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ABSTRACT

In this paper a novel paradigm for blind source separation in the
presence of nonlinear mixtures is presented and described. The proposed
approach employs a neurd model based on adaptive B-spline functions.
Signal separation is achieved through an information maximization
criterion. Experimenta results and comparison with existing solutions
confirm the effectiveness of the proposed architecture.

1. INTRODUCTION

Blind source separation (BSS) usudly considers instantaneous linear
memoryless mixtures [1]]-[[4]. In this case the data moddl is expressed

by:
x(t) = Ass(t) @
where A is a red or complex rectangular MxN matrix (M3 N),
s(t)=[§(t),sz(t)...,§q(t)]T is the vector of statistically independent

sources and x(t):[xi(t),xz(t)...,x,v‘(t)]T is the vector of obsarved —

variables.

In many redlistic Situations, however, the basic linear mixing modd (1)
is not satisfactory and nonlinear mixing appears more gppropriate [5]]-
[[9]. Thedatamodd for nonlinear mixturesis:

x(t) = f(As(t)) @
where £ represents the nonlinear mapping. As a particular cese of
nonlinear mixing, post-nonlinear mixing (PNL) [7] is represented by the
following formula

X0 =f,ca a,50)-. ®
ei=1 g

where f; areinvertible and derivable nonlinear functionsand a; arethe
entries of the mixing matrix A. The PNL model can be used to describe
severd typicd scenarios, like for example nonlinearities introduced by
the preamplifiers of receiving sensors in sensor arrays, under the
assumption of linear mixing behavior of the environment.

The PNL modd has afavorable separability property [7], meaning that
the separated sources'y can be obtained from the unknown sourcesin the
sameway of linear mixtures. Using the same notationin [7]:

y=PLs+t, @

where P and L are permutation and diagona matrices respectively and
t isacongtant trandation vector.

In this paper we consder a more genera nonlinear modd, in which
a lineer mixing B is added to generate cross-correlation between
channels (see Fig. 1, where for smplicity the number of independent
source signds is equd to the number of mixtures, M=N). In this case
the observed mixtures are;
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Fig. 1. Nonlinear mixing modd.

2. INFOMAX CRITERION

Sources § (j=1,2,..,N) are assumed to be statisticaly independent.
Thismeansthat their joint probability density function (pdf) factorizes:

ps.5-5) =0 py(5), ©®

where py(s) isthe marginal density of thej-th source signal.

All separation structures aim to make the outputs y independent. A
measure of the degree of independence is the Kullback-Leibler (KL)
divergen(ie between the probability digtributions pfy) and

pPY)=0, p(¥):

p, ()
p(y)

KLgp, (¥) | p(Y)H= 0P, (Y)log dy . @)

Minimization of the KL divergence can make the estimated source
signalsindependent.
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The KL divergence is equivadent to the Shannon’s mutua information
1(y) between the components of vector y:

KLgp, (Y) Il p(y)g=1(y) =§} H(y)- H(y), ()

where H(y) =- E{Iog(py(y))} is the entropy of y and H(y) the

entropy of its i-th component. The use of mutual information as a cost
function is not easy because the margind entropies H(y;) strictly depend
on the marginal densities p,(y;) of the output, which are unknown and
vary during the adaptation process.

In the following, a new demixing system is introduced, based on the
use of spline nonlinear functions to compensate for channel non-
linearities and an INFOrmation MAXimization (INFOMAX) learning
agorithm.

3. NONLINEAR BLIND SEPARATION SYSTEM
3.1 Adaptive splines

Due to their locd adaptation characteristics, splines demonstrated
particularly effective in the design of non-linear adaptive systems [11]]-
[[12]. Let h(x) be a generd nonlinear function. Spline approximation
consists in subdividing h(x) in multiple tracts (spans), each one being
locally approximated by a spline curve:

y=h(x) =h(u,i). )

Spline approximation requires a number N of control points Q; and a
local variable ul [0,1) for each span. In particular a cubic spline span is
controlled by four control points Q,,Q..,, Q.,,Q.; (Fig.2).

" h(u,i)
o -
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{ —— B- Spline
ubDx
[ [ >
|
QO X

Fig. 2. Cubic-Splineinterpolation of control points.

A dummy variable zisintroduced:

X N-1
z=—+
Dx 2

, (10)

where Dx isthe fixed distance between two adjacent control points.
Parametersi (i=1,2,..,N) and u for each pan are then derived:

=gz

(11)
u=z-i
In matrix form the output can be expressed as.
y=h(ui)=T,M>Q,, (12)
where:
T,=@f U ou 1, (13)
. T
Q=8 Q. Q. Quf. (19
and
&1 3 -3 1u &1 3 -3 1y
é a é a
22 -5 4 -1° 23 -6 3 0
m=lé Uor M =16 0 (15
2¢1 0 1 O0u 6e3 0 3 O0u
§0 2 0 o§ §1 4 1 of

Matrix M determines the type of spline interpolation. The leftmost
matrix in (15) constrains the spline to pass through al control points
(Catmull-Rom spline), while the rightmost one gives a smoother
characterigtic and continuous derivatives (B-spline).

