NONLINEAR BLIND SOURCE SEPARATION USING
GENETIC ALGORITHMS

F.Rojas’, |.Rojas', RM.Clemente?, C.G.Puntonet®

(1) Dept. of Computer Architecure and Technology, University of Granada (Spain)
(2) Areade Teoriade laSefia y Comunicadones, University of Sevill a (Spain)

ABSTRACT

This article propcses the fusion d two important paradigms,
Genetic Algorithms and the Blind Separation o Sources
(GABSS). Although the topic of BSS, by means of various
techniques, including ICA, PCA and reural networks, has been
amply discussd in the literature, to date the posshility of using
genetic dgorithms has not been explored. However, in nodinea
mixtures, optimisation d the system parameters and, espedaly,
the seach for invertible functions is very difficult by the
existence of many locd minima. From experimenta results, this
paper demonstrates the possble benefits offered by GAs in
combination with BSS, such as robustnessagainst locd minima,
the paralel seach for various ®lutions, and a high degree of
flexibility in the evaluation function.

1. INTRODUCTION

The separation of independent sources from mixed observed data
is a fundamental and chalenging signal processng problem
[2],[7],[14]. In many pradicd situations, one or more desired
signals neal to be recmvered from the mixtures. A typicd
example is the cae of speet recordings made in the presence of
badkground nadse ad/or competing speers. The source
separation poblem has been successfully studied for linea
instantaneous mixtures[1],[4],[12],[14] and more recantly, since
199Q for linea convolutive mixtures[10],[19],[2]].

Even though the norlinea mixing model is more redistic and
pradicd, most existing agorithms for the BSS problem were
developed for the linear model. Nevertheless the linear mixing
model may not be gpropriate for some red environments.
However, for nonlinear mixing models, many difficulties occur
and reither the linear ICA nor the eisting linea demixing
methoddogies are awy longer applicable becaise of the
complexity of nonlinea parameters.

Therefore, reseachers have recently started addressng the blind
source separation poblem to nordinear mixing models
[8],[13],[17],[18],[20]. In [9],[13] the norinea components are
extraded by a model-free methods using Kohonen's <if-
organizing-feaure-map (SOFM). This approach suffers from the
exporential growth of network complexity and the interpolation
error that arises in rewvering continuows urces. Burel [3]
propased a norlinear mixing model using a two-layer perceptron
for blind source separation, trained by the dasscd gradient
descent methodto minimize mutual information.

In [8] anew set of learning rules for the noninea mixing models
based on the information maximizaion criterionis proposed. The
mixing model is divided into alinea mixing part and anorninea

transfer channel, in which the nonlinea functions are
approximated by parametric sigmoidal or by higher order
polynomials.

More receitly, Yang et a. [20] developed an information
badkpropagation algorithm for Burel’s model by the natura
gradient method, using speda nonlinea mixtures in which the
norlineaity could be gproximated by a two-layer perceptron.
Other important work in source separation in pcst-nonlinea
mixtures is presented in [17]. In this methodblogy, the estimation
of norlinea functions and d score functions is done using a
multilayer perceptron with sigmoidal units trained by
unsupervised leaning.

A possible etension d ICA to the separation sources in a
norlinea mixture is to employ a nonlinea function to transform
the mixture such that the new outputs becmme statisticaly
independent  after the transformation. However, this
transformation is not unique axd withou limiting the function
class for de-mixing transforms, this extension may give
statistically independent output sources completely different from
the origina unknown sources. Although there exist many
difficulties in this transformation, severa norlinea [CA
agorithms have been proposed and developed .

Nevertheless one of the gredest problems encountered with
norlinea mixing models is that the gproximation of the
norlinea function by the various techniques (perceptron,
sigmoidal, RBF, etc.) meds with a serious difficulty; there ae
many locd minimain the seach spaceof the solution parameters
for adapting nonlinea functions. As shown in the experimental
results edion, output surfaceof a performance index based on
the mutual information when the parameters of the norlinea
functions are modified presents multiple axd severe locd
minima. Therefore, algorithms that are based on a gradient
descent for the aaptation d these nonlinea-function parameters
may become trapped within ore such locd minimum.

