMS algorithm. Artificially gen-
erated i.i.d. signals and recorded sources were mixed using
both a simple simulation filter and a measured filter in a nor-
mal office room. The follwing results are compared in terms
of signal-to-noise ratio (SNR), which we define for the out-
put 	 in the typical adaptive noise cancelling system as the
total power of the components caused by the signal source
versus that caused by the noise source,

����� � �  � ������ ���
�  ��� ������� �  �! � ������ ��� ���������� � � " (13)

The transfer functions from the signal source to the pri-
mary input and from the noise source to the reference input
are simple linear scales. To obtain desired initial SNRs, the
proper scale values were used. For the simple simulation
filter, the transfer function !�� � from the noise source to the
primary input was [6]

! � �  8 � ���" " 8 � � � ����" 5 8 � �$# � ��" " 8 � %$& " (14)

Fig. 3 shows the transfer function !�� � which was measured
in a normal office room. For the two mixing transfer func-
tions, the numbers of taps of adaptive filter coefficients were
128 and 1024, respectively. Assuming that the primary and
the secondary inputs pick up signals with appropriate pow-
ers, we have normalized mixture powers properly (generally
to 1) and it prevents severe mismatching between recovered
signal levels and the nonlinear function. (We have not nor-
malized to exactly match recovered signal levels with the
nonlinear function.) All experiments were conducted with
several step sizes, and the best performance is shown.
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Table 1. SNRs of output signals for artificially generated
i.i.d. signals after convergence for the simple simulation
mixing filter ( ��� )

Signal Initial SNRs after convergence
and SNRs LMS ICA-based approach

Noise algorithm
��� ��� % � � � ��� � !

Laplacian -3.0 30.9 38.0 31.3
10.0 30.9 38.3 31.7

Gaussian -3.0 30.6 28.7 30.3
10.0 30.6 28.7 30.0

4.1. Experiments for artificially generated i.i.d. signals

Table 1 displays the SNRs of output signals for artificially
generated i.i.d. signals. The simple simulation filter was
used as the transfer function !�� � . Each signal was com-
posed of 160000 samples. For the ICA-based approach, two
different score functions were used. ��� % �  / � and

��� � !  / �
can be used as the score functions by assuming that the
probability density functions (pdfs) of the output signals 	
approximate Laplacian and Gaussian distributions, respec-
tively. Although the ICA-based approach introduces the
score function, additional computation is negligible because
output of the score function is commonly used for the learn-
ing rules of all adaptive filter coefficients. Especially, com-
putational requirements are reduced with ��� % �  / � as the score
function because one multiplication can be replaced with
just sign change.

For the Laplacian source signals, the performances of
the ICA-based approach were better than those of the LMS
algorithm. From these results, it can be reasoned that there
may be many components in the primary input which de-
pend on the reference signal in higher-order statistics and
these noise components can be cancelled by the ICA-based
learning rule. For the Gaussian source signals, however,
the ICA-based approach provided almost the same SNRs as
or a little worse than the LMS algorithm. Gaussian signals
can be described by only the first and second-order statistics
without higher-order statistics. Therefore, the ICA-based
approach which can utilize higher-order statistics does not
have any advantage over the LMS algorithm. If one use
the score function which is not adequate to the original sig-
nal (for example, ��� % �  / � for Gaussian signals), the per-
formances can be degraded because the nonlinear function
mismatches the cdf of the signal.

4.2. Experiments for real recorded signals

To perform experiments for real recorded signals, we used
speech, car noise, or music as the noises. Another speech

Table 2. SNRs of ICA-based approach and LMS algorithm
for three different noises after convergence for the simple
simulation filter ( ��� )

Initial SNRs after convergence
Signal Noise SNRs LMS ICA-based

algorithm approach
Speech Car -3.0 27.0 28.4
Speech Speech -3.0 25.0 43.2
Speech Music -3.0 33.9 55.7

Table 3. SNRs of ICA-based approach and LMS algorithm
for three different noises after convergence for the measured
filter in a normal office room ( ��� )

Initial SNRs after convergence
Signal Noise SNRs LMS ICA-based

algorithm approach
Speech Car -3.0 21.0 26.8
Speech Speech -3.0 21.5 38.7
Speech Music -3.0 21.7 41.8

was used as the signal � . Korean sentences were recorded
for the speech, and the car noise and the music were ob-
tained in NOISEX-92 CD-ROMs and a Korean popular song,
respectively. Each signal had 10 second length with "�� �
	 8
sampling rate. It is known that speech signal approximately
follows Laplacian distribution and ��� % �  / � was used as the
score function in these experiments.

