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ABSTRACT

In this paper a novel paradigm for blind source separation in the
presence of nonlinear mixtures is presented and described. The proposed
approach employs a neural model based on adaptive B-spline functions.
Signal separation is achieved through an information maximization
criterion. Experimental results and comparison with existing solutions
confirm the effectiveness of the proposed architecture.

1. INTRODUCTION

Blind source separation (BSS) usually considers instantaneous linear
memoryless mixtures [1]]-[[4]. In this case the data model is expressed
by:

( ) = ( ) t t⋅x A s , (1)

where A is a real or complex rectangular M×N matrix (M ≥ N),

[ ]1 2( ) ( ), ( )..., ( )
T

Nt s t s t s t=s is the vector of statistically independent

sources and [ ]1 2( ) ( ), ( )..., ( )
T

Mt x t x t x t=x is the vector of observed

variables.
In many realistic situations, however, the basic linear mixing model (1)

is not satisfactory and nonlinear mixing appears more appropriate [5]]-
[[9].  The data model for nonlinear mixtures is:

( )( ) ( )t t= ⋅x A sf , (2)

where f represents the nonlinear mapping. As a particular case of
nonlinear mixing, post-nonlinear mixing (PNL) [7] is represented by the
following formula:

,
1

( ) = ( )
N

i i i j j
j

x t f a s t
=

 
 
 
∑ , (3)

where  fi  are invertible and derivable nonlinear functions and  ai,j   are the
entries of the mixing matrix A. The PNL model can be used to describe
several typical scenarios, like for example nonlinearities introduced by
the preamplifiers of receiving sensors in sensor arrays, under the
assumption of linear mixing behavior of the environment.

The PNL model has a favorable separability property [7], meaning that
the separated sources y can be obtained from the unknown sources in the
same way of linear mixtures. Using the same notation in [7]:

= Λ +y P s t , (4)

where P and Λ are permutation and diagonal matrices respectively and
t is a constant translation vector.

In this paper we consider a more general nonlinear model, in which
a linear mixing B is added to generate cross-correlation between
channels (see Fig. 1, where for simplicity the number of independent
source signals is equal to the number of mixtures, M=N). In this case
the observed mixtures are:

, ,
1 1

( ) = ( )     1,2,...
N N

k k i i i j j
i j

x t b f a s t k M
= =

 
= 

 
∑ ∑ . (5)

Fig. 1.  Nonlinear mixing model.

2. INFOMAX CRITERION

Sources sj (j=1,2,..,N) are assumed to be statistically independent.
This means that their joint probability density function (pdf) factorizes:

1 2
1

( , ,.., ) ( )
N

N j j
j

p s s s p s
=

= ∏ , (6)

where pj(sj) is the marginal density of the j-th source signal.
All separation structures aim to make the outputs y independent. A

measure of the degree of independence is the Kullback-Leibler (KL)
divergence between the probability distributions py(y) and

 ( ) ( )i i ip p y= ∏y :

( )
( ) || ( ) ( ) log

( )
y

y y

p
KL p p p d

p
  =  ∫

y
y y y y

y
. (7)

Minimization of the KL divergence can make the estimated source
signals independent.  
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The KL divergence is equivalent to the Shannon’s mutual information
I(y) between the components of  vector y:

1

( ) || ( ) ( ) ( ) ( )
N

y i
i

KL p p I H y H
=

  = = −  ∑y y y y , (8)

where ( ){ }( ) log ( )yH E p= −y y is the entropy of y and H(yi) the

entropy of its i-th component. The use of mutual information as a cost
function is not easy because the marginal entropies H(yi) strictly depend
on the marginal densities ( )i ip y of the output, which are unknown and
vary during the adaptation process.

In the following, a new demixing system is introduced, based on the
use of spline nonlinear functions to compensate for channel non-
linearities and an INFOrmation MAXimization (INFOMAX) learning
algorithm.

3. NONLINEAR BLIND SEPARATION SYSTEM

3.1 Adaptive splines

Due to their local adaptation characteristics, splines demonstrated
particularly effective in the design of non-linear adaptive systems [11]]-
[[12]. Let h(x) be a general nonlinear function. Spline approximation
consists in subdividing h(x) in multiple tracts (spans), each one being
locally approximated by a spline curve:

( ) ( ),y h x h u i= = . (9)

Spline approximation requires a number N of control points Qi and a
local variable [0,1)u ∈ for each span. In particular a cubic spline span is
controlled by four control points 1 2 3, , ,i i i iQ Q Q Q+ + +  (Fig. 2).

Fig. 2.  Cubic-Spline interpolation of control points.