3.2 System architecture
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Fig. 3: Adaptive spline blind separation system.

Fig. 3 depicts the structure of the nonlinear BSS system. It conssts

of three sages:

1- a liner dage Z, to reduce the cross-corrdaion between
channels. In the particular case of PNL mixing, Z = | (identity
matrix);

2- anonlinear layer g(.), to compensate for channel distortions,

3- a demixing matrix W, conveniently determined through an
adaptation process.

The parameter st for this mode includes the entries of matrices W
and Z and the spline control points Q% for each nonlinearity gi().

4. UNSUPERVISED LEARNING ALGORITHM

4.1 Parameter estimation

The parameters of the separating BSS system can be derived by an
unsupervised learning agorithm, based on the INFOMAX approach
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and the gradient descent method. Minimization of 1(y) in (8) requiresthe  \yhere T, :g3u2 2u 1 0f, mi (0,1,2,3) and M, isthe mth

computation of its gradient with respect to model parameters. In detail,

to estimate the demixing matrix coefficientsit is necessary to compute: column of meatrix M.
9 ut Combination of (21) and (22) gives:

N
—I(y) a—H(y.)-—H(y) (16) _—
w iz TW w —I(y)=- E Y (Tur me)L'J' ﬂ (23)
Q.gim DT T M OQY fumu)
where H(y) =- E{log(p,(v))} = =
. ) ) Findly, derivativesw.r.t. Z must be computed:
= E{ log|W| 109 4(r) S+ log|Zy + H(x) . 17
i R I Tio)=4 Tnon- Lro. o)
i=1
In [2] the following lemma, reproduced here for convenience, was .
demonstrated: writing 1, = § z,% Wwehave
Lemma 1. Let X=(X,%,...X,) be a random vaigble and let 1=
y=h(q,x) be a function of x, differentiable w.r.t. the non-random é u
5 ‘ﬂa g (r)a
parameter q and such that y accepts adifferentiable paf p(y). Then: éNl (y)—-EgéN_y (y) kG i a_
. R ale e '
— = EQ’ [h@,x)]— = i (18) & i
--eAy, (WaAma(El @
whereyy(y):pgi(y)/py(y) is called score function of y. y ToEedyy a Wbty g
Using lemma 1 it can be shown that: and:
1 =-E&Y (y) vil- gwTl’ 1 e 6, 1 0
() =-Eg¥(y) v §- , 19 —H Ee—l| 3 (r) =+ —log|Z| =
ﬂW e ( ) u 8\N H ﬂZ (y) g‘ﬂ_ZOgg = gk(rk). ﬂZ le |H
where Y (y) =@, (V) , (%) 5, (V)R- e84 O, g 26)
The derivatives of the mutud information w.r.t. the parameters of 6 0.(n) 12
splinefunctions g(.) are: n
Combining the two terms, (23) becomes:
v H 20 L N . N
QH_m (y) | 1ﬂq ) Q&m (y) ( ) ﬂlzl (y) - _ E@WTY (y)T >9(TH_ E@(r)T >°(TH_ 8ZTH1 (27)
Writing Y, = Q W, 0, 8a zk,>q and using lemma 1 again, the first where
minthe the o 20) become; 6= &) - G 29)
egl(l’l) gz(rz) gn(rN)O
n g, Tawa ()} 6,0)=8,ui=[6u 2 0 O QY =T, MQ!, (29
2 =- 63 )Xk (= . = H T
a o =-Eaay, ()= 6,(0=8,(ui) =T, M, (@)
8 ; .
) N and G isadiagona matrix withelements g, = ¢.(r) .
%:l,\l i) ]
=-Egay, (v)w (Tu(mM o @
i=1 O

4.2 Estimation of scorefunctions
whilefor the second term:

L& g(gk(rk))u T, M

The derivatives of I(y) with respect to model parameters point out
the relevance of score functions. Following the approach described in
m | (22) [7], it is convenient to introduce convenient nonlinear parametric

‘ITQ. @ Q% g T.MxQY |u w) functions f,(Q’,y;), in order to approximate each score function

||(r)

Yy, (¥;) - The parameter vector Q is estimated by minimizing the

following cost function:
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1 _4 . 25
e =2Egh @)y, ) g (31)
according to a gradient descent agorithm:
: : afe o
Q'[p+g=Q'[p]- mecrs 32
eﬂQ %I:Ql[p]
Thegradient of e; w.rt. parametersQ is:
Te, __é1F,(Q"y,) - u
ﬂ—Q',.—Ew(f,-(czuyj)-yy,(yj))a. (39

Unfortunately (33) contains the score functions y Y, (y;), that are

unknown. To overcome this problem, the following lemma can be used
(see[2] for the proof):

Lemma 2: Let x be a random varigble, and let y , (x) be its score

function. If f is a differentidble function satisfying
lim p, () f(x)=0, then:
[X® +¥
EEf (X)y x(Xf=- E[ f€x)] . O
Lemma 2 can be applied to (33), giving:
Te, _ _&1F,Q"y), 1 (Qy)u
—.=E n f J, i +J—.J . 34
10t s OW T ¢ 9

