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ABSTRACT

Hinton (in press) recently proposed a learning algorithm
called contrastive divergence learning for a class of prob-
abilistic models called product of experts (PoE). Whereas
in standard mixture models the “beliefs” of individual ex-
perts are averaged, in PoEs the “beliefs” are multiplied to-
gether and then renormalized. One advantage of this ap-
proach is that the combined beliefs can be much sharper
than the individual beliefs of each expert. It has been shown
that a restricted version of the Boltzmann machine, in which
there are no lateral connections between hidden units or be-
tween observation units, is a PoE. In this paper we general-
ize these results to diffusion networks, a continuous-time,
continuous-state version of the Boltzmann machine. We
show that when the unit activation functions are linear, this
PoE architecture is equivalent to a factor analyzer. This re-
sult suggests novel non-linear generalizations of factor anal-
ysis and independent component analysis that could be im-
plemented using interactive neural circuitry.

1. INTRODUCTION

Hinton (in press) recently proposed a fast learning algo-
rithm, known as contrastive divergence learning, for a class
of models called product of experts (PoE). In standard mix-
ture models the “beliefs” of individual experts are averaged,
but in PoEs the “beliefs” are multiplied together and then
renormalized, i.e., ���������
	��
� � ����� (1)

where � � ����� is the probability of the observed vector � un-
der expert � and ������� is the probability assiged to � when
the opinions of all the experts are combined. One advan-
tage of this approach is that the combined beliefs are sharper
than the individual beliefs of each expert, potentially avoid-
ing the problems of standard mixture models when applied
to high-dimensional problems. It can be shown that a re-
stricted version of the Boltzmann machine, in which hidden
units and observable units form a bipartite graph, is in fact

a PoE (Hinton, in press). Indeed, Hinton (in press) recently
trained these restricted Boltzmann machines (RBMs) using
contrastive divergence learning with very good results. One
problem with Boltzmann machines is that they use binary-
state units, a representation which may not be optimal for
continuous data such as images and sounds.

This paper concerns the diffusion network, a continuous-
time, continuous-state version of the Boltzmann machine.
Like Boltzmman machines, diffusion networks have bidi-
rectional connections, which in this paper we assume to be
symmetric. If a diffusion network is given the same con-
nectivity structure as an RBM, the result will also be a PoE
model.

The main result presented here is that when the activa-
tion functions are linear, these restricted diffusion networks
model the same class of observable distributions as factor
analysis. This is somewhat surprising given the fact that dif-
fusion networks are feedback models while factor analyzers
are feedforward models. Most importantly, the result sug-
gests novel non-linear generalizations of factor analysis and
independent component analysis that could be implemented
using interactive circuitry. We show results of simulations
in which we trained restricted diffusion networks using con-
trastive divergence.

2. DIFFUSION NETWORKS

A diffusion network is a neural network specified by a stochas-
tic differential equation��� ����������� � ������� � ����� ��� ����� (2)

where
� ����� is a random vector describing the state of the

system at time � , and
�

is a standard Brownian motion pro-
cess. The term � is a constant, known as the dispersion, that
controls the amount of noise in the system. The function� , known as the drift, represents the deterministic kernel of
the system. If the drift is the gradient of an energy function,����� �!�#"%$'&)(���� � , and the energy function satisfies certain
conditions (Gidas, 1986), then it can be shown that

�
has

a limit probability density ����� �*�,+.-0/1�2"%3�(����4��5��768� which
is independent of the initial conditions.
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2.1. Linear diffusions

If we let �9�;: 3 and the energy is a quadratic function(����4�!�<��=>5�3)�?�4@1A�� , where A is a symmetric, positive defi-
nite matrix, then the limit distribution is�B��� ���,+.-0/1�2" =3 � @ A�� �DC (3)

This distribution is Gaussian with zero mean and covariance
matrix AFE�G . Taking the gradient of the energy function, we
get �����4�*�#"%$ & (���� �H�#"IA)� (4)

and thus the activation dynamics are linear:��� �������#"IA � ����� � ���J� ��� ����� (5)

These dynamics have the following neural network inter-
pretation: Let AK�L� � "NMO� , where M represents a ma-
trix of synaptic conductances and

�
is a diagonal matrix

of transmembrane conductances
�)P

(current leakage terms).
We then get the following form���QP �����*�<RTS�QP �����U" �)PV�QP �����?W � �B��� �)� ����� (6)

where S�QP �������KX � M P � � � ����� (7)

is interpreted as the net input current to neuron Y and
�QP �����

as the activation of that neuron.