A dummy variable z is introduced:

1
2

x N
z

x
−

= +
∆

, (10)

where x∆  is the fixed distance between two adjacent control points. 
Parameters i (i=1,2,..,N) and u for each span are then derived:

i z

u z i

=   
= −

 (11)

In matrix form the output can be expressed as:

( ), u iy h u i= = ⋅ ⋅T M Q , (12)

where:

3 2 1u u u u =  T , (13)

   1 2 3

T

i i i i iQ Q Q Q+ + + =  Q , (14)

and:

1 3 3 1
2 5 4 11
1 0 1 02

0 2 0 0

− − 
 − − =
 −
 
  

M  or   

1 3 3 1
3 6 3 01
3 0 3 06

1 4 1 0

− − 
 − =
 −
 
  

M . (15)

Matrix M determines the type of spline interpolation. The leftmost
matrix in (15) constrains the spline to pass through all control points
(Catmull-Rom spline), while the rightmost one gives a smoother
characteristic and continuous derivatives (B-spline).

3.2 System architecture 

Fig. 3:  Adaptive spline blind separation system.

Fig. 3 depicts the structure of the nonlinear BSS system.  It consists
of three stages:

1- a linear stage Z, to reduce the cross-correlation between
channels. In the particular case of PNL mixing, Z = I (identity
matrix);

2- a nonlinear layer g(.),  to compensate for channel distortions;
3- a demixing matrix W, conveniently determined through an

adaptation process.
The parameter set for this model includes the entries of matrices W
and Z and the spline control points jg

i mQ + for each nonlinearity gj(.).

4. UNSUPERVISED LEARNING ALGORITHM

4.1 Parameter estimation

The parameters of the separating BSS system can be derived by an
unsupervised learning algorithm, based on the INFOMAX approach
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and the gradient descent method. Minimization of I(y) in (8) requires the
computation of its gradient with respect to model parameters.  In detail,
to estimate the demixing matrix coefficients it is necessary to compute:

1

( ) ( ) ( )
N

i
i

I H y H
=

∂ ∂ ∂
= −

∂ ∂ ∂∑y y
W W W

, (16)

where  ( ){ }( ) log ( )yH E p= − =y y

1

log log ( ) log ( )
N

i
i

E g r H
=

  
= + + +  

  
∏W Z x& . (17)

In  [2] the following lemma, reproduced here for convenience, was
demonstrated:

Lemma 1:  Let 1 2( , ,..., )Nx x x=x  be a random variable and let

( , )y h θ= x  be a function of x, differentiable w.r.t. the non-random
parameter θ  and such that y accepts a differentiable pdf py(y). Then:

[ ]( ) ( , )
( , )y

dH y dh
E h

d d
θ

ψ θ
θ θ

 = −   

x
x (18)

where ( ) ( ) ( )y y yy p y p yψ ′=  is called score function of y. ÿ

Using lemma 1 it can be shown that:

( ) 1
( ) T T TI E

−∂    = − Ψ −   ∂
y y v W

W
, (19)

where  ( )
1 21 2( ), ( ),...., ( )

Ny y y Ny y yψ ψ ψ Ψ =  y .

The derivatives of  the mutual information w.r.t. the parameters of
spline functions  g(.)  are:

1

( ) ( ) ( )
j j j

N

ig g g
ii m i m i m

I H y H
Q Q Q=+ + +

∂ ∂ ∂
= −

∂ ∂ ∂
∑y y . (20)

Writing 
1 1

N N

i ik k kl l
k l

y w g z x
= =

 
=  

 
∑ ∑  and using lemma 1 again, the first

term in the  r.h.s. of (20) becomes:

( )
( )

1

1 1

( )
ij j

N

ik k kN N
k

i y ig g
i ii m i m

w g r
H y E y

Q Q
ψ =

= =+ +

 
∂ ∂  = − =

∂ 
  

∑
∑ ∑

( ) ( )( )
1

i j

N

y i ij u r m
i

E y wψ
=

  
= − ⋅  

  
∑ T M , (21)

while for the second term:

( )( )
( )

( )

log
( )

j j j
j

j

k k u m
g g g

u u ri m i m u i
i i r

g r
H E

Q Q =+ +
=

 ∂∂ ⋅
= = 

∂ ∂ ⋅ ⋅  

T M
y

T M Q

&&
& , (22)

where 23 2 1 0u u u =  T& , (0,1,2,3)m ∈  and  Mm is the m-th

column of matrix M.
Combination of (21) and (22) gives:

( )( ) ( )( )
( )

( )

( )
jj j

j

j

T u m
u r mg g

j u u ri m u i
i i r

I E
Q =+

=

∂ ⋅ = − Ψ ⋅ −  ∂ ⋅ ⋅
T M

y y W T M
T M Q

&
& .(23)

