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ABSTRACT

In recent years, several inverse solutions of magnetoenceph-
alography (MEG) have been proposed. Among them, the
multiple signal classification (MUSIC) method utilizes spatio-
temporal information obtained from magnetic fields. The
conventional MUSIC method is, however, sensitive to Gaus-
sian noise and a sufficiently large signal-to-noise ratio (SNR)
is required to estimate the number of sources and to spec-
ify the precise locations of electrical neural activities. In
this paper, a universal fourth order MUSIC (UFO-MUSIC)
method, which is based on fourth order statistics, is pro-
posed. This method is shown to be more robust against
Gaussian noise than the conventional MUSIC method. It
is an algebraic approach to independent component analy-
sis (ICA). Although ICA and the analysis of the MEG in-
verse problem have been separately discussed, the proposed
method incorporates ICA into the MEG inverse solution.
The results of numerical simulations demonstrate the valid-
ity of the proposed method.

1. INTRODUCTION

Ionic currents associated with brain electrical activities gen-
erate weak magnetic fields around the head. These magnetic
fields are called magnetoencephalograms (MEGs). Magne-
toencephalography (MEG) has proven to be a useful non-
invasive method for the localization of brain activities [1].
The magnetic fields generated from neural activities can be
noninvasively measured by highly sensitive magnetic sen-
sors called superconducting quantum interference devices
(SQUIDs). The measured magnetic fields reflect the neural
activity distribution and can be applied to obtain computer
topographical mappings. In this magnetic inverse problem,
magnetic sources are usually modeled by equivalent current
dipoles. Although single dipole estimation is available for
some clinical applications, multidipole estimation is com-
monly applied since it reveals more information about the
complex neural activities.

Most multidipole estimation methods discuss how to op-
timize the dipole parameters so that the biomagnetic fields
calculated from them sufficiently explain the measured data.
Due to nonlinearity in the relationship, this parameter opti-
mization is often difficult to perform. Moreover, the bio-
magnetic inverse problem is ill-posed.

Most of the inverse solutions are based on spatial infor-
mation of magnetic fields that are measured at a particular
time. Among them, several kinds of minimum norm esti-
mations are well-known. There are also some solutions that
utilize spatio-temporal information. The main assumption
of the spatio-temporal model is that there are several dipo-
lar sources that maintain their position and orientation, but
vary only their magnitude as a function of time. Rather than
fitting dipoles to measured magnetic fields from one instant
in time, dipoles are fitted based on a certain time series.

The multiple signal classification (MUSIC) method [2]
is one of the spatio-temporal MEG inverse solutions. It is
based on the method originally developed in the field of sen-
sor array processing [3]. The conventional MUSIC method
uses only second order statistics and is based on principal
component analysis (PCA). In this paper, we propose a new
spatio-temporal MEG inverse solution, which takes advan-
tage of fourth order statistics.

2. PROBLEM FORMULATION

The biomagnetic forward model, which describes the rela-
tionship between electrical sources in the brain and the mea-
sured magnetic fields above the head, can be formulated ac-
cording to the Biot-Sarvart law. Assume that an array of �
sensors receives � sources in the brain. Then, the forward
model is written as

�������
	���
���������������������	������������� ��
where the � -dimensional vector �!�"��� describes the mag-
netic flux density at the measurement locations at time � ,� is the �$# � gain matrix, which describes the geometric
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relation between internal sources and external fields, the � -
dimensional vector 
%����� describes the internal current dipole
moments, the � -dimensional vector ���"��� describes sensor
noise, and  is the number of time slices.

Due to the central limit theorem, the sensor noise is usu-
ally modeled as a Gaussian random process. It is often as-
sumed to constitute a zero-mean, temporally and spatially
white Gaussian random process. Moreover, we assume that
the sources and noise are stationary and statistically inde-
pendent; the time series for different source components are
asynchronous or linearly independent.

