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ABSTRACT

We propose a new algorithm for blind source separation (BSS),
in which independent component analysis (ICA) and beamforming
are combined to resolve the low-convergence problem through op-
timization in ICA. The proposed method consists of the following
three parts: (1) frequency-domain ICA with direction-of-arrival
(DOA) estimation, (2) null beamforming based on the estimated
DOA, and (3) integration of (1) and (2) based on the algorithm
diversity in both iteration and frequency domain. The inverse of
the mixing matrix obtained by ICA is temporally substituted by
the matrix based on null beamforming through iterative optimiza-
tion, and the temporal alternation between ICA and beamforming
can realize fast- and high-convergence optimization. The results
of the signal separation experiments reveal that the signal separa-
tion performance of the proposed algorithm is superior to that of
the conventional ICA-based BSS method, even under reverberant
conditions.

1. INTRODUCTION

Blind source separation (BSS) is the approach taken to estimate
original source signals using only the information of the mixed
signals observed in each input channel. This technique is ap-
plicable to the realization of noise-robust speech recognition and
high-quality hands-free telecommunication systems. In the recent
works for the BSS based on the independent component analysis
(ICA) [1, 2], several methods, in which the inverse of the complex
mixing matrices are calculated in the frequency domain, have been
proposed to deal with the arrival lags among each of the elements
of the microphone array system [3, 4, 5]. However, this ICA-based
approach has the disadvantage that there is difficulty with the low
convergence of nonlinear optimization [6].

In this paper, we describe a new algorithm for BSS in which
ICA and beamforming are combined. The proposed method con-
sists of the following three parts: (1) frequency-domain ICA with
estimation of the direction of arrival (DOA) of the sound source,
(2) null beamforming based on the estimated DOA, and (3) inte-
gration of (1) and (2) based on the algorithm diversity [7] in both
iteration and frequency domain. The temporal utilization of null
beamforming through ICA iterations can realize fast- and high-
convergence optimization. The results of the signal separation ex-
periments reveal that the signal separation performance of the pro-
posed algorithm is superior to that of the conventional ICA-based
BSS method, and the utilization of null beamforming in ICA is ef-
fective for improving the separation performance and convergence,
even under reverberant conditions.
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Figure 1: Configuration of a microphone array and signals.

The rest of this paper is organized as follows. In Sections 2
and 3, the formulation for the general BSS problems and the prin-
ciple of the proposed method is explained. In Section 4, the signal
separation experiments are performed. Following discussion on
the results of the experiments, we give conclusions in Section 5.

2. DATA MODEL AND CONVENTIONAL BSS METHOD

In this study, a straight-line array is assumed. The coordinates
of the elements are designated as

���
( �����	��
�
�
��� ), and the

directions of arrival of multiple sound sources are designated as���
( ��������
�
�
���� ) (see Fig. 1), where we deal with the case of�������� .
In general, the observed signals in which multiple source sig-

nals are mixed linearly are given by the following equation in the
frequency domain: ���! #" ��$ �! #"�%&�! #" � (1)

where
�'�! #"

is the observed signal vector,
%&�! #"

is the source sig-
nal vector, and $ �! #" is the mixing matrix; these are given as���! #" � ( )+* �! #" ��
�
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Figure 2: BSS procedure based on frequency-domain ICA.

$ �! #" is assumed to be complex-valued because we introduce a
model to deal with the arrival lags among each of the elements of
the microphone array and room reverberations.

In the frequency-domain ICA, first, the short-time analysis of
observed signals is conducted by frame-by-frame discrete Fourier
transform (DFT) (see Fig. 2). By plotting the spectral values in a
frequency bin of each microphone input frame by frame, we con-
sider them as a time series. Hereafter, we designate the time series
as ���! �,@ " � ( )A* �! �,@ " ��
�
�
��,).- �! �,@ "0/ 1 ? (5)

Next, we perform signal separation using the complex-valued in-
verse of the mixing matrix, B �! #"

, so that the � time-series out-
put C �! �;@ " becomes mutually independent; this procedure can be
given as C �! �,@ " � B �! #",�'�! �,@ " � (6)

where C �! �;@ " � ( DE* �! �;@ " ��
�
�
��;D 5 �! �F@ "0/G1 � (7)B �! #" � 78�H *;* �! #" 
�
�
 H *0- �! #"
...

...H 5 * �! #" 
�
�
 H 5 - �! #"
=>I?

(8)

We perform this procedure with respect to all frequency bins. Fi-
nally, by applying the inverse DFT and the overlap-add technique
to the separated time series C �! �,@ " , we reconstruct the resultant
source signals in the time domain.