Finally, derivatives w.r.t. Z must be computed:

1

( ) ( ) ( )
N

i
i

I H y H
=

∂ ∂ ∂
= −

∂ ∂ ∂∑y y
Z Z Z

. (24)

Writing  
1

N

k kl l
l

r z x
=

= ∑  we have:

( )
( )

1

1 1

( )
i

N

ik k kN N
k

i y i
i i

w g r
H y E yψ =

= =

 
∂ ∂  = − =

∂ ∂ 
  

∑
∑ ∑Z Z

( ) ( )
1 1

i

N N
k

y i ik k k
i k

r
E y w g rψ

= =

∂ 
= −  ∂ 

∑ ∑ Z
& , (25)

and:

1

( ) log ( ) log
N

k k
k

H E g r
=

 ∂ ∂ ∂ 
= + =  ∂ ∂ ∂  

∏y Z
Z Z Z

&

1

1

( )
( )

N
Tk k k

k k k

g r r
E

g r
−

=

 ∂  = +   ∂ 
∑ Z

Z
&&
& . (26)

Combining the two terms, (23) becomes:

( )I
∂

=
∂

y
Z

1
( ) ( )T T T T T TE E

−
     − Ψ ⋅ − ⋅ −    GW y x G r x Z& (27)

where:

1 1 2 2

1 1 2 2

( ) ( ) ( )
( )

( ) ( ) ( )
N N

n N

g r g r g r
g r g r g r

 
=  

 
G r

&& && &&L& & &  , (28)

[ ]( ) ( , ) 6 2 0 0 j jg g
j j i u ig r g u i u= = ⋅ ⋅ = ⋅ ⋅M Q T M Q&&&&&& , (29)

( ) ( , ) jg
j j u ig r g u i= = ⋅ ⋅T M Q&&& , (30)

and  G&  is a diagonal matrix with elements ( )jj jg g r= & .

4.2 Estimation of score functions

The derivatives of I(y) with respect to model parameters point out
the relevance of score functions. Following the approach described in
[7], it is convenient to introduce convenient nonlinear parametric
functions ( , )j

j jyφ Q , in order to approximate each score function

( )
jy jyψ . The parameter vector Qj is estimated by minimizing the

following cost function:
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21
( , ) ( )

2 j

j
j j j y jE y yε φ ψ = −  

Q , (31)

according to a gradient descent algorithm:

[ ] [ ]
[ ]

1
j j

jj j
Q j

p

p p
ε

µ
=

∂ 
+ = −  ∂ Q Q

Q Q
Q

. (32)

The gradient of jε  w.r.t. parameters Qj is:

( )( , )
( , ) ( )

j

j
j j j j

j j y jj j

y
E y y

ε φ
φ ψ

 ∂ ∂
= − 

∂ ∂  

Q
Q

Q Q
. (33)

Unfortunately (33) contains the score functions ( )
jy jyψ , that are

unknown. To overcome this problem, the following lemma can be used
(see [2] for the proof):

Lemma 2:  Let x be a random variable, and let ( )X xψ  be its score
function. If f is a differentiable function satisfying
lim ( ) ( ) 0Xx

p x f x
→+∞

= ,   then:

( ) [ ]( ) ( )XE f x x E f xψ ′  = −  . �

Lemma 2 can be applied to (33), giving:

2( , ) ( , )
( , )

j j
j j j j jj

j jj j j
j

y y
E y

y

ε φ φ
φ

 ∂ ∂ ∂
= + 

∂ ∂ ∂ ∂  

Q Q
Q

Q Q Q
. (34)

In the present work, functions ( , )j
j jyφ Q  are implemented by using

the spline approximation scheme defined above. So, each nonlinear
function is locally defined by the following expressions:

( , ) ( , ) jj
j j j u iy u i φφ φ= = ⋅ ⋅Q T M Q , (35)

2( , ) ( , )
( , )

j j j

j j j
j

i m i m j i m

u i u i
u i

Q Q y Qφ φ φ

ε φ φ
φ

+ + +

∂ ∂ ∂
= + =

∂ ∂ ∂ ∂

( )( )
( )

( )

1j

j

j

u m u i u m
u u y
i i y

y
φ

=
=

= ⋅ ⋅ ⋅ + ⋅
∆

T M T M Q T M& . (36)

4.3 Learning algorithm

The learning algorithm can be summarized as in the following:

1- Initialize W and Z to the identity matrix I, spline functions g(.) to
linear functions and score functions ( , )j

j jyφ Q  to zero in the whole

domain.

