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ABSTRACT
Blind Separation of convolutive mixtures and Blind Equal-
ization of Multiple-Input Multiple-Output (MIMO) chan-
nels are two different ways of naming the same problem,
which we address here. The numerical algorithm, subse-
quently presented in detail, is based on theoretical results
on contrasts recently published by the authors [1]. This al-
gorithm consists of Partial Approximate Joint Diagonaliza-
tion (PAJOD) of several matrices, containing some values
of output cumulant multi-correlations.

1. INTRODUCTION

Blind equalization (that is, without observing the inputs) of
linear time-invariant systems has been studied extensively
during the last decade. Single Input Single Output (SISO)
equalization often requires High-Order Statistics (HOS) [2]
[3] [4]; this can be implicit through constant modulus [5]
[6] or constant power [7] criteria. For multiple channels
(SIMO or MIMO), HOS can be used [8] [9], but second-
order statistics can suffice, provided mild identifiabilitycon-
ditions are satisfied, but a number of limitations have been
identified [10] [11] [12] [13] [14]; see [15] and references
therein. Because of their robustness to hypotheses, HOS-
based methods remain very attractive.

The case of static mixtures (as opposed to convolutive)
has also retained a lot of attention, because its simpler form
allows a deeper treatment, but often requires resorting to
HOS. Put in simple words, one can say that the problem can
be viewed as diagonalizing a tensor [16] [17], but can be ad-
dressed by diagonalizingapproximatively a subset of matrix
slices [18]. The latter algorithms are efficient when applied
to short data records (or fast varying channels) because they
are of block type (i.e.. off-line), but on-line algorithms have
also been devised [19].

Our main contribution consists of a block algorithm
dedicated to blind MIMO equalization. This algorithm has
been shown to maximize a well-defined contrast [1] [20], as
pointed out in section 3. On-line versions of this algorithm
would be easy to implement, and are not studied in this pa-
per. Instead, we concentrate on the algorithm description,
and on its performances on very short data records (e.g.,
200 to 400 symbols).
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Fig. 1. Observation � is equalized by
�

; the global system
is denoted � .

2. PROBLEM AND NOTATION

Consider the following linear time-invariant invertible sys-
tem:

�����
	��
�

����� �� ����	�����������	 (1)

where �����
	 denotes the � -dimensional source vector,
whose components �! "���
	 are independent, �#���
	 is the � -

dimensional observation, and $ �&%
def�'$ � ���
	)("��* ZZ % de-

notes the �,+�� impulse response matrix sequence. For
convenience, vectors and matrices are denoted with bold
lowercase and bold uppercase letters, respectively. The

problem consists of finding a filter $ � %
def�-$ � ���
	)("�.*

ZZ % from the sole observation of the channel outputs, �����
	 ,
aiming at delivering an estimate /����
	 of the inputs �����
	 .

The following hypotheses are assumed:
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H1. Sources �! "���
	 , � * $�� (�������("� % are mutually indepen-
dent i.i.d. zero-mean processes, with unit variance.

H2. �����
	 is stationary up to the considered order, �.*
IN � , i.e. ����* $�� (�������("� % , the order- � cumulant,	�
��� �) "���
	)(������"("�) ����
	�� , does not depend on � , and
will be denoted

	��� �) �� .
H3. At most one source has a zero marginal cumulant of

order � .
H4. The global transfer matrix, � ��� 	 � � ��� 	 � ��� 	 , sat-

isfies the property

� ��� 	"���
������ � 	 ���
where � denotes the � + � identity matrix; in other
words, �&��� 	 is para-unitary.

Remark 1. More generally, if sources are non i.i.d. lin-
ear processes, our approach holds valid. It suffices to still
assume (H1) in a first stage in order to equalize the channel,
and to extract the original sources in a second stage by linear
regression between each equalizer output and the observa-
tions. In fact, the equalizer outputs are the driving processes
of the sources.

Remark 2. The Hypothesis H4 is not restrictive. In-
deed, one can always whiten the observations (in a non
unique manner), by using a filter that factorizes the second-
order power spectrum.