In the conventional ICA-based BSS method, the optimal B �! #"
is obtained by the following iterative equation [3, 8]:BKJ2L * �! #" �NMPO2QSRUT	VXWSY�Z � C �! �;@ ";" C\[ �! �,@ "^]�_F`a Y Z � C �! �;@ ";" C [ �! �,@ " ]�_cb B J �! #"�d B J �! #" � (9)

where e,
 f _ denotes the time-averaging operator, g is used to express
the value of the g th step in the iterations, and M is the step-size
parameter. Also, we define the nonlinear vector function Z � 
 " asZ � C �! �F@ ";"ih ( j � DE* �! �,@ ";" ��
�
�
���j � D 5 �! �;@ ";"0/U1 � (10)j � D � �! �F@ ";"ih k � dml�n�op� a DrqUsut� �! �F@ ";" bwv *dyx 
 k � dml�n�op� a D qUzUt� �! �,@ ";"0b v * � (11)
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Figure 3: Proposed algorithm combining frequency-domain ICA
and beamforming.

where D q{sut� �! �,@ " and D qUzUt� �! �,@ " are the real and imaginary parts
of D � �! �,@ " , respectively.

3. PROPOSED ALGORITHM

The conventional ICA method inherently has a significant disad-
vantage which is due to low convergence through nonlinear opti-
mization in ICA. In order to resolve the problem, we propose an al-
gorithm based on the temporal alternation of learning between ICA
and beamforming; the inverse of the mixing matrix, B �! #"

, ob-
tained through ICA is temporally substituted by the matrix based
on null beamforming for a temporal initialization or acceleration
of the iterative optimization. The proposed algorithm is conducted
by the following steps with respect to all frequency bins in parallel
(see Fig. 3).
[Step 1: Initialization] Set the initial B|J �! #" , i.e., BK} �! #" , to an
arbitrary value, where the subscripts g is set to be 0.
[Step 2: 1-time ICA iteration] Optimize B J �! #" using the fol-
lowing 1-time ICA iteration:B~qUzU�S��tJGL * �! #" �IMPO2QSRUT	VXW Y Z � C �! �,@ ";" C�[ �! �,@ " ] _ `a Y Z � C �! �,@ ";" C�[ �! �,@ " ] _ b B|J �! #"�d B�J �! #" �

(12)

where the superscript “(ICA)” is used to express that the inverse of
the mixing matrix is obtained by ICA.
[Step 3: DOA estimation] Estimate DOAs of the sound sources
by utilizing the directivity pattern of the array system, � � �! � � " ,
which is given by� � �! � � " � -� ��� * H q{zG����t� � �! #"&l�n�o ( x ���  ����� R{� �w��� / � (13)

413



where
H q{zG����t� � �! #"

is the element of B qUzU�S��tJGL * �! #"
. In the directivity

patterns, directional nulls exist in only two particular directions.
Accordingly, by obtaining statistics with respect to the directions
of nulls at all frequency bins, we can estimate the DOAs of the
sound sources. The DOA of the � th sound source, ���� , can be esti-
mated as �� � � ����E����� � * � � �! � " � (14)

where
�

is a total point of DFT, and
� � �! � " represents the DOA

of the � th sound source at the � th frequency bin. These are given
by� * �! � " �A�.R{� k T���Vw�.R{��~� �X* �! � � � " � ��T���V��.RU���� � � �! � � � " � b � (15)� � �! � " �+�rT n�k T���V��.R{���� � * �! � � � " � �;T���V��.R{��~� � � �! � � � " � b � (16)

where �.RU�6( ���;� / ( �rT n ( ���;� / ) is defined as a function in order to
obtain the smaller (larger) value among � and � .
[Step 4: Beamforming] Construct an alternative matrix for signal
separation, B qU S¡�t �! #" , based on the null-beamforming technique
where the DOA results obtained in the previous step is used. In the
case that the look direction is �� * and the directional null is steered
to �� � (see solid line in Fig. 4), the elements of the matrix for signal
separation are given asH qU �¡wt*;* �! � " � l^nSo¢k a x ���  � � * � RU� �� * ��� b£m¤ l�n�oPk x ���  � � * � � R{� �� � a � R{� �� * " ��� ba l�n�oPk x ���  � � � � � R{� �� � a � R{� �� * " ��� bS¥ v * � (17)H qU �¡wt* � �! � " � a l�n�oPk a x ���  � � � � R{� �� * ��� b£m¤ l�n�oPk x ���  � � * � � R{� �� � a � R{� �� * " ��� ba l�n�o k x ���  � � � � � R{� �� � a � R{� �� * " ��� bS¥#v *

?
(18)

