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ABSTRACT

Treating an averaged EFs (evoked-fields) or ERPs (event-
related potentials) data is a main approach in recent topics
on applying ICA to neurobiological signal processing. By
taking the average, the signal-noise ratio (SNR) is increased
but some important information such as the strength of an
evoked response and its dynamics will be lost. The single-
trial data analysis, on the other hand, can avoid this problem
but the poor SNR arises.

In this paper, we present a robust approach for decom-
posing and localizing unaveraged single-trial MEG data. Our
approach has two procedures. In the first step, a PCA-like
pre-whitening with the high-level noise reduction and an op-
timal dimensionality reduction techniques are presented. In
the second step, a robust nonlinear function derived by the
parameterized t-distribution model is applied to separate the
mixtures of sub-Gaussian and super-Gaussian source com-
ponents. The results on unaveraged AEFs single-trial data
analysis illustrate that not only the behavior and location
but also the activity strength (amplitude) and dynamics of
the individual evoked response can be visualized by using
the proposed method.

1. INTRODUCTION

Applying the ICA to physiological data has received a lot of
attentions due to many practical results have been achieved�
14 � , �

15 � , �
11 � , �

16 � . Recently, the analysis of single-trial
data is interested in order for catching more information
from human brain records

�
12 � . This paper presents a prac-

tical method for decomposing and localizing unaveraged

single-trial MEG data
�
5 � , �

6 � .
The problem of the single-trial data analysis is formu-

lated by

�
	����������	��������	�������
����� �!�#"#"#"$� (1)

where �
	���%� � &$' 	�����#"#"#"(� &*) 	��� �,+ represent the transpose
of - observations at time � . Each observation

&*. 	��� contains/ common components (sources) ��	����� � 01' 	�����#"#"#"(� 032 	��� �,+
and a unique component (additive noise) which is included
in the vector ��	���4� � 56' 	�����#"#"#"(� 5#) 	��� �,+ . Since the tissue
and skull do not attenuate magnetic fields in an MEG mea-
surement, �87�9 );:<2 �=	?> . @  can be represented by a nu-
merical matrix whose element > . @ is a quantity related to the
physical distance between A -th sensor and B -th source.

In this model, the sources � and their number / , additive
noise � and matrix � are unknown but the sensor signals �
are accessible. It is assumed that the components of � are
mutually statistically independent, as well as statistically in-
dependent to the noise components � . Moreover, the noise
components � themselves are assumed to be mutually inde-
pendent.

Some remarks about the model :

C Regardless of the nature of components, according
to the model, a source component

03.
contributes to

at least two sensors and a noise component
5#.

con-
tributes at most to only one sensor. Based on this def-
inition, we can easily distinguish a noise component
from the source components by checking the distri-
bution of amplitude of the observed signals on the
nearby sensors. If the distribution of amplitude of
these signals is not smooth, this means nothing but
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a noise is added in one of these sensors. This tech-
nique sometimes can help us in selecting of a suitable
model.

C Depending on the condition of the experiment, the
sources � may include : (1) ‘brain sources’ such as
evoked responses, spontaneous and artifacts; (2) ‘in-
terference sources’ such as power interference; en-
vironmental interferences. These sources contain ei-
ther a positive kurtosis or a negative kurtosis. There-
fore, the problem of separating the mixture of sub-
Gaussian and super-Gaussian signals arises.

C The number of sensors - is fixed depending on the
MEG machine. The number of sources / is unknown
in the model, and it has to be estimated or to be con-
jectured by using a prior.

There are two kinds of undesirable components have to be
removed in our task. The first one is additive noises � , their
power will be reduced by the robust pre-whitening approach
in the pre-processing step. The second one, they are usually
to be called ‘noise’ (interference, brain noises etc.) but they
are attributed to the source in our model. They will be dis-
carded after ICA source decomposition.

