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ABSTRACT

It was discovered recently that sparse decomposition by
signal dictionaries results in dramatic improvement the
qualities of blind source separation. We exploit sparse
decomposition of a single source in order to extract
it from multidimensional sensor data, in applications
where a rough template of the source is known. This
leads to a convex optimization problem, which is solved
by a Newton-type method. Complete and overcomplete
dictionaries are considered. Simulations with synthetic
evoked responses mixed into natural 122-channel MEG
data show significant improvement in accuracy of signal
restoration.

1. INTRODUCTION

We consider the following problem

x(t) = as(t) + £(t) (1)

where x(t) is an observed n-channel sensor signal, s(t)
is an unknown scalar signal of interest, a is an un-
known n-dimensional vector of weights, and £(t) is an
n-channel background signal.

We assume that a rough template §(t) of the signal
s(t) is known in advance. It can be for example, a
rectangular pulse, which corresponds to the sign of the
original signal, or of its most significant part.

We also assume that s(t) has a sparse representation
by means of its decomposition coefficients ¢, obtained
in accordance with the signal dictionary of functions

e (t):

K
s(t) = crpr(t). (2)
k=1

The functions ¢y (t) are called atoms or elements of
the dictionary. These elements do not have to be lin-
early independent, and instead may form an overcom-
plete dictionary. Important examples are wavelet and
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wavelet-related dictionaries (wavelet packets, station-
ary wavelets, Gabor-type frames, etc., see for exam-
ple [1, 2, 3] and references therein), or learned dictio-
naries [4, 5].

Sparsity means that only a small number of coef-
ficients ¢;, differ significantly from zero. It was shown
in [6, 7, 8, 9] that use of sparseness often yields much
better blind source separation than other techniques.
In this work we use the same property of sparseness for
extraction of a single source.

There are other approaches of a single source ex-
traction. For example, Fast ICA algorithm [10] per-
mits the extraction sources from mixtures sequentially,
using an approximation of entropy as a criterion for
separation. It will not necessary extract the source of
interest first, especially when the number of data chan-
nels is large. In order to deal with this problem, it
was suggested in [11] to initialize separation weights in
Fast ICA using a second order method based on max-
imal correlation with a template. This approach im-
proves the order of source extraction, but it does not
exploit the knowledge of a template at the second stage
of separation with Fast ICA.

In our work we combine the prior knowledge about
the sparsity of a source representation with the knowl-
edge of its template into one optimization objective.
Resulting optimization problem is convex (unlike prob-
lems arising in usual ICA). It leads to high-quality so-
lution even when the number of data channels is high
and total number of samples is small. In our simula-
tions we use 512 samples of 122 channel MEG data.
In this situation standard ICA techniques can not give
a meaningful separation, because the number of free
parameters in the separation 122x122 matrix is much
larger than the number of data samples (normally the
amount of data used for blind separation of such a data
by standard methods is of order 10° samples or more,
see for example [12]).

In the sequel we will use a matrix notation. Let
t=1,2,...,T be a discrete time under consideration,
X be a matrix T' x n, with discrete signals z;(t) in its



columns, and ® be a matrix 7' x K with columns ¢y ().
Then, instead of (2), we have

s=®c.

3)

If an estimate 3(¢) of the signal would be known, it
could be sparsely decomposed in the dictionary ¢ using
the following optimization [1]

K

min |3 — @c|[* + 1> hick).
k=1

(4)

Here h(c) can be considered as a penalty for non-
sparseness. A reasonable choice of h(c) [13, 5] is

h(c) = |e|*/7; v >1,

(5)

or a smooth approximation thereof. Here we will use a
family of convex smooth approximations to the abso-
lute value [6]

|e| — log(1 + |c])
ahy (c/a),

(6)
(7)

with « being a proximity parameter: hy(c) — |c| as
a — 0%. Other approximations to the absolute value
can be used as well. For example

ha(c) = V2 +a

2. SECOND ORDER SOURCE
EXTRACTION USING CORRELATION
WITH A TEMPLATE

In this section we present a standard approach of max-
imum correlation with a template, which will be used
as a reference point. We look for an estimate of the
signal s(t) as a linear combination of the sensor signals

5(t) = Zwiwi(t) ; (8)

which in a matrix form is

§=Xw, 9)
where w is a vector of weights that we would like to
determine.