In this paper, we propcse a new agorithm for the norlinea
mixing problem using flexible nonlineaities. This nonlinea
function may be gproximated by even n-th order polynomials.
We develop an algorithm that makes use of the synergy between
Genetic Algorithms and the Blind Separation o Sources
(GABSS) for the optimization d the parameters that define the
norlinea functions. Simultaneously, a natural gradient descent
method is applied to oktain the linea demixing matrix. Unlike
many classcd optimization techniques, GAs do nd rely on
computing local first or send ader derivatives to guide the
seach agorithm; GAs is a more genera and flexible method that
is cgpable of seaching wide solution spaces and avoiding locd
minima (i.e. it provides more posshilities of finding an ogtimal or
nea-optima solution). GAs ded simultaneoudy with multiple
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solutions, not a single solution, and aso include random e ements,
which help to avoid getting trapped in sub-optimal solutions.

2. SYSTEMSOF NONLINEAR MIXTURES

The task of blind signa separation (BSS) is that of recovering
unknown source signals from sensor signal's described by:

x(t) = FAs(t)] (1)

where X(1)=[X1,Xz,... X" is an available nxl sensor vector,
s(t)=[s1.5.-...5]" is a nx1 unknown source vector having
stochastic independent and zero-mean non-Gaussian elements
s(t), A is a nxn unknown full-rank and non singular mixing
matrix, and F=[ff,,...f]" are the set of invertible nonlinear
transfer functions. The BSS problem consists in recovering the
source vector S(t) using only the observed data x(t), the
assumption of independence between the entries of the input
vector S(t) and possibly some a priori information about the
probability distribution of the inputs. Statistical independence
means that given one of the source signals, nothing can be
estimated or predicted about any other source signal. If al the
functions f; are linear, (1) reduces to the linear mixing model.
Even though the dimensions of x and s generally need not be
equal, we make this assumption here for smplicity.
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Figure 1: Nonlinear mixing and unmixing model.

Figure 1 shows that the mixing system is divided into two
different phases. first, a linear mixing and second, for each
channd i, a nonlinear transfer part. The unmixing system is the
inverse; first we need to approximate the invert of the nonlinear
function in each channel g;, and then unmix the linear mixing by
applying W to the output of the g; nonlinear function.

v = iw” g, (x, (1) @

In various approaches, the inverse function g; is approximated by
a sigmoida transfer function, but because in certain situations
where the a priori knowledge about the mixing model is not
given by the human expert, a more flexible nonlinear transfer
function based on a p-th order polynomial (odd polynomia) is
used:

P
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Where Q; =[gjl,...,gjp is a parameter vector to be
determined. In thisway, the output sources are calculated as:

Y = ZWU ggjkszk_l @

_

However, computation of the parameter vector gj isnot easy, as

it presents a problem with numerous local minima. Thus we
require an agorithm that is capable of avoiding entrapment in
such a minimum. As a solution to this first unmixing stage, we
propose the hybridization of Genetic Algorithms. We have just
used new meta-heuristics, as simulated annealing and genetic
agorithms for the linear case [5],[15],[16], but in this paper we
will focused in amore difficult problem asisthe nonlinear ICA.

3. GENETIC ALGORITHMSAND BLIND
SEPARATION IN NONLINEAR
MIXTURES

3.1 Genetic Algorithms

GAs are currently one of the most popular stochastic optimisation
techniques. They areinspired by natural genetics and the biological
evolutionary process, and can be characterized by the following
features[6],[11]:

e A scheme for encoding solutions to a problem in the
form of a chromosome (chromosomal representation).

« An evauation function which indicates the fitness of
each chromosome relative to the others in the current set
of chromosomes (referred to as population).

e An initidisation procedure for the population of
chromosomes.

e Genetic operators which are used to manipulate the
composition of the population.

e A st of parametersthat provide theinitia settings for the
algorithm: the population size and probabilities
employed by the genetic operators.