Table 2 and 3 display the SNRs of the two algorithms for
the three different noises after convergence for the simple
simulation filter and the measured filter, respectively. The
SNRs of the ICA-based approach were superior to those
of the LMS algorithm. These results show that the ICA-
based approach can remove dependent components through
higher-order statistics for real recorded signals as well. When
the adaptive filter coefficients were learned by the ICA-based
approach, Fig. 4 displays the signal and noise sources, the
primary input signal, and the system output signal after con-
vergence for the car noise and the simple simulation mixing
filter.

4.3. Experiments for TDAF methods

In experiments for TDAF methods, the signal and the noise
sources were, respectively, the same speech and car noise
signals used in the previous experiments which showed slow
convergence rates. When the normalized ICA-based ap-
proach was used as the adaptation rule, � in eqn. (11) was
set to 1 because ��� % �  / � was used as the score function. As
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(a) Signal source

(b) Noise source

(c) Primary input signal

(d) System output signal

Fig. 4. Signal waveforms after convergence of ICA-based
approach to adaptive noise cancelling for the car noise and
the simple simulation mixing filter

the unitary transform, we chose the discrete cosine trans-
form (DCT) which is popular in speech processing and had
given fast convergence rates for several classes of input sig-
nals [10].

Fig. 5 shows learning curves with and without TDAF
for each algorithm for the measured filter in a normal office
room in the beginning. For the ICA-based algorithm, con-
vergence speed was significantly improved by TDAF with
the almost same SNR after convergence. For the LMS algo-
rithm, however, there was no obvious difference with TDAF
because relatively large step sizes gave higher SNRs after
convergence and had fast convergence speed in the begin-
ning in case that the TDAF method was not used. It is
worthy of note that the ICA-based algorithm with TDAF is
comparable with the LMS algorithm in the beginning, not
to mention SNR after convergence.
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Fig. 5. Comparison of learning curves with and without
TDAF methods

5. CONCLUSION

In this paper, a method to adaptive noise cancelling based on
ICA was proposed and the ICA-based learning rule was de-
rived. The method was compared with the LMS algorithm
through the experiments for several noise signals and mix-
ing filters. By including higher-order statistics, the proposed
ICA-based approach gave better performances than the con-
ventional LMS algorithm. Additionally, the TDAF method
was applied to derive the normalized ICA-based learning
rule and it improved convergence rates.

The ICA-based approach makes the output independent
of the reference input as much as possible, whereas the LMS
algorithm makes the output uncorrelated to the reference
input. Correlation is just the second-order statistics. But,
they can have dependency through higher-order statistics,
and the ICA-based approach can remove the dependency
which involves statistics of all orders. Therefore, the perfor-
mances of the ICA-based approach were better than those of
the LMS algorithm.
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A. APPENDIX

The transfer function of an adaptive filter with even length+ can be expressed as

	  8 � � � � ��
 �! �
! ���� 8 �  �  " � 8 � � ��� �  8 � � �  " � 8 � � ��� �  8 � ��� (A.1)

where

� �  8 � � "5  � � � � ��
 �! �

! 95 ��� 8 �  � �
� � � ��
 �! �

! 95 � ��" � 8 �  # � (A.2)

� �  8 � � "5  � � � � ��
 �! �

! 95 ��� 8 �  � �
� � � ��
 �! �

! 95 � ��" � 8 �  # "(A.3)

� �  8 � � and
� �  8 � � have +�� 5 nonzero coefficients, and the

sections " � 8 � � and " � 8 � � are called ”interpolators”. If+�� 5 is even, we can further apply this decomposition to the
subfilters

� �  8 � � and
� �  8 � � as follows:

	  8 � � � � ��
� ! �

� �  8 ��� �  8 � ��� (A.4)

where filter length + ��� /�	 � 5�
�/�	
.
� �  8 � is the inter-

polator and
� �  8 � � �  � � �� ! � % �  � � 8 � � � is the subfilter

of the � th band.
In matrix notation, a general

�
-band decomposition

can be written as

�
�
� � � ��
� ! �

� ����� � , 2 �  � 2� � 2 � /1/1/ � 2� � �
#*2 � , 2 � � �

(A.5)
where

�
� is the filter vector of length + , and the vector

��� �  % �  � � % �  " � % � 95 � /1/1/ % � �	 � " �$# 2 . The+ � 	 subband transform matrices
� � are determined by

the interpolator structures. “Unnormalized” unitary matrix,�� �  � � � � /1/1/ � � � �
# 2

is the overall transform
matrix applied to the input vector 3 � ���� since

� 2
� 3 � �������� 2 ,���3 � �����" (A.6)
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