Suppose that we have an approximate template §
of the signal s. Then one can find an estimate of the
signal s in the form (9), which has maximal correlation
with the template

sTs

sl - lIsll

max

sl
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It can be rewritten equivalently as

min 8P
Subject to §Ts=1. (10)
Combining this with (9), we obtain
min [ Xwl?
Subject to  §TXw = 1. (11)

The problem can be solved using the method of La-
grange multipliers, which yields

W = AR, X", (12)

where R, is the covariance matrix: R,, = X7 X.

3. SPARSE ESTIMATION WITH A
TEMPLATE

Suppose now that we have the following two priors:

e sparsity of the coefficients in the representa-
tion (3);

e an approximate template § of the signal.

We look for a signal § with the sparsest representa-
tion ¢ according to the dictionary ®, which has a unit
covariance with the template. In the general case of
overcomplete dictionary this leads to the following op-
timization problem

K

5 — el + 13 hicr),

k=1

min
C

Subject to 87§ =1. (13)

In the framework of linear estimation (9) we obtain

K
IXw — dell? + 1> hier),
k=1
Subject to  §TXw = 1. (14)
When the dictionary is complete, we obtain significant
simplification of the problem: the matrix ® is invert-
ible, and the coefficients can be estimated directly

,15 _

=9 o ' Xw. (15)
Combining this with (14), where the first term
|[Xw — ®c||? vanishes, and using the transformed sen-
sor data

Y = 37X,



we get

min
w

K
> (YW,
k=1

Subject to sTXw=1. (16)

Using the method of Lagrange multipliers, we come to

K
m“i,nZh((Yw)k) - 2TXw . (17)
k=1

There is a potential for instability in (17): growth of
the first term in any direction is asymptotically linear,
therefore the minimum of the objective function can be
—00, when A is too large, and the second term decreases
faster than the first term grows. In order to avoid this,
we use a monotonic convex transformation of the sec-
ond term u($TXw), where u(-) is a convex monotoni-
cally decreasing function of one variable. For example,
we can use quadratic-logarithmic function [14]

1

2

—(1-17)2log (

12 —t,

ur(t) =
! —T4+37%

1—27+t¢
1—71

where 0 < 7 < 1. The second derivative of this function
is continuous and bounded Yt € IR. Thus, we are in
good position for the Newton minimization. Finally
our function for optimization becomes:

K
F(w) =Y h((Yw)) + lu@E"Xw) . (18)
k=1

It is easy to see from the optimality conditions, that
(18) yields the same solution w as (17), when X is
changed by a factor of u'(87 Xw).

4. COMPUTATIONAL EXPERIMENTS
WITH SYNTHETIC EVOKED RESPONSES
MIXED INTO NATURAL MEG
RECORDINGS

In order to verify the method, we synthesized a typi-
cal evoked brain response and mixed it linearly (with
random weights) into real 122-channel MEG recording
taken at the rate of 256 samples/second. The evoked
response (Fig. 1, top plot) is composed of a narrow
positive Gaussian pulse with a standard deviation of
4 samples and a wide negative Gaussian pulse with a
standard deviation of 10 samples. The second pulse
is delayed by 20 samples with respect to the first and
decreased in amplitude by a factor 0.6. Other plots in
Fig. 1 show few MEG channels already mixed with our

t<T

t>71.

292

T A A g g Y A
W M AP v o | 0 s A e

Figure 1: Plot at the top shows synthetic evoked re-
sponse; other plots show some of MEG channels al-
ready mixed with the evoked response: the response is
almost invisible on the background of brain activity.

Figure 2: A template (solid line) corresponding to the
time interval, when the response (dashed line) is above
of 10% of its maximal value.

synthetic evoked response. As one can see, the response
is almost invisible on the background of brain activity.
As a template (Fig. 2) we used a rectangular signal,
corresponding to the time interval, when the response
is above of 10% of its maximal positive value.

We compared two methods of recovering evoked re-
sponses: the maximum correlation method (12) and
our sparse estimation method, which consists in min-
imization of the objective function (18). We used a
wavelet basis ® with the mother-wavelet Symmlet-8,
which has eight vanishing moments. This basis is con-
venient for approximation of smooth functions, like
evoked responses are (see for example [2]).