3. MUSIC METHOD

The MUSIC method provides a solution for the above equa-
tion; it specifies the number of sources and parameters which
describe the locations of each source in the brain. In this
method, the electrical source distribution in the brain is as-
sumed to be locally modeled as a current dipole. The MU-
SIC method is largely dependent on second order statistics
of the spatio-temporally measured magnetic fields. The co-
variance matrix of sensor outputs is given by

& 	�')(*�
�,+.-/	��10�� + �32%4�5
�
where 06	7')(*
�
 + - is the � # � covariance matrix of sources,2 4 is the noise covariance, and ')(�� - , 8 + and 5 denote the
expectation operator, transpose of a matrix 8 , and the iden-
tity matrix, respectively. It can be eigendecomposed as

& 	�9;:�<=:>9?: + �62 4 91@A91@ + �
where the � # � diagonal matrix < : contains the � largest
eigenvalues in descending order, and each column vector
of the ��# � matrix 9;: is the corresponding signal eigen-
vector. Similarly, the �$#��B�1C � � matrix 9D@ contains the�EC � noise eigenvectors that correspond to the noise eigen-
value 2 4 . The spaces spanned by 9;: and 91@ are referred
to as the signal subspace and the noise subspace, respec-
tively. Consistent estimates of eigenvalues and eigenvectors
can be found using the eigendecomposition of the sample
covariance matrix

F& 	 � 
GH I
J�K �!�����L� + �����M	

F91: F<=: F9 + : � F91@ F<N@ F9 + @ �
where the

F� # F� and �O�1C F� �P#6�B�DC F� � diagonal matricesF< : and
F< @ contain the

F� and �QC F� signal and noise eigen-
values, respectively, the column vectors of the �3# F� and�$#��B�RC F� � matrices

F9 : and
F9 @ contain the correspond-

ing eigenvectors, and
F� denotes any consistent estimate of

the number of sources.

Based on these observations, the cost functionS�T�U :�VXW �BYO�Z	 []\!^�_%`bac^ + F9 @ F9 + @ ad^fe (1)

becomes zero for any gain matrix � corresponding to a
true dipole location, where Y denotes a grid point, a ^ de-
scribes the principal left eigenvectors of the matrix � , and[ \�^�_ ` 8 e is a minimum eigenvalue of a matrix 8 . Thus,
the cost function (1) can be used as the criterion for source
existence. In the MUSIC algorithm, we calculate (1) for
each grid, which is set over two-dimensional slices through
the three-dimensional space, e.g., g�h -planes for constant i ,
and plot the function ��j S�T�U :�VXW �BYO� .

After placing
F� dipoles at each peak, we can easily de-

termine the direction of each dipole and its magnitude by
solving linear optimization problems.

4. UFO-MUSIC METHOD

Although the expansion of the MUSIC method, e.g., the
recursively applied and projected MUSIC (RAP-MUSIC)
method [4], represents significant advances in source local-
ization, it still fails to recognize the unreliability of multiple
dipole source solutions as compared to single dipole source
solutions. These solutions are very sensitive to noise, which
limits the usefulness of these solutions from a clinical point
of view.

Since the measured magnetic fields are generated by
electrical sources that generally conform to non-Gaussian
random processes, higher order methods are usually pre-
ferred to conventional second order algorithms such as the
MUSIC algorithm. In contrast to the conventional MUSIC
method, the universal fourth order MUSIC (UFO-MUSIC)
method utilizes higher order statistics, i.e., fourth order statis-
tics. The main advantage of this method is its improved
robustness against arbitrary Gaussian noise. Also, from a
computational point of view, the MUSIC-like estimators based
on contracted quadricovariance provide high quality per-
formance at moderate computational costs [5].

We assumed that the sources were non-Gaussian circu-
lar processes and the noise was a colored Gaussian process
with an unknown covariance matrix. The quadricovariance
is defined as the set of fourth order cumulants that can be
written under the circularity assumption as

kXl�m;� g ^n� g�o � g]p � g�q �r	 s%tu� g ^n� gvo � g�p � g�q �Cws 4 � g ^L� gvo �xs 4 � g�p � g]q �Cws 4 � g ^L� g]q �xs 4 � g�p � gvo �X��PyzYL�|{v��},�L~%yz�
� (2)

where second and fourth order moments are defined respec-
tively as
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s 4 � g ^�� gvo �Z	 ')( g ^ g�o -L���dy�Yf�|{=yz�
�s t � g ^ � g o � g p � g q �Z	 ')( g ^ g o g p g q -L��Py�Yf�x{v�n}%�f~.y��
�
The contracted quadricovariance is defined as