3. FACTOR ANALYSIS

Factor analysis is a probabilistic model of the formZ[ �N\ Z] �_^ (8)

where
Z[

is an `1a dimensional random vector representing
observable data;

Z]
is an `1b dimensional Gaussian vec-

tor representing hidden independent sources, c � Z] �d�fe ,gHhji � Z] �!�lk , the identity matrix; and ^ is a Gaussian vec-
tor independent of

Z]
representing noise in the observation

generation process, c �m^O�Q�ne ,
gHhji �m^O�o�qp , a diagonal

matrix. If
Z]

is logistic instead of Gaussian, and in the limit
as psrte , Equation (8) is the standard model underlying
independent component analysis (ICA) (Bell & Sejnowski,
1995; Attias, 1999). Note that in factor analysis, as well
as in ICA, the observations are generated in a feedforward
manner from the hidden sources and the noise process.

It follows from Equation 8 that
Z[

and
Z]

have covari-
ances gHhji � Z� ��� gHhjivu Z[ Z]dw �yx \z\z@{�_p \\z@ k�| (9)

Taking the inverse of this block matrix, we get� gHhji � Z� ��� E7G �yx p E�G "Op E7G \"I\z@�p E�G kO��\z@Up E�G \�| (10)

4. RESTRICTED DIFFUSION NETWORKS

In this section, we discuss a subclass of diffusion networks
that have a PoE architecture. To begin with, we divide the
state vector of a diffusion network into observable and hid-
den units,

� @N�}� [ @!~ ] @�� . It is easy to show that if the
connectivity matrix is restricted so that there are no lateral
connections from hidden units to hidden units and no lateral
connections from observable units to observable units, i.e.,
if A'� x � a "�M a�b"�M @a�b � b | (11)

where
� a and

� b are diagonal, then the limit distribution of�
is a PoE. Hereafter, we refer to a diffusion network with

no hidden-hidden or observable-observable connections as
a restricted diffusion network (RDN).

Suppose we are given an arbitrary linear RDN. The limit
distribution, �B� [ ] � , has Gaussian marginal distributions�B� [ � and �B� ] � whose covariances can be found by invert-
ing the block matrix in Equation 11:gHhji � ] ���#� � b "�M @a�b � E7Ga M a�b � E�G (12)gHhji � [ �*��� � a "�M a�b � E�Gb M @a�b � E7G (13)

Let � a represent the set containing every distribution on�U���
that is the limit distribution of the observable units of

any linear RDN with ` b hidden units. In some cases, we
can think of the hidden units of a network as the network’s
internal representation of the world. Some authors, such as
Barlow (1994), have postulated that one of the organizing
principles of early processing in the brain is for these inter-
nal representations to be as independent as possible. Thus
it is of interest to study the set of linear RDNs whose hid-
den units are independent, i.e., for which

gHhji � ] � is diag-
onal. One might wonder, for example, whether restrictinggHhji � ] � to be the identity matrix imposes any constraints
on

gHhji � [ � .
Let � aP represent the set containing every distribution on�����

that is the limit distribution of the observable units of
any linear RDN with ` b hidden units that are independent,gHhji � ] ����k . We now show that forcing the hidden units
to be independent does not constrain the class of observable
distributions that can be represented by a linear RDN.

Theorem 1 : � aP � � a .
Proof : Since � aP is a subset of � a , we just need to show
that any distribution in � a is also in � aP . Let ��� [ ] � be the
limit distribution of an arbitrary linear RDN with parame-
ters M a�b ,

� b , and
� a . We will show there exists a new linear

RDN, with limit distribution ��� [�� ] � � and parameters M �a�b ,� � b , and
� a , such that

gHhji � ] � ���Nk and ��� [ � ���
��� [ � .
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First we take the eigenvalue decompositionk�" � E7G�� 6b M @a�b � E7Ga M a�b � E�G�� 6b �N�7�H� @ (14)

where � is a unitary matrix and � is diagonal. Equation 14
can be rewrittenM @a�b � E7Ga M a�b � � b " � G�� 6b �7�H� @ � G�� 6b C (15)