3. CONTRASTS

We briefly report in this section the results stated by the
authors in [1], showing how contrast-based blind MIMO
equalization can be posed in terms of a Partial Joint Ap-
proximate Diagonalization (PAJOD) of a set of cumulant
matrices. To start with, define:	���! � � ��(#" (#$�� �	�
�%� &  "���
	)(������"( &  ����
	' (�) *�,+.-0/.1�2 ( &4345 �����7698)	)(������"( &43;: ��� �<64=�	' (�) *= � � � �,+.-0/.1�2

�
(2)

where � �?>�@%A is the cumulant order, " � �CBD8�(������"(#B4= 	 , and
$ �'�C698�(������"(#64= 	 . Then we can prove the two propositions
below [1]:

Proposition 1 Let � , > and A be three integers such that
�FEHG , IKJL>MJH� and A �H�#�7> , then the functional

N �! � � / 	��
O�
 � 8

�
P!QDR

�
S QT

UU 	 ��! � � ��(#" (#$�� UU V (3)

is a contrast when observations �����
	 , and hence the outputs/����
	 of the para-unitary equalizer, are standardized (i.e.,
second-order white with unit covariance).

Also define the cumulant tensor of observations:WFX  Y ��Z (#[ 	 � 	�
�%� \^]�5 ��� �`_a8"	)(\^]cb ��� �`_ V 	)( \edf5 ��� �hg�8)	)(������"( \ed�: ��� �hge=�	�� (4)

where i and Z are vectors of size 2, and j and [ are of size
A �k� �lI , the entries of i and j belonging to $�� (��m�m� ("� % .If n delays are considered, the entries of Z and [ belong to$Do�(��m�m� (fn �H� % .This tensor can be stored in a set of �pn&+ �pn matrices,
denoted q,��j�(#[ 	 . for any fixed ��j�(#[ 	 , the entries of these
matrices are given by:

qsr�t���j�(#[ 	�� WFX  Y ��Z (#[ 	)( (5)

with u ��_a8��v@lwe8�(^x ��_ V �v@`w V

N  L
q q

.
.
.

1

Fig. 2. The semi-unitary matrix y aims at diagonalizing
jointly the � +&� leading submatrices.

Proposition 2 The contrast
N V  � � / 	 can be rewritten as a

PAJOD criterion of a set of � = n = matrices:N V  � � /�	 � � Y
�
z
{m{ |�}�~e� $�y���q,��j�(#[ 	�y %

{m{ V (6)

where y is semi-unitary, i.e., satisfies y � y ��� .

See [1] for the proofs and further details.

Remark 3. The above criterion differs from that pro-
posed in [18] in several respects: (i) the matrices q,��j�(#[ 	
are built differently, (ii) the matrix sought for is not square
unitary but rectangular, which involves quite different cal-
culations, as will be subsequently seen.

From now on, we shall assume that the channel lengthn is known, and that the equalizer has the same length. The
robustness with respect to this assumption will be investi-
gated in a companion paper.
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4. NUMERICAL ALGORITHM

Take the particular case where cumulants of order � ��� are
used, and choose > ��A ��I . Vectors i , Z , j , and [ are thus
of size 2. The propositions of the previous section teach us
that a semi-unitary matrix, y , of size �pn +�� , must be
found, which should diagonalize approximately and jointly
the set of � V n V matrices, q,����8�(�� V (�g�8 (�g V 	 . Each of these
matrices is of size �pn�+ �pn . The goal is to maximize the
sum of the squared moduli of the � first diagonal entries of
the � V n V matrices, as depicted in figure 2.

4.1. Jacobi sweeping

In order to reach this goal, one looks for a �pn + �pn uni-
tary matrix, � , whose y will be the the leading �pn + �
submatrix. This unitary matrix can be built by accumulating
Givens rotations, as proposed in the Jacobi algorithm [16]
[21]:

� � �
8��� �� 3 � O
	��

� ��(#B�� (
where �

� ��(#B�� coincides with the identity matrix except for 4
entries, namely:

�
� ��(#B��   �� �

� ��(#B�� 3�3 ���������� � ��(#B�� 	
and

�
� ��(#B�� 3  �� � � � ��(#B�� � 3 ����������� � ��(#B�� 	��������   3� �

This rotation can indeed always be imposed to have a real
cosine [21] [16]. The cosine, ! , and sine, � , must be deter-
mined so as to maximize, successively for every pair

� ��(#B�� :
N V  " � � Y� z

O�
��� 8

UUUUU
O
	�
r  t � 8 � �r �

� ��(#B�� � t � � ��(#B��$# r�t���j�(#[ 	
UUUUU
V

(7)

4.2. Processing every pair

As emphasized earlier, indices
� ��(#B�� do not describe all pos-

sible pairs from the set $�� (��m�m� ("� n % V . In fact, since ��J � ,
it suffices that � J � ; in addition, we also have that �
% B .
As a consequence, two cases must be distinguished, depend-
ing on the fact that B J � or not.