(����O���O-�^ o 	 _H
p�� q J�K kXl>m?� g ^�� g�o � g�p � g]q ��m p�q ��Py�Yf�x{Ny��
� (3)

where each m p�q is the entry of a free ��#�� matrix � . Using
Eq. (2), we rewrite it in a matrix form as

���O���r	 ')(*�,+����
���,+.-�C & � & C$�����B� & � & � (4)

where ����� 8 � denotes the trace of a matrix 8 . We call� ( � ) cumulant matrix of any ��#!� matrix � . The sample
estimate of this matrix can be expressed as

F���O���Z	 � 
GH I
J�K �,+��"���L�����"���L�!�����f��+��"���

C F& � F& C������B� F& � F& �
The eigendecomposition of (4) theoretically yields

���B����	���:��!:>� + : �
where the diagonal matrix � : contains the � nonzero eigen-
values of the highest magnitude in descending order, and
each column vector of the ��# � matrix � : is the cor-
responding signal eigenvector. Under the assumption that
the sensor noise conforms to Gaussian distribution and that
the sources and noise are statistically independent, the noise
eigenvalues of ��@ are zero; the term �M@ disappears.

Consistent estimates of eigenvalues and eigenvectors can
be found using the eigendecomposition of the sample con-
tracted quadricovariance matrixF�1�B���
	 F��: F��: F� + : � F�N@ F�M@ F� + @ �

Similar to (1), the contracted quadricovariance-based
MUSIC-like estimator is given by

S U,�.�
��T�U :�VXW��BYO�Z	 [ \!^�_ `ba ^ + F�N@ F� + @ a ^ eu� (5)

where
F� @ is the �$#��O��C F� � matrix of the noise subspace

eigenvectors associated with �PC F� eigenvalues of the small-
est magnitude.

The simplest way to select a cumulant matrix ���O��� is
to assume � 	z5 . In this case, (4) is simplified as

F���O5%�Z	 � 
GH I
J�K ��+������L�������L�!�"���L��+������C F& 4 C������ F& � F& �

Interestingly, the eigenvalues of this matrix correspond to
kurtosis of each signal. This simple choice, however, re-
sults in the loss of information contained in the other cu-
mulants; the above case uses only a fraction of the fourth
order information. In Eq. (3), m p�q represents the weight ofkXl�m;� g ^ � g o � g p � g q � . Therefore, m p�q determines the weight
of the information that each kXl�m;� g ^ � g o � g p � g q � contains.
In order to exploit as much information from the cumulants
as possible, several matrices � should be chosen. Also it
is desirable to estimate more plausible signal subspace and
noise subspace by diagonalizing several matrices �1�B��� si-
multaneously. This can be performed by applying the joint
diagonalization method.

5. JOINT DIAGONALIZATION AND
SELECTION OF CUMULANT MATRICES

In this section, we introduce an important criterion based on
the cumulant to effectively separate the space into the signal
subspace and the noise subspace [6]-[8].

5.1. Optimization of cumulant criterion

The �B}%�f~B� -th cumulant slice is defined as the matrix whose�OYL�|{�� -th entry is kXl>m?�BYf�x{v�n}%�f~B� . It is equal to ���O��� by as-
suming that � 	z� p � + q , where � p denotes the � -dimensional
vector with 1 in } -th position and 0 elsewhere. Note that a
cumulant matrix ���O��� may represent a linear combination
of parallel cumulant slices with the entries of � as coeffi-
cients. Here, we define the parallel set �w� as the set of all
the parallel slices

� � 	�`����O� p � + q �����Py�}%�f~�y���e��
Using the cumulant properties, it is straightforwardly es-

tablished that

�1�B���Z	 91< T 9 + � (6)< T 	7 �YO¡�¢/�B[ Kn£ + K � £PK ���������n[ _ £ + _ � £ _ �X�
where [�^ denotes k�l>m?�B¤�^X��¤�^L�n¤X^n��¤�^x� which means the cu-
mulant of source 
 , and £ ^ is the Y -th column vector of 9 .
Thus, matrix 9 diagonalizes ���O��� and the column vec-
tors of 9 can be identified to the eigenvectors of �1�B��� for
any matrix � .
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Let ¥ denote a �$#;� unitary matrix and further define¦%����� as

¦%�����M	 ¥ + ���������
If ¥ 	�9 then ¥ + 9�	�5 and the coordinates of ¦,����� are
the noise corrupted sources.