In (18) we used the parameter A = 1000, and in (7)
the parameter a = 0.01. As we observed empirically, a
change of the parameters by a factor 10 up and down,
does not affect results significantly. Slight improve-
ment of quality can be observed when A grows and «
decreases more significantly, but the problem becomes
more difficult for optimization.

As a minimization procedure we used the Newton
method with frozen Hessian (see for example [15]). At
each iteration the Hessian matrix was computed and
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Figure 3: Top plot, solid line - evoked response re-
covered by using the maximum correlation approach.
Bottom plot, solid line - evoked response recovered by
using sparse estimation. Dashed line in both plots -
the original signal.

three consequent Newton steps were then produced by
substituting current gradients into the same Cholessky
decomposition of the Hessian (expressions of gradient
and Hessian are presented in the Appendix). Cubic
linesearch with bisection safeguard and early stopping
by Goldstain criterion was used at every Newton step.

The results of reconstruction by the maximum cor-
relation method are shown on the top of Fig.3. The
signal-to-noise ratio is significantly better than for orig-
inal sensor data shown in Fig.1, but the form of the
pulse is corrupted, especially the negative part, which
was not included in the template.

In Fig.3, bottom, we see the recovered evoked re-
sponse using our sparse estimation (18). It resembles
the original pulse much more accurately, than the max-
imum correlation method does. Results of 50 simulated
trials with random pulse position and random mixing
weights are shown in Table 1. The mean-squared error
is about 9 times smaller with our method than with
the maximum correlation approach.

We also tested some standard ICA techniques with
the same data, but the results were meaningless. This
can be easily understood taking into account a very
small amount of data compared with the number of
channels.

5. CONCLUSIONS

The proposed new approach to extraction a source from
multichannel data, using a template and sparse repre-
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Method Mean-squared  Std. deviation

error of sq. error
Max correlation 0.38 0.0354
Sparse estimation 0.044 0.0185

Table 1: Results of 50 simulated trials with random
pulse position and random mixing weights

sentability of the source in a signal dictionary is most
suitable for physiological and medical, as well as wide
range of other applications. Our simulations with com-
plete dictionary demonstrate significant superiority of
the method over the maximum correlation approach.

A more extensive study has yet to be conducted us-
ing overcomplete representations (14), which are more
sparse, but also more expensive computationally.

The optimization problems (14) and (16) can be
also reformulated as a quadratic or linear programming
problems, when h(-) is exactly the absolute value func-
tion. This can be done in the spirit of the previous stud-
ies [1, 6]. It provides a possibility of using the polyno-
mial complexity algorithms, like Interior Point Meth-
ods. One can use also a special Augmented Lagrangian
method for sum-maz optimization problems [16], which
reduces twice the number of variables as compared to
the quadratic/linear programming approach, and pro-
vides better accuracy of solution. Practical compar-
ison of all these approaches remains open for future
research.

6. APPENDIX. GRADIENT AND HESSIAN
OF THE OBJECTIVE FUNCTION

Here we obtain derivatives of the objective func-

tion (18). Denoting s = Yw, z = XTs, and r = 27w,
expression (18) becomes
K
F(w) = Z h(sk) + Au(r) (19)

k=1

Derivation of the gradient formula

Let h'(s) denotes the vector-column of the first deriva-
tives h'(sy), the differential of the objective is
dF(w) = ds"h'(s) + M/ (r)dr . (20)

Recalling that ds = Ydw and dr = z'dw = dw’z,
we get

dF (w) = dw” (YTh'(s) + )\u'(r)z) . (@D



Let g denotes the gradient of F'. Comparing (21) with
dF(w) =gldw = dw'g,
we obtain finally

g(w) =YTh'(s) + M/ (r)z . (22)

Derivation of the Hessian formula

Let Diag h'(s) denotes the diagonal matrix of the sec-
ond derivatives h'”(sy,). It is easy to obtain from (22)
dg(w) = YT Diag h"(s)ds + M (r)zdr . (23)

Taking into account that ds = Ydw and dr = z” dw,
we get

dg(w) = Y Diag h'"(s)Ydw + \u" (r)zz' dw . (24)
Comparing this with the known expression

dg(w)

H(w)dw,
where H(w) is a Hessian matrix, we finally obtain

H(w) = Y!Diag h"(s)Y + A" (r)zz! .
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