In the two cases, we have to find the roots of a poly-
nomial of degree 4. But in the first case, with the help of
a change of variables, this rooting can be converted into
the solving of two trinomials of degree 2, as in [22]. This
transformation is not possible in the second case, and the
(still analytical) rooting of the fourth degree polynomial is
mandatory:

& Case B J � : this is the classical one [22]. One max-
imizes the sum of the 2 diagonal terms on which one
has some action:N V  " �('HY� z { ! V #   ^@�!)� � # 3  ^@)!)�*#  3 @ � � � # 3�3 { V@ { � � � #   
�)!)� � # 3  
�+!)�*#  3 @)! V # 3�3 { V
In the real case, stationary values in , ��-�./�0� are the
roots of the degree-4 polynomial:

, " @+12,43 �+56, V �712, @��#��o
where

1 � ' Y z ��#   
�+# 3�3 	 V �7�8# V 3
' Y z ��#   
�)# 3�3 	�#  3

Because of symmetries in the coefficients, one can
instead root the trinomial in variable 9 ��-�./� I�� :

9 V @ 1
I 9h@��#��o

and go back to the angle tangent by rooting in a sec-
ond stage 9:, V @`I6, �)9 ��o .

& Case B<; � : here only one diagonal term should be
maximized:

N V  " � � Y� z
{ ! V #   ^@�!)� � # 3  ^@�!)�*#  3 @�� � � # 3�3 { V

In the real case, this amounts to solving the degree-4
polynomial in , ��-�./�0� :
1 3 ,

" @��=1 V �>1 " 	�,43@%G��=1e8 �>1 3 	�, V @��=18? �>1 V 	�, �>1e8���o
with 18?#�('@# V  1e8��('@#   A#  3

1 V �('@#   A# 3�3 @lI�# V 31 3 �('@#  3 # 3�3
1 " � ' # V3�3

The selection of the best angle among the four candi-
dates can be done by simply calculating the contrast
value at these four points, for instance using

N V  " �.���^@<, V 	 � V �=18?^@B��1e8�,�@ I/1 V , V @B��1 3 ,43�@B1 " , " 	
5. PERFORMANCES

5.1. Working example

One considers a Finite Impulse Response (FIR) real mixture
of length n���G of �'��I real white processes. Cumulants
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of order � � > @lA �(� are chosen with > � I . Thus, there
are � = n = � G�5 square matrices, each of size �pn��(5 , and
the goal is to jointly and approximately diagonalize their
I�+ I leading matrix by congruent transform. With this goal,
a real orthogonal 5�++5 matrix, � is estimated. Matrix y
corresponds to the two first columns of � .

The channel is para-unitary, to preserve second-order
whiteness as explained in section 2. It has been generated
as follows:

� ��� 	���� ��� 8"	������	� ��� V 	������	� ��� 3 	)(
where �.� 
 � o

o � � 8�� (
and � ���
	�� 
 ����� � �������

������� ����� �
Note the absence of phase terms, because real channels are
desired. Because of the 3 free parameters above, we have
some control on the location of zeros of the 4 length � G
SISO channels. Here, we have chosen ��8����I�� , � V ���G�� ,
and � 3 ���o�� . As a result, the zeros of � 8 V ��� 	 are inside
the unit disk, and those of � V 8 ��� 	 are outside; � 8f8 ��� 	 and� VfV ��� 	 each have one zero inside and one outside, as shown
in figure 3. So, � ��� 	 has a stable inverse, whereas the com-
ponents � 8 V ��� 	 and � V 8 ��� 	 have not.

−1 0 1 2 3 4 5 6

−3

−2

−1

0

1

2

3

Fig. 3. Zeros of the 4 channels in � ��� 	 .