It is desirable to determine 9 as the unitary minimizer
of the sum of all the squared cross-cumulants. Since the sum
of the squared cross-cumulants plus the sum of the squared
auto-cumulants does not depend on ¥ as long as ¥ remains
unitary, this is equivalent to maximizing the criterion

kn§O� ¥ ��	
_H ^ J�K � kXl�m;�O¨X^n�n¨X^L�n¨�^��n¨X^x��� 4©�

We attempt to determine 9 as the symmetry maximizer
of the criterion

k�� ¥ �ª	 _H^ � oX� p J�K � kXl�m;�O¨X^n��¨�^L�n¨ o �n¨ p ��� 4©� (7)

which is equivalent to minimizing the sum of squared cross-
cumulants with distinct first and second indices. The main
reason for considering this criterion is that it is related to an
underlying eigenstructure, which allows efficient optimiza-
tion by joint diagonalization.

5.2. Joint diagonalization

Let � 	«`b¬®­u���;y¯�$y°¤�e represent a set of ¤ matrices
with a common size �$#w� . A joint diagonalizer of the set� is defined as a unitary maximizer of the criterion

± � ¥ � � ��	 ²H­ J�K �  �YB¡�¢/� ¥ + ¬z­ ¥ ��� 4�� (8)

where �  �YB¡�¢/� 8 ��� 4 is the squared sum of diagonal elements
of a matrix 8 . If the set � cannot be exactly jointly di-
agonalized, the unitary maximization of (8) defines some-
what arbitrary but quite natural joint approximate diagonal-
ization. According to [6], we have

k©� ¥ ��	 ± � ¥ � � � �
for any unitary matrix ¥ . Thus, the unitary maximization ofk©� ¥ � is equivalent to the joint diagonalization of the parallel
set.

5.3. A new method to select cumulant matrices

Although the construction of ���B��� by assuming � 	� p � + q for all �Ry³},�L~!y�� is ideal, joint diagonalization of� 4 of �1�B��� is practically impossible. Here, we attempt to

increase the computational efficiency of joint diagonaliza-
tion by selecting ´ appropriate cumulant matrices.

As an orthonormal basis which spans the � 4 -dimensional
space, we consider

� 	
µ¶¶¶¶· ¶¶¶¶¸
� p � + q � }N	z~f�� p � + q ��� q � + p¹ º � }R»�~f�
� p � + q C¼� q � + p¹ º � }R½�~f�

Hence,

���O����	 µ· ¸ �1�B� p � + q �X� }N	z~f�¹ º ���O� p � + q �X� }R»�~f�¾ � }R½�~f�
It is not necessary to compute the cumulant matrices �1�B���
for }¿½�~ . It is sufficient to estimate and to diagonalize�
�O�=�®���Lj º cumulant matrices.

However, it is still difficult to jointly diagonalize �
�B�N����Lj º cumulant matrices. Since (����B� p � + q �À-"^ o 	zkXl�m;� g ^n� g�o � g�p � g]q �
holds, we select Á cumulant matrices �;�B� � �X���dy ´ y Á
such that the squared sum of its diagonal elements has the
largest values. This method facilitates joint diagonalization
of as many cumulant matrices as possible. In particular,
when measured signals are nearly independent, jointly di-
agonalizing cumulant matrices �1�B� � � for each ´ is equiv-
alent to maximizing the criterion (7); the parameter Á de-
termines the extent of maximization.

5.4. Summary of UFO-MUSIC algorithm

We attempt to separate the space into the signal subspace
and the noise subspace utilizing joint diagonalization. The
separation process is summarized as follows:

1. Calculate �
�B�N�z���fj º matrices
F���O��� such that

� 	 µ· ¸ � p � + q � }N	z~L�� p � + q �6� q � + p¹ º � }R»�~L�
2. Select Á cumulant matrices

F�1�B� � � , �3y ´ y Á
such that the squared sum of its diagonal elements
has the largest values.

3. Jointly diagonalize
F�1�B� � � for each ��y ´ y Á and

find the matrix ¥ .