2. METHOD OF DATA ANALYSIS

2.1. Pre-whitening with noise reduction

In this subsection, we first describe the standard PCA ap-
proach which has been adopted in some promising ICA al-
gorithms

�
9 � , �

3 � for the pre-whitening. Next, we show that
this standard PCA approach can be extended to pre-whitening
with a high-level noise reduction.

Let us rewrite Eq. (1) in a data matrix form as

��� );:���� ��� � );:!2��	� � 2*:���� ��
 � );:���� � (2)

where � denotes data samples. When the sample size �
is sufficiently large, the covariance matrix of the observed
data can be written as

 ����� + ���8� (3)

where
 � ��� +�� � , and � ��
�
 + � � is a diagonal

matrix. For convenience, we assume that
�

has been di-
vided by � � so that the covariance matrix can be given by� � ��� + .

For the averaged data, the noise variance � is small or
zero. A cost function for fitting the model to the data is
to make

��� ��� + as small as possible. It is well known
that the standard PCA can find the principal components
by employing the eigen-value decomposition. That is, the

solution of ��� + for seeking / principal components can
be obtained by �

�
�
� + ��� 2��42 � +2 � (4)

where
�;2

is a diagonal matrix whose elements are the /
largest eigenvalues of

�
. The columns of � 2

are the corre-
sponding eigenvectors. In Eq. (4), let one possible solution
for

�
� is �

� ��� 2�� '	���2 � (5)

and then the scores can be obtained from as  � �"! '	���2 � +2 � .
Note that the covariance matrix is #%$& ' �+)( � �42

, it means
that  are orthogonal. Applying this algorithm for the av-
eraged data analysis, some successful results have been re-
ported

�
14 � , �

15 � .
For unaveraged single-trial data, the SNR is very low.

This means that the diagonal elements of � cannot be ig-
nored in the model. In this case, we can fit ��� + to

�*� �
by the eigen-value decomposition. That is, choosing the
columns of � as eigenvectors of

��� � corresponding to
the / largest eigenvalues so that the sum of the squares in
each column is identical to the corresponding eigenvalue.

Noted that the noise variance � is assumed to be known.
However, in practice � is unknown, and it has to be esti-
mated. Motivated by this, we employ the cost function+ 	?�8�,� 
���.- � ��� + � 	 �/� �  �

�
(6)

and minimize it by 021 � 3�4 � �0 � �65 , whereby the estimate�
� �67 A >'8$	 �*�

�
�
�
� +  (7)

is obtained. The estimate

�
� can be obtained in the same

way as in Eq. (5).
Both the matrix � and the diagonal elements of � have

to be estimated together from data. The estimate

�
� is ob-

tained by the standard PCA. The estimate

�
� is obtained by

the so called unweighted least squares method that is one
of the estimation methods in factor analysis. Once the es-
timates

�
� and

�
� converge to stable values, we can finally

compute the score matrix by using the Bartlett method
�
2 �

as 9 � �
�
� +

�
� ! '

�
� � ! '

�
� +

�
� ! ' : (8)

Using the above result, the new transformation data can be
obtained by  � 9 � . Note that the covariance matrix is#%$& ' �+)( � �42 � � � � + , which implies that the subspace
of the source signals are decorrelated.

The robust approach plays the same role in decorrela-
tion as the standard PCA, but the noise variance � is taken
into account. The difference is that the standard PCA is to
fit both diagonal and off-diagonal elements of

�
, whereas
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the robust pre-whitening technique is to fit off-diagonals el-
ements of

�
only. Based on this property, the robust ap-

proach is enable us to reduce a high-level noise which is
very important in the single-trial data analysis.

