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ABSTRACT

This paper approaches the problem of image denois-
ing from an Independent Component Analysis (ICA) per-
spective. Considering that the pixels intensity constitut-
ing the crude images represents the useful signal cor-
rupted with noise, we show that, a nonlinear ICA-based
approach can provide a satisfactory solution to the Non-
Linear Blind Source Separation problem (NLBSS). Self-
Organizing Maps (SOMs) are well suited for performing
this task, due to their nonlinear mapping property. Sep-
aration results obtained from test images demonstrate the
feasibility of the proposed method.

1. INTRODUCTION

The Blind Source Separation (BSS) problem has become
one of the main signal processing research areas, mainly
due to its increasing application potential to many real world
problems. A number of algorithms based on the Indepen-
dent Component Analysis (ICA) theory have provided a so-
lution to the BSS problems and have been successfully ap-
plied to a wide range of fields, covering diverse subjects
such as biomedical signal processing, communications, un-
derwater acoustics and image processing.

The BSS aims to recover a set of independent signals
(also called sources) from a set of their observations (or
mixtures) which form the sensor response. Unlike the Prin-
cipal Component Analysis (PCA), ICA provides not only
decorrelated but also statistically independent components
from the observation variables set. The obtained solution
is unique subject to some indeterminacies concerning the
scale, sign and permutation of the recovered signals, only
if the mixtures are linear combinations of the sources and
eventually corrupted by some, usually additive, noise. But,
in most real world cases, the signals of interest are mixed in
a nonlinear manner, that makes necessary the application of
other approaches to the source separation problem.

It has been proven that the solution to the NonLinear
Blind Source Separation (NLBSS) problem is not unique
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[1]. However, there always exists at least one solution to the
nonlinear case and by adding some additional constraints
concerning the dimension of the source vector, the form of
the mixing and the bounds of the densities of the indepen-
dent components, the authors have shown that the NonLin-
ear ICA (NLICA) solution is then unique up to a rotation.

Some neural network-based approaches to the NLBSS
problem have also been proposed in the literature. Multi-
layer [2] or two-layer [3] perceptrons, as well as radial ba-
sis function (RBF) [4] and self-organizing maps (SOMs) [5]
have been studied and applied to this difficult context. Fur-
ther to a reminder about the ICA problem formulation and
SOMs basic principles in the following two sections, we
will present a SOM-based technique applied to the image
denoising problem and the results we obtained after appli-
cation to a test images set.

2. BSS THEORY BASICS

The BSS problem was first introduced by Hérault, Jutten
and Ans [6], while the underlying mathematical tool pro-
viding a solution to this problem is ICA, which was first
rigorously developed by P. Comon [7] as a generalization of
the PCA technique. It aims to recover the unknown source
signals from a set of their observations, in which they are
mixed in a unknown manner.

2.1. ICA Formulation

Let us denote byx(t) = [x(t), ..., xm(t)]T ∈ X a m-
dimensional mixture vector from the observation space
and by s(t) = [s(t), ..., sn(t)]T ∈ S the unknownn-
dimensional source vector from the source space at discrete
timet, where the superscriptT denotes the matrix transpose
operation. Then, the generic BSS problem can be formu-
lated as

x(t) =F [s(t)] (1)

whereF is the unknown and generally nonlinear transfor-
mation of the source vector. IfF is linear, then some as-
sumptions are necessary in order to estimate its inverse. Pre-
cisely, the source vector components must be mutually inde-
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Fig. 1. Unknown mixing and separating structure for BSS.

pendent,n ≤ m, the mixture is supposed stationary in time
and at most one Gaussian source is allowed. Under these
conditions and without any additional knowledge about ei-
ther the sources or the mixtures, the linear ICA model yields
to an estimatey(t) =ŝ(t) of the source vector:

y(t) =F−[x(t)]. (2)

In real world problems it is more likely forF to be nonlin-
ear and there is always a noise term coming to perturb the
noiseless model of eq. (1). This noise termν(t) can be addi-
tive or multiplicative and of various distributions, correlated
or not with the source signals. Thus, the complexity of the
noisy NLICA model suggests the use of a flexible method
which must be well adapted to the experimental context.

2.2. The Sphering Stage

A very common pre-processing step which often enhances
convergence of BSS algorithms is “whitening” (or “spher-
ing”) of the mixturesx(t). It consists in a linear transfor-
mation of the centered observation vector, providing thus a
new whitened vector̃x, i.e. a vector with decorrelated com-
ponents and of unit variance. Many methods, as well as
PCA, can be used for sphering the data, most of them be-
ing based on eigen-value or singular-value decomposition
of the mixture covariance matrix, on triangular lower-upper
decomposition or on triangular QR factorization. Note that,
in the experimental part of the paper, we will use the PCA
technique as a pre-processing step of the image data. Fig. 1
summarizes the mixing and the BSS processing systems.