In the present work, functions f j(Qj ,Y;) areimplemented by using

the spline approximation scheme defined above. So, each nonlinear
function islocally defined by the following expressions:

f,Qy,)=f (ui)=T,Mm Q! (35
ﬂefj :ﬂf,-(fu,l)f—j(u,i)Jrﬂzf,-(u;I):
ﬂ |+lm ﬂ |+Im ﬂy]ﬂ |+Jm
1.
=(T M )T M >Ql |+ —T »m ) 36
( ¢ m)( ’ )QI )+W ! mu:‘u(yJ) ( )

i=i(y;)

4.3 Learningalgorithm

Thelearning dgorithm can be summarized asin the following:

1- Initidize W and Z to the identity matrix I, spline functions g(.) to
linear functions and score functions f j(Qj ,Y;) tozerointhewhole

domain.

2-  Update the control points of the score functions by formula:

e,
QP+ =Q.[pl- T
[p+1 [p] " 1o

@7

and impose:
QII 3 Q;' 3.3 QL; )

to ensure the monotonoudly not increasing charecterigtic of the
score functions, sorting the Q! vectors.

3- Adjust W, usng an equivariant agorithm by post-multiplying
(19) by W'W [4]:

W[p+1 =[I +h K]W[p] , (39)

wherethe entries of matrix K are;

_j@-05y) ifi=j

i H.@Qy)y, otherwise (39)

NormalizeW using: W =W /max|w | .
4- Locally update the contral points of functionsg(.):

iy

QUlp+1=Q%[pl-h, 1Qe.

(40)

andimpose Q' <QJ' <..<QJ .

5 Adjust matrix Z, using an equivariant dgorithm by post-
multiplying (27) by Z'Z [4]:

Zip+0={1 +h, @ +G(r)" " +GWH(y) »" ¢} Z[p] .(41)
6- Repeat gepsfrom 2) to 5).

5. EXPERIMENTAL RESULTS

Severad experimentd tests have been peformed to vadidae the
proposed approach. In particular, in this section the performance of the
spline-based gpproach are compared to those of the RBF network
separating system described in[8], in two typicd problems.

Experiment 1. Consider atwo-channel nonlinear mixture with cubic
nonlinearity :

42

where matrices B and A are defined as.

_ 6025 0860

605 090
= é 7, =
€086 0.254

= é 1.
€09 o054

The source vector S(t) consists of an amplitude-modulated signal and
asinusoida signd:

. . . T

S(t) = §0.5(1+sin(6pt)) cos(100pt);  sin(20pt)} 43

Figures 4, 5 and 6 show the input Sgnas, the nonlinear mixtures

and the separated sgnals repectively. The learning process took less

than one minute on a Pentium |1 300MHz workstation. Learning rates

of the order of 10 were used. As showed in Fig.6, the proposed
agorithmis ableto clearly separate the nonlinear mixtures.
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Experiment 2: In this experiment afour channel nonlinear mixture was
considered, having the following Ssgmoidal nonlinesarity :

X(t) = B xtanh(A>s(t)) .

The mixing matrices A and B are nonsingular and chosen as:

€0.2844
_ £0.4692
80.0648
£0.9883

0.5828
0.4235
0.5155
0.3340

0.1556
0.1911
0.4225
0.8560

0.4329
0.2259
0.5798
0.7604

0.4902
0.8159
0.4608
0.4574

0.52981)
0.6405;
0.20910°
0.3798p]

0.4507y
04122,
0.90160°
0.0056(3

(44)
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Fig. 4. Experiment 1: source signals.
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‘ Fig. 5. Experiment 1: nonlinear mixtures of source signals.

10

00 02 04

06

08 10

Fig. 6. Experiment 1. separated signals.

The source vector §(t) consists of a binary signd, a snusoid, a saw-
toothed wave (ramp) with period T=0.1667 and a high-frequency carrier

(Fig.7):

s(t) = gsgn[cos(12pt)];sin(8pt); ramp(t, T);si n(60pt)gT

Fig. 8 shows the nonlinear mixtures. The learning process took about
80 secs. and produced the separated signds of Fig.9.

(45)
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Fig. 7. Experiment 2: source signals.
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Fig. 8. Experiment 2: nonlinear mixtures of source signals.
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Fig. 9. Experiment 2: separated signals.



6. CONCLUSION

A new modd for blind demixing of nonlinear mixtures based on
flexible B-spline activation function neuron has been proposed.

Based on a gradient ascent method on the basis of the INFOMAX
criterion with score function estimation, a suitable learning agorithm of
parameters of the nonlinear separating model has been derived.

Due to loca adaptation capabilities of spline functions, this modd is
characterized by fast learning convergence rate and it can be applied or
red-time signal separation. Another relevant featureisthat separation of
strong nonlinear mixtures is possible without any knowledge of origind
source signals, as experimentally demonstrated.
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