2.2. Optimal dimensionality reduction

The cross-validatory techniques have been wildly applied
in multivariate statistics. It usually divides the data into two
groups, and uses one group to determine some characteris-
tics of the data, and then uses the other groups to verify the
characteristics. Extending this concept, we propose a crite-
rion for determining the estimation of the source number

�
/

by using the error of estimating the noise variance.
Let us first divides the data matrix

�
into several dis-

joint groups such as
� . 7(9 );:������

, where � is data sam-
ples and the group number A � ���#"#"#"$��� . Next, we use
each group data to compute one estimate of the noise vari-
ance �����	� 	

�
� .  and use remaining data to compute another

estimate of the noise variance �����	� 	
�
� @  where B�
� A . In gen-

eral, when the estimate of source number

�
/ has not been

marched to its true value, a larger error will arise between
the noise variance and its estimate. Based on this property,
we propose a criterion for

�
/ as,

������ 	 �/��� ��
��
. � '��  � �����	� 	

�
� ���2��.  � �����	� 	

�
� ���2��@  �

� : (9)

It should be noted that we are not necessary to compute all
of the estimates of the source number such as from

�
/8� � to

�
/8� - when applying a sufficient condition as

�
/�� '� 	 � - �

� � � � - ���6 . Within this bound, we know that the esti-
mate of the source number is reliable.

2.3. Robust nonlinear function in ICA algorithm

After pre-processing the data, a new data vector  � 9 �
is obtained in which the power of noises, mutual correlation
and dimensionality have been reduced. The decomposed in-
dependent sources � 7�9 2

then can be obtained from a linear
transformation as

� 	��� ���  	����� (10)

where � 7�9 2*:<2
is the demixing matrix that can be com-

puted by using several BSS/ICA methods
�
1 � , �

8 � . For ex-
ample, applying the natural gradient based approach, an up-
dating rule is� � 	�������! " �$# 	 � 	���� � + 	���&%�� 	����� (11)

where �(' 5 is a learning rate, and
# 	 "  is the vector of

activation functions whose optimal components are

) . 	+* . �� � 77�* .�, � ��- . 	+* . �� �/.- . 	+* . - . 	+* .  � (12)

where .- . 	+* . 
��7 - . 	+* .  � 7�* . .
Typical ICA algorithms rely on the choice of nonlinear

functions. The form of the optimal function depend on the
probability distribution of the source which is usually not
available in the ICA task. Several algorithms have been
developed for separating the mixtures of sub- and super-
Gaussian sources

�
10 � , �

13 � . In this paper, we will use the
recently developed the parameterized t-distribution model
(unimodal)

�
4 � . We will not go into detail in the theoretical

analysis but show some advantages for the derived nonlin-
ear function

�
7 � : (1) the function is robust to outliers; (2) the

nonlinear function is determined by the value of the kurtosis
which corresponds to the source distribution; (3) the algo-
rithm holds stability as well as it robust to the misestima-
tion of kurtosis. The proposed nonlinear functions have the
forms :) . 	+* .  �10325476 ��8 	+* . :9 254;* . 9 4 ! ' �

�< . � 5 � (13)

) . 	+* .  � 	 � �>= ?* .* �. �A@BDCE
�< . ' 5 : (14)

Implementation of the proposed ICA algorithm is summa-
rized as

�
4 � :

C Calculate the output � from given observations  and
an initial value � .

C Calculate the kurtosis by

�< . �
�
-GF �

�
-
�� �IH

where the
2nd- and 4th-order moments are estimated by

�
- @ 	������ � � �$	��� �

�
- @ 	�� � �6��$�$	���?* @. 	�����3	 B � �!��J< :

C Establish the look-up tables by <54 �LK �DMN � K �PON �K C �:QN � �RH
and < @ �TS�K � EVU	WC � K � E C �K C � EVU CC � ��H

, and determine 0 or =
corresponding to the value of

�< . .
C Calculate the scaling constants 254��YXZK �DQN �) C K �PON �\[

OC
or

2 @ �]X @ K � EVU CC �� ) C K � E C � [
OC

according to the value of

�< . .
C Calculate the nonlinear function by Eq. (13) or Eq.

(14) and update � by Eq. (11).

2.4. Single-dipole source localization

After pre-processing and applying ICA to the single-trial
data, the individual sources have been extracted. We will
post-processing the decomposed sources for seeking their
location, amplitude and dynamics by using the spatio-temporal
dipole fit method. Noted that since we localize the sources
independently, it is as reliable as the single equivalent cur-
rent dipole fitting.