3. SELF-ORGANIZING MAPS

Self-Organizing Maps (SOMs) [8], also known as Kohonen
or topographic maps, are networks based on the principle of
unsupervised learning. The latter can provide useful infor-
mation about the input space, such as principal components,
clusters or feature maps, since there is redundancy amongst
the input data. Furthermore, the SOMs employ competition
between their units and neighbourhood learning principle
and transform the input space into a topology preserving
nonlinear mapping.
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Fig. 2. Kohonen’s SOM graphical scheme.

3.1. The SOM Algorithm

A SOM neural network contains three layers: am-
dimensional input layerI, an intermediate layerW of ar-
bitrary dimension denoted byl and an-dimensional output
layerO. Each neuronj, 1 ≤ j ≤ l is connected to the input
with a synaptic weight vectorwj = [wj, ..., wjm]T . As it
is illustrated by Fig. 2, given the inputx at timet, the SOM
network defines a best-matching (winner) neuronv :

v(x) = argminj ‖x(t)−wj‖ , j = 1, ..., l (3)

where‖.‖ denotes the Euclidean distance. Finally, the up-
date of the synaptic weight vectors is made according to:

wj(t + ) =wj(t) + η(t)hj,v(x)(t) [x(t)−wj(t)] ,

j = 1, ..., l (4)

whereη(t) andhj,v(x) designate the learning rate and the
neighbourhood function centered around the winner, re-
spectively.

If one deals with continuous signals, an interpolation be-
tween the winner and its neighbours is then necessary in or-
der to make the map continuous. Geometric interpolation
[9] uses orthogonal projections of the vector formed by the
approximation to the exact input onto the one formed by
the approximation to the second best-matching unit. Topo-
logical interpolation [10] instead, is based on a selection of
the topological neighbours of the winner, which is an ad-
vantage over the geometrical method, unless there are topo-
logical defects on the chosen map. For our simulations, we
used the component-wise linear interpolation method pro-
posed in [11] as it has been proven sufficient for the NLBSS
problem.

3.2. SOM and NLBSS of Continuous Sources

The earlier work on the application of SOM networks to the
BSS amd NLBSS problem in [5], has proven that, under
some constraints, this neural approach can provide a solu-
tion to the source separation problem. The farther the source
probability density functions from the uniform one or the
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stronger the nonlinearities involved in the mixing process
are, the more difficult a rigorous mapping of the input data
to the nodes of the map is. This work has been extended
in [11], where the authors studied the noise effect and the
less sensors than sources case, particularly in presence of
continuous sources.

Applying SOMs to the general NLBSS problem is
straightforward especially for low dimensional maps. By
matching the ICA observation spaceX and source spaceS
to the SOM input layerI and output layerO, respectively, it
then remains to define the weights of the middle SOM layer
and eventually perform an appropriate interpolation step to
complete the separation task. The (continuous) source sig-
nals estimate vectory will then be the (interpolated) coordi-
nates of the nodespj , 1 ≤ j ≤ l of the map (Fig. 2). Note,
that for special separating tasks such as image enhancement
and denoising, a pre-processing step of the input data is nec-
essary, as it will be outlined in the next session.

4. IMAGE DENOISING BY A 2-D SOM

Various methods ranging from wavelet shrinkage [12] to
sparse code shrinkage [13] have already served to the im-
age denoising problem, as alternatives to traditional median
filters. Despite the drawbacks in the computational cost
growing with the network complexity and quantization or
interpolation errors [14], the data-driven and model-free ap-
proach together with the inherent nonlinear mapping from
the input space to a usually low dimensional lattice that
SOMs can offer, make this neural network a potential candi-
date for providing a solution to the NLICA problem applied
to the image denoising research area.

Furthermore, most of the existing ICA techniques for
BSS are robust against specific noise distributions or for
low amplitude/noiseless model of eq. (1). Real world im-
ages are often corrupted, for example, by speckle, salt and
pepper or quantization noise which can fit one or more dis-
tributions like Gaussian or Poisson and occur in an additive
or multiplicative way. In many cases, nonlinear dependen-
cies between two phenomena contributing to creating visual
information appear correlated within the image. All these
factors force many of the existing NLICA techniques to fail.
In the remainder of this paper, we will propose a denoising
technique based on SOMs networks which requires at least
two image frames of the same scene.

4.1. Pre-processing and Definitions

4.1.1. The Pre-processing Step

Let us consider an imageI of dimensiondh × dw pix-
els (height× width). Attempt to denoise the whole dig-
ital image is translated by dealing with a random vector
in a high dimensional space (dh × dw dimensions) which
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Fig. 3. Image pre-processing and neural separation.

would be computationally very expensive. One way to over-
come this problem is “windowing”. It partitions the image
into distinct or sliding windows of wise-chosen dimensions
Nh × Nw pixels. In our approach we opted for a distinct
windowing approach in order to lower the computational
cost at the expense of blocking artifacts which may arise in
the treated image.