Furthermore, to separate the matrix ¥ into the signal
eigenvectors and the noise eigenvectors, we determine aver-
aged eigenvalues
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Â ^
	 ��
_H
� J�K

[ � ^X�Ã�Py�Y�y��
�
where [ � ^ denotes the eigenvalues of

F�1�B� � � .
4. Array the eigenvalues

Â ^ in descending order and se-
lect corresponding �RC F� noise eigenvectors to �)C F�
eigenvalues of the smallest magnitude.

5. Form
F� @ and calculate (5) at each grid.

6. SIMULATION RESULTS AND DISCUSSION

Volume currents were explicitly not accounted for in the
conductivity geometry. This assumption is valid, for in-
stance, in the case of a conducting half-space, where mag-
netic conductivity is a function of the i coordinate only.
Our choice of conductivity distribution is for convenience
only. Point magnetometers, measuring the i -component of
the magnetic field, were assumed in the simulations.

Once the arrangement of the sensors were chosen, the
signal in each magnetometer was calculated from test cur-
rent dipoles. Normally distributed random numbers, repre-
senting a specified level of white noise, were added to each
signal.

In the set of simulations, ÄvÅ point magnetometers were
placed in a planar square lattice to cover an area of Æ ¾ # Æ ¾
mm 4 in the i 	 Ä ¾ mm plane. Thus, the distance between
neighboring channels was � Å mm. The source current was
assumed to be confined to a square of

º ¾�¾ # º ¾�¾ mm 4 in theg>h -plane, Ä ¾ mm from the magnetometer plane.
In the first simulation, the test source was a single cur-

rent dipole that was directed in parallel to the h -axis, and
whose magnitude changes conformed to the fifth order
Daubechies’ wavelet function. It was placed in the center of
the g�h -plane.

In the second simulation, the test sources were two cur-
rent dipoles that were also directed in parallel to the h -axis.
The magnitude changes of the two dipoles conformed to the
fifth and fourth order Daubechies’ wavelet functions. The
two dipoles were placed symmetrically on the g�h -plane.

We adopted wavelet functions as time-varying functions
of the source’s magnitude since such kinds of functions aptly
describe the time variation of action potentials in the brain.

Figures 1 and 2 show the measured magnetic fields by
all magnetometers in the first and second simulation, re-
spectively. We analysed these data using the conventional
MUSIC method and the proposed UFO-MUSIC method.
The number of scanning grids of both the MUSIC and UFO-
MUSIC methods was 121. All the grids were placed in a
planar square lattice to cover an area of

º ¾v¾ # º ¾v¾ mm 4 in
the g�h -plane. Thus, the distance between neighboring grids
was

º ¾
mm. Moreover, the threshold of the eigenvalue,
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Fig. 1. Magnetic fields measured by all magnetometers in
the first simulation. SNR = C Ä � Ä�Ç (dB). The sampled inter-
val is represented in the area between the dotted lines.
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Fig. 2. Magnetic fields measured by all magnetometers in
the second simulation. SNR = Ç � ÅvÄ (dB). The sampled in-
terval is represented in the area between the dotted lines.

which separates the signal eigenvalues and noise eigenval-
ues, was set at 1/100 of the largest eigenvalue in both meth-
ods.

The results of the first and second simulation are shown
in Figs. 3 and 4, respectively. The estimated number of
sources increased as the signal-to-noise ratio (SNR) decreased
in both methods, but the UFO-MUSIC method estimated
the number more precisely than the MUSIC method, even
in the case of low SNR. The locations of sources were cor-
rectly specified in both methods when the number of sources
was precisely estimated.

The simulation results reveal that the UFO-MUSIC method
is more robust against Gaussian noise than the conventional
MUSIC method.

In this paper, we assumed that the sources were sta-
tistically independent; the time series for different source
components were asynchronous or linearly independent. In
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Fig. 3. Estimated number of sources in the first simulation
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Fig. 4. Estimated number of sources in the second simula-
tion

such a case, the signal subspace and the noise subspace can
be separated by joint diagonalization. The UFO-MUSIC
method is an algebraic approach to a conventional prepro-
cessor of MEG data analysis, independent component anal-
ysis (ICA) [7], [8]. Although ICA and the analysis of the
MEG inverse problem have been separately discussed [9],
[10] , the proposed method incorporates ICA into the MEG
inverse solution.

However, when sources are correlated or synchronous,
the proposed UFO-MUSIC may have to be expanded to a
RAP-MUSIC-like method [4]. Further studies will clarify
how to approach such a case.
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