Using the matrices � and
9

or

�
� , we can obtain the

estimated behavior of the brain activities as�
��	����� � 	�����(^��
	����� (15)
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where ^ �/� 9
. To seek the location of the decomposed

independent sources, let

�
��� �

�
� � ! '

, where

�
� . is A -th

column of matrix

�
��� and

�03.
is A th component in the esti-

mated sources vector

�
� ( A � ���#"#"#"$��/ ). The virtual contri-

bution of multi-sources or a single source to the sensors can
be represented by�

��	�� 
�
�
���
�
��	��  �� �

�
	�� 
�
�
� .
�03. 	�� �� (16)

where � is the sample index of data samples of a single-trial,
�03.

is an independent source which is usually selected from
our interest.

3. STUDY ON AUDITORY EVOKED FIELDS

3.1. AEF experiment

The AEF data was recorded using an Omega-64 (CTF sys-
tems Inc., Canada) whole-cortex MEG system at the Na-
tional Institute of Bioscience and Human Technology, Japan.
The sensor arrays consists of 64 MEG channels.

The AEF experiment was performed on a normal male
adult whose both ears were stimulated by 1 kHz tone. There
were 630 sets of trial data recorded in 379.008 sec. The
duration of each single-trial was 0.6016 sec and the stimulus
was given at 0.2 sec. The sampling rate was 312.5 Hz and
the samples were 188 in each trial. In the experiment, the
model sphere is set at

& � � 5 : H � cm, * � 5 cm, � �
� : H � cm and -4��� : H cm. Each single-trial with 64-channel
records in the time course is shown in Fig. 1.

Taking the average of total recorded trials and localizing
the evoked fields by using the dipole fitting method, we ob-
tain averaged map as shown in Fig. 1. This is a typical result
of averaged AEF analysis in which the two dipoles appear
correctly in the left and right regions of the head map. The
latency was set at 0.096 sec in the fitting process. As seen
from this map, the maximum evoked response is 330 fT. It
only represents the averaged strength of two dipoles.

AveragedAveraged

Fig. 1. AEF single-trial records and its averaged map.

Further beyond the behavior and location of the evoked
response as in averaged data, we search the activity strength

information of each single evoked response and its dynam-
ics (the strength of the evoked response corresponding to
related stimulus). This paper presents results obtained by
applying ICA to the unaveraged single-trial data.

3.2. Results for single-trial AEF by ICA

Various unaveraged single-trial data sets have been analyzed
by using the robust pre-whitening technique with proposed
ICA algorithms. As a typical example, we show the results
for the first single-trial data in Figs. 2a and b. As shown in
Fig. 2a, the result for the pre-whitening, only one compo-
nent (RPC2) corresponds to the evoked responses (N100).
Hence this result is not identical to the typical AEF analyzed
result (Fig. 1) in which there two responses were evoked.

Applying proposed ICA approach, two independent com-
ponents (IC1 and IC3) are successfully extracted correspond-
ing to the N100 evoked responses (see Fig. 2b). IC2 is a
typical alpha-wave component of 11 Hz and IC4 has a high
frequency which may has been effected by environment in-
terference. Projecting these components

�03. 	 A � ��� �!� H  onto
the sensor space by using Eq. (16) and localizing them in-
dependently, the head map for the individual components is
obtained as shown in Fig. 2c left, center and right, respec-
tively.

The map in Fig. 2c left shows that the magnetic field
distribution for the decomposed IC1 is in the right side of
the temporal cortex. The maximum response for IC1 is 184
fT evoked at 110 ms in the first trial. The map of decom-
posed IC2 in Fig. 2c center shows that an alpha-wave with
11 Hz is located near the back of the head (a typical result).
The map in Fig. 2c right shows that the magnetic field dis-
tribution for the decomposed IC3 is in the left side of the
temporal cortex. The maximum response for IC3 is 721 fT
at 101 ms in the first trial.
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(a) Result for pre-whitening.
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(b) Decomposed ICs for the first trial records.