5.2. Performance criteria

When evaluating performances of MIMO equalizers, a dif-
ficulty to overcome stems from inherent indeterminacies.
In fact, equalizer

� ��� 	 , and hence global filter � ��� 	 , can

be estimated only up to a multiplicative matrix of the form� ��� 	�������� 	�� , as defined in section 2.

5.2.1. Distance criterion

Let the global transfer function

� ��� 	�� V 	
� 8�� � ? � ���
	�� � � �
One can decide to store matrices � ���
	 in a � + ����In � � 	
array, � , by merely stacking the matrices one after the other.
Then finding the best matrix

� ��� 	 amounts to searching
every row of � for the entry of largest modulus, under the
constraint that their column index are different modulo � .

Let us now explain how this is done in our example
where �'��I and n���G :

& Case 1: search for column BD8 (resp. B V ) containing the
entry of largest modulus, �a8  345 (resp. � V  3;b ), among
the entries of row 1 (resp. 2) of odd column index
(resp. even). Normalize row 1 (resp. 2) of � by �a8  345
(resp. � V  3;b ). Compute the Froebenius distance be-
tween matrix �� obtained this way and matrix � , of
same size, containing two 1’s at locations ��� (#B!8"	 and��I�(#B V 	 and zero elsewhere.

& Case 2: search for column � 8 (resp. � V ) contain-
ing the entry of largest modulus, � V  � 5 (resp. ��8  � b ),
among the entries of row 1 (resp. 2) of even column
index (resp. odd). Repeat the same normalizing oper-
ations and distance calculations as in case 1.

& Choose the case leading to the minimal distance,� � ��	�� {m{ �� �!� {m{ , which actually corresponds to:� � ��	�" -$#� % ����  & 5  ' 5  & b  ' b {m{ �(� |�}�~e� ��)�8f� ' 5 (*) V � ' b 	 {m{
(8)

This procedure can be easily extended to � E I ; then, �,+
cases must be tested instead of I .
5.2.2. Symbol Error Rate

Another criterion is focussed on source estimates instead of
the channel estimate itself. As before, we have to get rid of
the possible delay _ , the possible factor )�� � ��� , and the
possible permutation - , that may be present in the estimate,
and minimize )�w/.10   2 ��� �h_ 	 ��3w  "���
	 .

This can be done in a similar manner as in the previous
section, even if it turns out to be more computationally com-
plex. In fact, under each of the two hypotheses, one must
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explore 10 different cases (5 possible delays for each row).
In general, one must calculate the error rate of �,+"����In#�%� 	
potential estimators (instead of 20 for �-��I ), which can
become quite costly. In such cases, one may want to assume
the matrix � obtained via the distance criterion.
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Fig. 4. Error � � ��	 on the impulse response.
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Fig. 5. Mean source Bit Error Rate (BER).

5.3. Simulation results

The two sources generated are i.i.d. binary sequences, and
take their values in $ �K� (�� % . The equalizer has been esti-
mated from data lengths of 250 to 400 symbols (thus quite

short), and perturbed by an additive isotropic white Gaus-
sian noise:

�����
	��
	�
��� ? � ����	�i���� ����	�@��������
	

Performances have been averaged over 500 independent re-
alizations. The distance and error rate criteria are plotted in
figures 4 and 5 as a function of the Signal to Noise Ratio
(SNR), � Io������ 8�? � .

In the presence of a low noise, matrices � that have been
obtained are the same for both criteria. On the other hand,
for larger SNR’s, it might happen that the two criteria do not
estimate the same matrix � , as reported in figure 6.

6. CONCLUDING REMARKS

Based on the theoretical results obtained in [1], a first nu-
merical algorithm has been developed. Even if it is not
yet optimized, this algorithm demonstrates that it is possi-
ble to equalize blindly FIR MIMO channels from short data
records (typically 300 symbols).

Subjects that need to be further addressed include
(i) the robustness to channel length misadjustment, (ii) im-
provements on convergence and accuracy of the algorithm,
(iii) more complete computer experiments, for instance for a
wider variety of channels and sources, and (iv) the develop-
ment of the code in the case of complex channel and sources
(the theoretical results indeed hold true in that case).
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