The GA evauates a given population and generates a new one
iteratively, with each successve population referred to as a
generation. Given the current generation at iteration t, G(t), the GA
generates a new generation, G(t+1), based on the previous
generation, applying a set of genetic operations. The GA uses three
basc operators to manipulate the genetic composition of a
population:  reproduction, crossover and mutation  [6].
Reproduction consists in copying chromosomes according to their
objective function (strings with higher evaluations will have more
chances to survive). The crossover operator mixes the genes of two
chromosomes sdlected in the phase of reproduction, in order to
combine the features, especialy their positive ones. Mutation is
occasiona, producing with low probability an ateration of some of
the gene vaues in a chromosome (for example, in binary
representation a 1 is changed into a O or vice versa). Mutation
avoids the convergence to a population with a homogeneous gene
pool and thus guarantees a certain variety of chromosomes.

Given an optimisation problem, simple GAs encode the
parameters concerned into finite bit strings (or real numbers), and
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then run iteratively using genetic operators in a random way but
based on the fitness function evolution to perform the
optimisation task. To perform the GA, it is first very important
to define the fitness function (or contrast function in the BSS
context). This fitness function is constructed bearing in mind that
the output sources must be independent of their nonlinear
mixtures. For this purpose, we must utilize a measure of the
independence between random variables. Here, the mutua
information is chosen as the measure of independence.

3.2 Fitnessfunction

Evauation functions of many forms can be used in a GA, subject
to the minimal reguirement that the function can map the
population into a partially ordered set. As stated, the evaluation
function isindependent of the GA (i.e., stochastic decision rules).
K-L e Mutua Information are stronger than cumulants or
moments, since they use the definition of independence
completely. The problem is to estimate the p.d.f. of the sources;
the estimation of cumulants or moments is easier , more precise
and faster than the estimation of p.d.f. Unfortunately, regarding
the separation of a nonlinear mixture, independence alone is not
sufficient to perform blind recovery of the original signals. Some
knowledge of the moments of the sources, in addition to the
independence, is required. An index similar to that proposed in
[18] and [20],is used for the fitness function:

| =_|og[w|—iEﬁ‘(Zk—l)gikﬁk'Z%f H{Y) ©

In the above expression, the calculation of H(y) needs to
approximate each marginal pdf of the output source vector y,
which are unknown. One useful method is the application of the
Gram-Charlier expansion, which only needs some moments of y;
as suggested by Amari et a. [1] to express each margina pdf of y
as.

log(2re) (k;_)2 B

Hy) =202 ] .
i\
-%+§(k;)2k;+l_l6(kg)3

Where ki =mj, and k;, =m, — 3.

3.3 Synergy between Genetic Algorithms and
Natural Gradient Descent

Given a combination of weights obtained by the Genetic
Algorithms for the nonlinear functions expressed as G=[g;, ...,
On], Where the parameter vector that defines each function g; is

expressed by g; = [gjl,..., Jip |, it is necessary to learn the

elements of the linear unmixing matrix W to obtain the output
sources y;. For this task, we use the natural gradient descent
method to derive the learning equation for W as proposed in
[20]:

AW Ol - o(y)y" W @
Where

d(y) = Fl(k31k4)° y2 + Fz(ks’k4)° y3
9

1
Fl(k31k4):_5k3+zk3 K, 8

1 3, 2. 3 2
Folks k)= —Zk, +=k,” +=k
2( 3 4) 6 4 2 3 4 4
And o denotes the Hadamard product of two vectors.

4. EXPERIMENTAL RESULTS

To provide an experimental demonstration of the validity of
GABSS, we use a system of three sources. The independent
sources are:

_ [sign(cos(2m155t)), C

S = Hin(2m300t + 6 cos(211601), rand ()

©)

Where rand(t) is a random source uniformly distributed in [-
1,1].These signals are first linearly mixed with a 3x3 mixture
matrix

[0.6420 0.3016 -0.38630
:%0.4347 0.82243 -0.31505 (10)
H0.3543 0.3589  0.942 H

The nonlinear distortions are selected as:
1. fl(x)=Tanh(x)
2. f2(x)= 3/100*x>-33/200 x>+ 4/5x
3. 3(x)=9/2500*x° —83/2000 x° + x/2
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Figure 2: Original signals
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optimised, the more complex is the hypersurface of the error

The goal of the simulation was to anayse the behaviour of the
index and the more local minima exist.