Hence, each one of the image frames is decomposed in
N = dh

Nh
× dw

Nw
subimagesIj of dimensionp = Nh × Nw

pixels and rearranged in one dimensional vectors of length
p. Finally, the local mean of the subimages has been sub-
tracted and eachIj has been normalized. Also, various win-
dow sizes have been tested in order to determine the optimal
one from a denoising point of view, as it will be pointed out
later in this paper.

4.1.2. Sources and Mixtures

To apply a NLICA technique to this particular context by us-
ing a SOM network, we now have to determine the sources,
mixtures and the “separability” property [15] which groups
all the necessary assumptions for being able to apply an ICA
technique.

Fig. 3 illustrates the SOM-based separation scheme pro-
posed in this paper. It is based on a2 mixtures -2 sources
approach, where the mixture vectorx is composed by the
corresponding subimages of the two available image shots,
that we will denote byI1j andI2j , 1 ≤ j ≤ N after pre-
processing as described in§4.1.1. As to the sources, we
used a 2-D lattice for the SOM network in order to recover
two separated sourcesy(t) = [ŝ1(t), ŝ2(t)] corresponding
to the denoised subimage and noise respectively. After con-
vergence of the SOM and interpolation of its output coor-
dinates, we rearranged and repositioned the estimated vec-
tors with respect to the whole image frame, obtaining thus
a normalized version of the partially reconstructed denoised
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image and noise signal. Repeating this process to all of the
N subimagesI1j andI2j , one finally obtains the complete
signal of interest, that is an enhanced version of the noisy
image frames.

Verifying the validity of the assumptions necessary for
applying a BSS scheme to these particular signals, is a very
difficult task, due to our lack of prior knowledge concerning
the real sources and the mixing process. Nevertheless, the
experimental results will show that such an approach to the
image denoising problem is quite feasible.

4.2. Indeterminacies

As we mentioned in§1, there are some intrinsic indetermi-
nacies to the general BSS problem, whether it is a linear
one or not. These become more undesirable, when no prior
knowledge is available. In a totally blind context, the human
factor seems to be important in order to inspect the visual in-
formation provided by the algorithms and eventually adjust
the results or find an automation process that suits best its
information quality requirements.

Indeed, as the whole imageI is windowed, there is no
guarantee that the entire set of the estimated subimagesŝ

and ŝ will be of the same amplitude, scale and sign. This
is more problematic, when the image is too large andp is
chosen too small, unless a reliable technique is carried out to
rearrange automatically the separated signals. Besides, the
order of the estimated signals for each subimage does not
necessarily remain the same; this means that a classification
procedure after separation is needed. In the next section,
we will propose a method to cope with this problem in our
context.

5. EXPERIMENTAL RESULTS

The first images we used for our experiments were ofλ =
256 grayscale levels quantized to one byte per pixel and of
dimension200× 200 pixels. A total number of24 consecu-
tive frames were digitized from a CCD nightvision camera
and they were focused in a test pattern containing numerals
as well as horizontal and vertical bars.

5.1. SOM-based blind separation

For the windowing of the original image frames, different
square window sizes have been tested and the total number
of neurons on the 2-D output lattice was adjusted in con-
sequence, as it is shown in Table 1. Fig. 4 (a) shows two
non consecutive noisy frames issued from the CCD camera
which, after pre-procesing as described in§4.1.1, served as
entry to the 2-D SOM network with a square distinct win-
dowing of50 pixels.

First mixture Second mixture

(a) The noisy images

First rearranged source Second rearranged source

(b) The estimated sources after the classification step

Second source with sign adjustment Denoised image

(c) Sign inversion and the mean denoised image

Fig. 4. The noisy images, the classification procedure and
the denoising results.

Furthermore, in order to decide whether the SOM has
reached a stable state, a pointer is kept to the previous val-
ues of the network weights over1000 iterations and if the
mean square error of their variation is smaller than a fixed
threshold, for example1e−6, we consider that convergence
is attained and the network is then stopped.

The first problem arising from this separation scheme
concerns the order of the separated sources. In fact, nothing
guarantees that theith and jth, 1 ≤ i, j ≤ N separated
subimages are ordered, i.e. that each one of the first and the
secondith andjth estimated subimages belong to the first
and the second global reconstructed images, respectively.

A solution to this problem can be provided by comput-
ing the correlation coefficientρ between each one of the es-
timated normalized subimages and one of the correspond-
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(b) Median filter(a) Denoised image

Fig. 5. The SOM-based denoised image (a) and the best
median filter (b) for two consecutive image frames.

ing normalized noisy subfamesI1j or I2j , 1 ≤ j ≤ N .
Finally, the component of the estimated vectory with the
greater correlation coefficient will belong to the first global
estimated signal.