Also, in the case that the look direction is �� � and the directional
null is steered to �� * (see broken line in Fig. 4), the elements of the
matrix are given asH q{ S¡wt� * �! � " � a l�n�o¢k a x ���  � � * � R{� �� � ��� b£�¤ a l�n�o<k x ���  � � * � � R{� �� * a � R{� �� � " ��� bd�l�n�o<k x ���  � � � � � R{�A�� * a � R{�¦�� � " ��� bS¥ v * � (19)H q{ S¡wt�;� �! � " � l�n�oPk a x ���  � � � � R{�¦�� � ��� b£�¤ a l�n�o<k x ���  � � * � � R{�¦�� * a � R{�§�� � " ��� bd�l�n�o<k x ���  � � � � � R{� �� * a � R{� �� � " ��� bS¥ v *

?
(20)

[Step 5: Diversity with cost function] In order to integrate the
subband ICA with null beamforming, we introduce the follow-
ing strategy for selecting the most suitable unmixing matrix in
each frequency bin and each iteration point, i.e., algorithm diver-
sity in both iteration and frequency domain. As a cost function
used to achieve the diversity, we calculate two kinds of cosine dis-
tances between the separated signals which are obtained by ICA
and beamforming. These are given by¨ qUzU�S��t �! #" � ©©©©©

ªm« -� ��� * H qUzU�S��t* � �! #" ) � �! �;@ "F¬
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Figure 4: Example of directivity patterns constructed by beam-
forming in Step 4.
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and ¨ qU �¡wt �! #" � ©©©©©
ª�« -� ��� * H q{ S¡wt* � �! #" ) � �! �F@ "F¬
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 ª ©©©©©
-� ��� * H qU S¡�t� � �! #" ) � �! �F@ " ©©©©© � ®

v * �^�_ ?
(22)

If the separation performance of beamforming is superior to that of
ICA, we obtain the condition,

¨ qUzU�S��t �! #"3¯°¨ qU �¡wt �! #" ; otherwise¨ qUzU�S��t �! #"+±�¨ qU �¡wt �! #" . Thus, an observation of the conditions
yields the following algorithm:B �! #" �³² B~qUzU�S��tJ2L * �! #" �µ´ ¨ qUzU�S��t �! #"¶±·¨ q{ S¡wt �! #";¸B qU �¡wt �! #" � ´ ¨ qUzU�S��t �! #"¹¯·¨ q{ S¡wt �! #";¸ ? (23)

If the ( g d � )th iteration was the final iteration, go to step 6; oth-
erwise go beck to step 2 and repeat the ICA iteration inserting theB �! #"

given by Eq. (23) into B|J �! #" in Eq. (12) with an increment
of g .
[Step 6: Ordering and scaling] Using the DOA information ob-
tained in step 3, we detect and correct the source permutation and
the gain inconsistency [9]. The resultant separated signals can be
obtained as follows:C �! �,@ "
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Table 1: Analysis Conditions of Signal Separation

Sampling Frequency 8 kHz
Frame Length 128 msec
Frame Shift 2 msec
Window Hamming window
Step Size Parameter M.�º� ? » £ � » v#¼

Microphone
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2 
m
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40

(Height : 1.35 m)
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Figure 5: Layout of reverberant room used in experiments.
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Á � � � * �! � �� * " »» � � � � �! � �� � "§Â B �! #",���! �F@ " ��
without source permutation

"Á » � � � � �! ���� * "� � � * �! � �� � "
» Â B �! #",���! �F@ " ��

with source permutation
" ? (24)

4. EXPERIMENTS AND RESULTS

4.1. Conditions for experiments

A two-element array with the interelement spacing of 4 cm is as-
sumed. The speech signals are assumed to arrive from two direc-
tions, a<Ã »wÄ and Å »wÄ . Two kinds of sentences, those spoken by two
male and two female speakers selected from the ASJ continuous
speech corpus for research [10], are used as the original speech
samples. Using these sentences, we obtain 12 combinations with
respect to speakers and source directions. In these experiments, we
use the following signals as the source signals: the original speech
convolved with the impulse responses specified by different rever-
beration times (RTs) of 0 msec, 150 msec and 300 msec. The im-
pulse responses are recorded in a variable reverberation time room
as shown in Fig. 5. The analysis conditions of these experiments
are summarized in Table 1.

4.2. Objective Evaluation of Separated Signal Under Nonre-
verberant Condition

In order to compare the basic performance of the proposed algo-
rithm with that of the conventional BSS described in Sect. 2, the
noise reduction rate (NRR), defined as the output signal-to-noise
ratio (SNR) in dB minus input SNR in dB, is shown in Fig. 6 for
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Figure 6: Noise reduction rates for different iteration in ICA. The
RT is 0 msec.

different iteration points in ICA when RT is 0 msec. These values
were averages of all of the combinations with respect to speakers
and source directions. As for the proposed algorithm, we also plot
the NRR which is rescaled by the computational cost (see dotted
lines) because the proposed algorithm has a computational com-
plexity of about 1.9-fold compared with the conventional ICA.