GA and observe where the fitness function thus achieved is
optimised; with this aim, therefore, we studied the mixing matrix
obtained by the algorithm and the inverse function. When the i
number of generations reached a maximum value, the best
individual from the population was selected and the estimated ;
signals y were extracted, using the mixing matrix W, and the
inverse function. Figure 2 represents the 1000 samples from the °
origina signals. Figure 3 represents the mixed signals. As an

i
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example, Figure 4 shows the joint distribution of X3 and x, o
mixed signal.
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Figure 3: Mixed signa
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Figure 6: Obtained signa

EVOLUTION OF THE BEST SOLUTION

Figure 4: Detail example of a joint distribution of two mixed
signal

Firstly, we demonstrate the existence of different local minima, osl |
for the simplest example in which only two parameters remain to ol /
be optimised. As an example, when the matrix W is equal to A, ' /
and each of the functions g except one (for example, g;) are T /

optimally calculated, the surface of the error index is shown in R ‘ won__m o w % e
Figure 5 (the index is normalized in the interval [0,1]). Even

with only two parameters, the surface is bumpy and presents ) ) . ) . .
different local minima. The more parameters there are to be Eggtri?)n;. Evolution of the Best Fitness (Normalized fitness

FITNESS FUNCTION
)
o
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Figure 6 shows the separated signal obtained with the proposed
agorithm. Because the these results are achieved dredly by the
presented methoddogy, there exist a different in the scding
fador an in the order of the sources.

Function3

— Unknown
sl Approximated

Function1 Function2

Figure 8: Comparison of the unknown f;* and its approximation by
¢}
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Figure 9: Representation o the joint distribution o the origina
(S), the mixed (X) and oliained (Y) sources (as there exists a
permutation within the signals recovered, the joint representations
are not ordered).

Figure 7 shows the development of the best fitness of the
popuation within eat o the generations, normalized in the
interval [0,1]. It can be seen that, depending on the type of
seledion adopted and its parameters, the value of the optimum
solution increases generation by generation unil it stabilises at
aroundthe 35th generation. In the norlinea transfer function g;
are presented, which succesdully approximate the exad inverse

of fi. Finaly, Figure 9 gives the joint representation d the
origind, mixed and olaned signads. As there eists a
permutation within the signals rewmvered, the joint
representations are not ordered.

5. CONCLUSIONS

Many different approades to the problem of blind separation of
sources have been adopted by numerous reseachers, using
methods such as neural networks, artificial learning, higher order
gtatistics, minimum mutual information, beam forming and
adaptive noise cancdlation, with various degrees of success
being claimed. Despite the diversity of the gproades, the
fundamental idea of the source signals being statisticdly
independent remains the single most important assumption in
most of these schemes. The neura network approadh hes the
drawbad that it may be trapped within locd minima and therefore
does nat dways guarantee optima system performance In bind
source separation of norlinea mixtures, the gproximation o the
norlinea function by the various techniques (nonlinea 1CA,
neural network) meds with a serious difficulty; there ae many
locd minima in the seach spaceof the solution parameters for
adapting nonlinea functions. For this reason, this article
discusses a satisfadory applicaion o genetic dgorithms to the
complex problem of the blind separation d sources. It is widely
believed that the spedfic potential of Genetic or Evolutionary
Algorithms originates from their paralel seach by means of
entire popudations. In particular, the &ility of escaping from
locd optima, an ability very unlikely to be observed in steepest-
descent methods [6],[11]. Although to date, and to the best of the
authors knowledge, there is no mention in the literature of the
synergy between BSSin norinea mixtures and GA, the aticle
shows how GAs provide atool that is perfectly valid as an
approad to this problem.
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