(c)Source localization of IC1 to IC3.
Fig. 2. Results for 1st. trial AEF data.

Let us focus the discussion on N100 evoked responses
by the ICA decomposition and the average of stimulus trials.
Comparing the two maps derived by ICA in Figs. 2c with
the averaged map in Fig. 1, we can easily find that the two
evoked individual responses IC1 and IC3 correspond to the
averaged map in their locations. It is impossible to obtain
the amplitude information of a single evoked response from
the averaged map. However, by using ICA approach for
the unaveraged single-trial data, the amplitude information
(activity strength) for each individual evoked response has
been obtained. Moreover, based on the results in Fig. 2c, we
note that the evoked response in the left side of the temporal
cortex IC3 is stronger than that in the right side IC1 when
given the first stimulus.

In general, it is possible for ICA to separate the different
nature of overlapped sources such as the evoked responses,
spontaneous, interference and artifacts, since they would be
mutually independent. For the same nature sources such as
the two evoked responses, it is difficult to presume statistical
independence between them. However, based on the results
in Figs. 2c, we can find that the maximum amplitude (IC1:
184 fT; IC3: 721 fT) and the corresponding latency (IC1:
110 ms; IC3: 101 ms) of each evoked response are different.

This means that the amplitude distributions of these signals
are different. This may be a reason for applying ICA to
decompose the overlapped same nature responses into two
individual responses successfully.

In order to observe the dynamics of the evoked response,
we investigated sample data from 1st to 100th trial (100 tri-
als). As an example, we show the results of the decomposed
IC1 and IC3 maps corresponding to the 4th stimulus in Fig.
3. Comparing these results with the results shown in Fig.
2c, we have found that the locations of the IC1 and IC3 are
almost similar for both the 1st and 4th stimulus. However,
the maximum amplitude of IC1 changes as 184 � 516 fT
and IC3 as 721 � 201 fT. This implies that the evoked re-
sponse IC3 in the left side maybe ‘familiar’ since the first
evoked response is the strongest one in the 100 trials, and
the IC1 in the right side maybe ‘novel’ since the 4th evoked
response is the strongest one in 100 trials.

Other phenomena for IC1 and IC3 have been observed
in other stimulus trials. The locations are similar for the 1st
and 4th trial but their amplitude are relatively weaker. For
example, the alpha-wave component IC2 is the strongest in
a trial but IC1 and IC3 are relatively weaker, this may be
because of the subject lost his attentions.

Fig.3. Evoked responses on the 4th. trial.

4. CONCLUSIONS

We have proposed a novel unaveraged single-trial data anal-
ysis method and applied it to the MEG AEF tasks. The pro-
posed method is based on the ICA approach with the robust
pre-processing and post-processing techniques.

Through the analysis of unaveraged single-trial AEF data
by our method, The relationship between the stimulus and
the evoked response becomes causal for each singal trial.
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Moreover, much important and useful information such as
the amplitude, location and dynamics of evoked individual
response corresponding to the related stimulus can be ob-
tained.

Based on our data analysis results (without knowledge
from neuroscience), some novel features of AEF we be-
lieve have been discovered : (1) The activity strength of
each evoked response (inside of the brain) is possible to
be visualized; (2) The evoked response in the left side of
the brain is stronger than the right one for given the first
stimulus (maybe depend on the subject), but their locations
correspond to those in the averaged map; (3) Related to
the evoked responses, some phenomena such as ‘familiar’,
‘novel’ and ‘lost attentions’ have been observed; (4) The
evoked responses may not move to other regions in the cor-
tex for the AEF task, they stay almost in the same locations
but the strength of the left response alters with the right one.
The authors hope that this kind of data analysis procedure
can help neuroscientists advance their studies of the mech-
anism of the temporal cortex.
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