We define� � b �N� E�G ���F� M �a�b �,M a�b � E7G�� 6b �7� E7G�� 6�C
(16)

By Equation 12 (and after some derivations) we find thatgHhji � ] � ����� � �b "���M �a�b ��@ � E7Ga M �a�b � E�G�lk�C (17)

By Equation 13 (and after some derivations) we find thatgHhji � [ � ����� � a "�M �a�b � � � b �DE7G���M �a�b � @ ��E�G��� � a "�M a�b � E�Gb M%@a�b � E7G� gHhji � [ �DC � (18)

Theorem 1 will help to elucidate the relationship be-
tween factor analysis and linear RDNs. We will show that
the class of distributions over observable variables that can
be generated by factor analysis models with ` b hidden sources
is the same as the class of distributions over observable units
that can be generated by linear RDNs with `1b hidden units.

5. FACTOR ANALYSIS AND DIFFUSION NETS

In this section we examine the relationship between feed-
forward factor analysis models and feedback diffusion net-
works. Let � a represent the class of probability distribu-
tions over observable units that can be generated by factor
analysis models with ` b hidden units. In Theorem 2 we
will show that this class of distributions is equivalent to � a ,
the class of distributions generated by linear RDNs. To do
so, we first need to prove a Lemma regarding the subclass of
factor analysis models for which the lower right block of the
matrix in Equation 10, kB��\z@Up E7G \ , is diagonal. We define� aP as the class of probability distributions on

� � �
that can

be generated by such restricted factor analysis models.

Lemma : � aP � � a .
Proof : Since � aP is a subset of � a , we just need to show
that any distribution in � a is also in � aP . Let ��� Z[ Z] � be the
distribution generated by an arbitrary factor analysis model
with parameters \ and p . We will show that there exists a

new factor analysis model, with joint distribution ��� [�� Z] �
and parameters \ � and p , such that ��� [�� �H����� Z[ � and such
that kO�l��\ � ��@�p E�G \ � is diagonal.

First we take the eigenvalue decomposition\ @ p E7G \I�K���{� @ (19)

where S is a unitary matrix and the eigenvalue matrix � is
diagonal. Now define a rotation � by� �l� ���F� \ � �N\ � C (20)

Then �V\ � � @ p E�G \ � �N� (21)

which is diagonal. Thus k��<�V\ � �2@�p E7G \ is diagonal. Fur-
thermore, from the equation

[�� �9\ � Z] � Z^ we can derivegHhji � [�� ���l\ � ��\ � �2@���pK�N\z\.@{��p
� gHhji � Z[ �DC �
Now we are ready to prove the main result of this paper:

the fact that factor analysis models are equivalent to linear
RDNs.

Theorem 2 : � a � � a .
Proof :
[ � ] : �'�Q J��� . Let �B� Z[ � be the distribution over ob-
servable units generated by any factor analysis model. By
the Lemma, there exists a factor analysis model with distri-
bution ��� Z� @��*���B� Z[ @*~ Z] @B� and parameters \j~Dp such that
its marginal distribution over the observable units equals the
given distribution �B� Z[ � and for which k¡��\.@�p E7G \ is diag-
onal.

Let ��� � @ ���¢��� [ @ ~ ] @ � be the limit distribution of the
linear diffusion network with parameters M a�b ,

� a , � b given
by setting the connection matrix of Equation 11 equal to the
inverse covariance matrix of Equation 10:A'��� gHhji � Z� ��� E�G C (22)

Then
� b �9p E�G and

� a �<k£��\z@�p E7G \ are both diagonal,
so this diffusion net is a RDN. By Equation 3, the limit dis-
tribution of

�
is Gaussian with covariance

gHhji � � ���lA E7G ,
from which it follows that

gHhji � � ��� gHhji � Z� � . In partic-
ular,

gHhji � [ �¡� gHhji � Z[ � . Thus, ��� Z[ ���l�B� [ � is the limit
distribution of a linear RDN.R¥¤
W£¦ ���Q ���� . Let ��� [ � be the limit distribution
over observable units of any linear RDN. By Theorem 1,
there exists a linear RDN with distribution�B� � @B���J�B� [ @*~ ] @B� and parameters M a�b ,