2- Update the control points of the score functions by formula:

[ 1] [ ]j j

j

j
i m i m

i m

Q p Q p
Q

φ φ
φ φ

ε
µ+ +

+

∂
+ = −

∂
, (37)

and impose:

1 2 ...j j j

NQ Q Qφ φ φ≥ ≥ ≥ ,

to ensure the monotonously not increasing characteristic of the
score functions, sorting the Q j vectors.

3- Adjust W, using an equivariant algorithm by post-multiplying
(19) by WTW  [4]:

[ ][ 1] [ ]wp pη+ = +W I K W , (38)

where the entries of matrix K are:

2

,

(1 0.5 ) if 
  

( , ) otherwise
i

i j i
i i j

y i j
k

y yφ

 − == 
 Q

(39)

Normalize W using: ,/max   i jw=W W .

4- Locally update the control points of functions g(.):

( )
[ 1] [ ]j j

j

g g
i m i m g g

i m

I
Q p Q p

Q
η+ +

+

∂
+ = −

∂
y

, (40)

and impose 1 2 ...j j jg g g
NQ Q Q< < < .

5- Adjust matrix Z, using an equivariant algorithm by post-
multiplying (27) by ZTZ  [4]:

{ }[ 1] ( ) ( ) [ ]T T T T T
zp pη  + = + + ⋅ + ⋅ Z I I G r r GW H y r Z& . (41)

6- Repeat steps from 2) to 5).

5. EXPERIMENTAL RESULTS

Several experimental tests have been performed to validate the
proposed approach. In particular, in this section the performance of the
spline-based approach are compared to those of the RBF network
separating system described in [8], in two typical problems.

Experiment 1:  Consider a two-channel nonlinear mixture with cubic
nonlinearity :

3
1 1

3
2 2

(.)
(.)

x s
x s

     
=            

B A , (42)

where matrices B and A are defined as:

0.25 0.86
0.86 0.25

 
=  − 

B  ;  
0.5 0.9
0.9 0.5

 
=  − 

A .

The source vector s(t) consists of an amplitude-modulated signal and
a sinusoidal signal:

( )( ) ( )( ) 0.5 1 sin 6 cos 100 ; sin(20 )
T

t t t tπ π π = + s (43)

Figures 4, 5 and 6 show the input signals, the nonlinear mixtures
and the separated signals respectively. The learning process took less
than one minute on a Pentium II 300MHz workstation. Learning rates
of the order of 10-4 were used. As showed in Fig.6, the proposed
algorithm is able to clearly separate the nonlinear mixtures.
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Experiment 2: In this experiment a four channel nonlinear mixture was
considered, having the following sigmoidal nonlinearity :

( )( ) tanh ( )t t= ⋅ ⋅x B A s . (44)

The mixing matrices A and B are nonsingular and chosen as:

0.2844 0.5828 0.4329 0.5298
0.4692 0.4235 0.2259 0.6405
0.0648 0.5155 0.5798 0.2091
0.9883 0.3340 0.7604 0.3798

 
 
 =
 
 
  

A ;

0.7349 0.1556 0.4902 0.4507
0.6873 0.1911 0.8159 0.4122
0.3461 0.4225 0.4608 0.9016
0.1660 0.8560 0.4574 0.0056

 
 
 =
 
 
  

B .

The source vector s(t) consists of a binary signal, a sinusoid, a saw-
toothed wave (ramp) with period T=0.1667 and a high-frequency carrier
(Fig.7):

( )( ) sgn[cos 12 ];sin(8 ); ( , );sin(60 )
T

t t t ramp t T tπ π π=   s (45)

Fig. 8 shows the nonlinear mixtures. The learning process took about
80 secs. and produced the separated signals of Fig.9.

Fig. 4. Experiment 1: source signals.

Fig. 5. Experiment 1: nonlinear mixtures of source signals.

Fig. 6. Experiment 1:  separated signals.
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Fig. 9. Experiment 2: separated signals.

Fig. 8. Experiment 2:  nonlinear mixtures of source signals.

Fig. 7. Experiment 2: source signals.
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6. CONCLUSION

A new model for blind demixing of nonlinear mixtures based on
flexible B-spline activation function neuron has been proposed.

Based on a gradient ascent method on the basis of the INFOMAX
criterion with score function estimation, a suitable learning algorithm of
parameters of the nonlinear separating model has been derived.

Due to local adaptation capabilities of spline functions, this model is
characterized by fast learning convergence rate and it can be applied or
real-time signal separation.  Another  relevant feature is that separation of
strong nonlinear mixtures is possible without any  knowledge of  original
source signals, as experimentally  demonstrated.
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