In Fig. 6, it is evident that the proposed algorithm can show
a rapid convergence and the separation performances of the pro-
posed algorithm are superior to those of the conventional ICA-
based BSS method at every iteration point, even considering the
additional computational cost of the proposed algorithm. For ex-
ample, compared with the conventional method, the proposed method
can improve the NRR of about 13.8 dB at the 50-iteration point in
the conventional ICA.

As for the results of DOA estimation, Figs. 7 and 8 show ex-
amples of the estimated DOA corresponding to a<Ã »wÄ and Å »�Ä
for a typical combination of two male-speech. Although these
DOA results depend on the combination of the sound sources,
another DOA results for another source pairs showed the same
tendency. As shown in these figures, the proposed algorithm can
update B �! #"

properly with a more accurate estimation of DOA
compared with the conventional method. This contributes to the
realization of fast- and high-convergence through the optimization
of B �! #"

in the proposed algorithm under the nonreverberant con-
dition.

Figure 9 shows a typical example of alternation between ICA
and null beamforming through iterative optimization by the pro-
posed algorithm when the RT is 0 msec. In this figure, the symbol
“-” represents that the null beamforming is used in the iteration
point and frequency bin. As shown in Fig. 9, the inverse of the
mixing matrix obtained by ICA is substituted by the matrix based
on null beamforming through almost iteration points at every fre-
quency bin. In general, the null beamforming is more suitable for
the separation of directional sound sources under nonreverberant
condition [11]. Thus, the result of Fig. 9 indicates that the pro-
posed algorithm has an ability to select a proper signal-separation
algorithm automatically.
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Figure 7: Example of estimated DOA corresponding to a<Ã »wÄ un-
der the nonreverberant condition.
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Figure 8: Example of estimated DOA corresponding to Å » Ä under
the nonreverberant condition.

4.3. Objective Evaluation of Separated Signal Under Rever-
berant Condition

In order to compare the performance of the proposed algorithm
with that of the conventional BSS under reverberant conditions,
the NRR is shown in Figs. 10 and 11. The results reveal that the
separation performances of the proposed algorithm are superior to
those of the conventional ICA-based BSS method at every itera-
tion point, even considering the additional computational cost of
the proposed algorithm. For example, compared with the conven-
tional method, the proposed method can improve the NRR of about
4.6 dB at the 50-iteration point in the conventional ICA when the
RT is 150 msec. Also, when the RT is 300 msec, the proposed
method can improve the NRR of about 1.5 dB.

Figure 12 shows a typical example of alternation between ICA
and null beamforming through iterative optimization by the pro-
posed algorithm when the RT is 150 msec, and Figure 13 shows
the example of alternation when the RT is 300 msec. As shown in
Figs. 12 and 13, the proposed algorithm can work automatically as
follows: (1) null beamforming is used for the acceleration of learn-
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ä å æç

Figure 9: Example of alternation between ICA and null beamform-
ing through iterative optimization by the proposed algorithm. The
symbol “-” represents that the null beamforming is used in the
iteration point and frequency bin. The RT is 0 msec.
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Figure 10: Noise reduction rates for different iteration in ICA. The
RT is 150 msec.

ing at early times in the iterations because B qU S¡�t �! #" is a rough
approximation of the inverse of the mixing matrix $ �! #" , (2) ICA
is used after the early part of the iterations because ICA can up-
date the inverse of the mixing matrix more accurately, and (3) the
inverse of the mixing matrix obtained by ICA is substituted by the
matrix based on null beamforming through whole iteration points
at particular frequency bins where the independence between the
sources is low. From these results, although null beamforming
is not suitable for signal separation under the condition that the
direct sounds and their reflections exist, we can confirm that the
temporal utilization of null beamforming for algorithm diversity
through ICA iterations is effective for improving the separation
performance and convergence.

5. CONCLUSION

In this paper, we described a fast- and high-convergence algorithm
for BSS where null beamforming is used for temporal algorithm
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Figure 11: Noise reduction rates for different iteration in ICA. The
RT is 300 msec.
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Figure 12: Example of alternation between ICA and null beam-
forming through iterative optimization by the proposed algorithm.
The symbol “-” represents that the null beamforming is used in
the iteration point and frequency bin. The RT is 150 msec.

diversity through ICA iterations. The results of the signal sepa-
ration experiments reveal that the signal separation performance
of the proposed algorithm is superior to that of the conventional
ICA-based BSS method, and the utilization of null beamforming
in ICA is effective for improving the separation performance and
convergence, even under reverberant conditions.
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