Table 1. Windowing size (in pixels) and SOM parameters.

Nh = Nw 10 20 40 50
p 100 400 1600 2500
N 400 100 25 16

neurons 18× 18 35× 35 70× 70 87× 87

The results of such a classification procedure are illus-
trated by Fig. 4 (b). A total of6 from 16 estimated source
components have been rearranged according to their corre-
lation coefficient with the first mixture of Fig. 4 (a). Note
also that, after blind separation by the SOM network and
classification , blocking artifacts due to the distinct window-
ing are hardly distinguishable because of the shapes geom-
etry contained in the original noisy image frames.

5.2. Denoising results

For this image denoising problem the additive and mul-
tiplicative noise correlation models are investigated. The
NLICA model of eq. (1) with an additive noise term, can
be rewritten asx(t) =F [s(t) + ν (t)] whereν(t) denotes
the noise vector. The absence of prior knowledge concern-
ing the noise contained in the images, led us to the follow-
ing denoising procedure. We add (subtract) a slightly in-
creasing quantity of the normalized estimated noise source
to (from) the available noisy image frames and we average
the resulting images. The optimal quantityα of the noise
should be the one which maximizes the peak signal-to-noise
ratio (PSNR); however, this requires additional knowledge
concerning the noise-free image. Previous simulation ex-
periments using this technique provided satisfactory results
[16].

(a) Noisy image (noise variance 0.05) (b) Denoised version (alpha=0.66)

Fig. 6. An artificial Lena mixture (a) and the optimal SOM-
based denoised version (b).

Using the additive noise model to this images set, it
yields to partially denoised images with a lot of informa-
tion loss, that proves there exists a correlation between the
original image and the noise. In this study, our work was
then focused on the multiplicative noise model which is for-
mulated by:

x(t) =F(s(t) [1 + ν(t)]). (5)

Considering that the SOM network performed well and ap-
proximated a non linear mapping inhibiting the effects of
the non linear mixing functionF , and taking the logarithm
of both sides in the previous equation, one obtains:

log(s(t)) = log(x(t))− log [1 + ν(t)] . (6)

Here, the previously discussedα coefficient multiplies the
last term of the right side of eq. (6). Exponentiation yields
to the denoised versions of the available image frames,
whose average is shown in Fig. 4 (c) (α = 0.85).

Applying this technique, gives evidence of another prob-
lem regarding the separated sources and mentioned in§4.2.
Some of the regions of interest in the denoised image are
getting blurred with increasing the rateα of the estimated
noise source. By empirically rearranging the sign of the
estimated subimages which are concerned, this problem is
overcame.

The overall proposed denoising method works also with
consecutive noisy image frames, as it is illustrated by Fig.5
(a). In comparison, Fig.5 (b), illustrates the result of the
best median filter applied to these two frames. One can re-
mark that the background is part of the SOM-based esti-
mated noise signal, that makes the remaining patterns con-
trast better. Note also, that using a very strongα coefficient
makes gradually lose useful information within the image,
that is, the estimated sources are still correlated one with the
other.

Finally, employing individual neighbourhood for the
SOM neurons as it is suggested in [11], could improve the
results in the multiplicative noise model case. As an illus-
tration, Fig.6 shows the results obtained by this method ap-
plied to a50× 100 pixels area of the well known Lena im-
age, which has been artificially corrupted with multiplica-
tive noise of variance0.05. After application of SOM-
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based NLBSS to8 pairs of subimages of size25 × 25 pix-
els to the mixture of Fig.6 (a) and another noisy version of
the same image, the automatic classification procedure de-
scribed in§5.1 has been applied to the separated images and
the optimal coefficientα was then computed, based in the
maximization of the SNR. Hence, the denoised Lena image
(Fig.6 (b)) enhances the SNR by2.29db.

6. DISCUSSION

In this paper, a SOM-based non linear blind source separa-
tion method has been applied to the image denoising prob-
lem. The presented results after its application to test im-
ages show that, even with only two available image frames,
the denoising image has higher contrasts and carries out all
the useful visual information contained within it. Further-
more, problems linked with the intrinsic indeterminacies of
the BSS formulation, have been solved either automatically
or empirically in a completely blind context.

However, this method is computationally expensive, so
an optimization method dealing for example, with faster
coding or parallelization, seems essential. This could allow
the use of a “sliding” windows image partitioning which
would smoother the denoising results, as it operates an av-
erage over the proposed image pixels values. Our current
work is focused on the use of more than two mixtures and
a method that could raise automatically all the indetermina-
cies discussed in this paper.
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[9] J. Göppert and W. Rosenstiel, “Topology preserving
interpolation in self-organizing maps,” inProc. NEU-
RONIMES’93, 1993, pp. 425–434.
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