� a , � b such that
its marginal distribution over the observable units equals the
given distribution �B� [ � and for which

gHhji � ] ���lk .
Consider the factor analysis model with parametersp§� � E7Ga ~�\¨� � E�Ga M a�b C Using reasoning similar to that

used in the first part of this proof, one can verify that this
factor analysis model generates a distribution over observ-
able units that is equal to �B� [ � .
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6. SIMULATIONS

RDNs have continuous states rather than binary states, so
they can represent pixel intensities in a more natural man-
ner than restricted Boltzmann machines (RBMs) can. We
used contrastive divergence learning rules to train a linear
RDN with 10 hidden units in an unsupervised manner on
a database of 48 face images (16 people in three different
lighting conditions) from the MIT Face Database (Turk &
Pentland, 1991). The linear RDN had 3600 observable units
( © e£ª © e pixels). Each expert in the product of experts con-
sists of one hidden unit and the learned connection weights
between that hidden unit and all of the observable units.
These learned connection weights can be thought of as the
receptive field of that hidden unit. Figure 1 shows the recep-
tive fields of the 10 hidden units after training. Because of

Fig. 1: Receptive fields of the 10 hidden units of a linear
RDN that was trained on a database of 48 face images by
minimizing contrastive divergence.

the correspondence between linear RDNs and factor analy-
sis that was proven in previous sections, the receptive field
of a hidden unit in the linear RDN should correspond to a
column of the factor loading matrix \ in Equation 8 (after
the column is normalized by premultiplying by p E�G , the
inverse of the variance of the noise in each observable di-
mension).

Because of the relationship between factor analysis and
principal component analysis, one would expect the recep-
tive fields of the hidden units of the linear RDN to resem-
ble the eigenfaces (Turk & Pentland, 1991), which are the
eigenvectors of the pixelwise covariance matrix, of the same
database. We calculated the eigenfaces of the database. The
eigenfaces corresponding to the 10 largest eigenvalues are
shown in Figure 2. The qualitative similarity between the
linear RDN receptive fields in Figure 1 and the eigenfaces
in Figure 2 is readily apparent.

Partially occluded images correspond to splitting the ob-
servable units

[
into those with known values,

[O«
, and

those with unknown values,
[%¬

. Given an image with known
values � « , reconstructing the values of the occluded units
involves finding the posterior distribution ��� [O¬¡­�[O« �,� « � .
The feedback architecture of diffusion networks provides
a natural way to find such a posterior distribution: clamp

Fig. 2: Eigenfaces calculated from the same database of 48
face images.

the unoccluded observable units to the values � « , and let
the network settle to equilibrium. The equilibrium distribu-
tion of the network will then be the posterior distribution�B� [%¬�­�[¡« �N� « � . Using the linear RDN that was trained on
face images, we reconstructed occluded versions of the im-
ages in the training set by taking the mean of this posterior
distribution. Figure 3 shows the results of reconstructing
two occluded face images.

Fig. 3: Reconstruction of two occluded images. Left: Im-
age from the training set for the linear RDN. Center: The
observable units corresponding to the visible pixels were
clamped, while the observable units corresponding to the
occluded pixels were allowed to run free. Right: Recon-
structed image shown is the mean of the equilibrium distri-
bution.

7. DISCUSSION

We proved the rather surprising result that a feedback model,
the linear RDN, spans the same family of distributions as
factor analysis, a feedworward model. Furthermore, we
have shown that for this class of feedback models, restrict-
ing the marginal distribution of the hidden units to be in-
dependent does not restrict the distributions over the ob-
servable units that they can generate. Linear RDNs can be
trained using the contrastive divergence learning method of
Hinton (in press), which is relatively fast. A main advan-
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tage of feedback networks over feedforward models is that
one can easily solve inference problems, such as pattern
completion for occluded images, using the same architec-
ture and algorithm that are used for generation. Most im-
portantly, diffusion networks can also be defined with non-
linear activation functions (Movellan, Mineiro & Williams,
In Press), and we have begun to explore nonlinear exten-
sions of the linear case outlined here. Extensions of this
work to nonlinear diffusion networks open the door to possi-
bilities of new ICA-like algorithms based on feedback rather
than feedforward architectures.
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