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ABSTRACT 
This article proposes the fusion of two important paradigms, 
Genetic Algorithms and the Blind Separation of Sources 
(GABSS). Although the topic of  BSS, by means of various 
techniques, including ICA, PCA and neural networks, has been 
amply discussed in the literature, to date the possibility of using 
genetic algorithms has not been explored. However, in nonlinear 
mixtures, optimisation of the system parameters and, especially, 
the search for invertible functions is very difficult by the 
existence of many local minima.  From experimental results, this 
paper demonstrates the possible benefits offered by GAs in 
combination with BSS, such as robustness against local minima, 
the parallel search for various solutions, and a high degree of 
flexibility in the evaluation function. 

1. INTRODUCTION 

The separation of independent sources from mixed observed data 
is a fundamental and challenging signal processing problem 
[2],[7],[14]. In many practical situations, one or more desired 
signals need to be recovered from the mixtures. A typical 
example is the case of speech recordings made in the presence of 
background noise and/or competing speakers. The source 
separation problem has been successfully studied for linear 
instantaneous mixtures[1],[4],[12],[14] and more recently, since 
1990, for linear convolutive mixtures [10],[19],[21]. 

Even though the nonlinear mixing model is more realistic and 
practical, most existing algorithms for the BSS problem were 
developed for the linear model. Nevertheless, the linear mixing 
model may not be appropriate for some real environments. 
However, for nonlinear mixing models, many difficulties occur 
and neither the linear ICA nor the existing linear demixing 
methodologies are any longer applicable because of the 
complexity of nonlinear parameters. 

Therefore, researchers have recently started addressing the blind 
source separation problem to nonlinear mixing models 
[8],[13],[17],[18],[20]. In [9],[13] the nonlinear components are 
extracted by a model-free methods using Kohonen’s self-
organizing-feature-map (SOFM). This approach suffers from the 
exponential growth of network complexity and the interpolation 
error that arises in recovering continuous sources. Burel [3] 
proposed a nonlinear mixing model using a two-layer perceptron 
for blind source separation, trained by the classical gradient 
descent method to minimize mutual information. 

In [8] a new set of learning rules for the nonlinear mixing models 
based on the information maximization criterion is proposed. The 
mixing model is divided into a linear mixing part and a nonlinear 

transfer channel, in which the nonlinear functions are 
approximated by parametric sigmoidal or by higher order 
polynomials.  

More recently, Yang et al. [20] developed an information 
backpropagation algorithm for Burel’s model by the natural 
gradient method, using special nonlinear mixtures in which the 
nonlinearity could be approximated by a two-layer perceptron. 
Other important work in source separation in post-nonlinear 
mixtures is presented in [17]. In this methodology, the estimation 
of nonlinear functions and of score functions is done using a 
multilayer perceptron with sigmoidal units trained by 
unsupervised learning. 

A possible extension of ICA to the separation sources in a 
nonlinear mixture is to employ a nonlinear function to transform 
the mixture such that the new outputs become statistically 
independent after the transformation. However, this 
transformation is not unique and without limiting the function 
class for de-mixing transforms, this extension may give 
statistically independent output sources completely different from 
the original unknown sources. Although there exist many 
difficulties in this transformation, several nonlinear ICA 
algorithms have been proposed and developed . 

Nevertheless, one of the greatest problems encountered with 
nonlinear mixing models is that the approximation of the 
nonlinear function by the various techniques (perceptron, 
sigmoidal, RBF, etc.) meets with a serious difficulty; there are 
many local minima in the search space of the solution parameters 
for adapting nonlinear functions. As shown in the experimental 
results section, output surface of a performance index based on 
the mutual information when the parameters of the nonlinear 
functions are modified presents multiple and severe local 
minima. Therefore, algorithms that are based on a gradient 
descent for the adaptation of these nonlinear-function parameters 
may become trapped within one such local minimum. 

In this paper, we propose a new algorithm for the nonlinear 
mixing problem using flexible nonlinearities. This nonlinear 
function may be approximated by even n-th order polynomials. 
We develop an algorithm that makes use of the synergy between 
Genetic Algorithms and the Blind Separation of Sources 
(GABSS) for the optimization of the parameters that define the 
nonlinear functions. Simultaneously, a natural gradient descent 
method is applied to obtain the linear demixing matrix. Unlike 
many classical optimization techniques, GAs do not rely on 
computing local first or second order derivatives to guide the 
search algorithm; GAs is a more general and flexible method that 
is capable of searching wide solution spaces and avoiding local 
minima (i.e. it provides more possibilities of finding an optimal or 
near-optimal solution). GAs deal simultaneously with multiple 
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solutions, not a single solution, and also include random elements, 
which help to avoid getting trapped in sub-optimal solutions. 

2. SYSTEMS OF NONLINEAR MIXTURES  

The task of blind signal separation (BSS) is that of recovering 
unknown source signals from sensor signals described by: 

[ ])()( tAsFtx =  (1) 

where x(t)=[x1,x2,...,xn]
T is an available nx1 sensor vector, 

s(t)=[s1,s2,...,sn]
T is a nx1 unknown source vector having 

stochastic independent and zero-mean non-Gaussian elements 
si(t), A is a nxn unknown full-rank and non singular mixing 
matrix, and F=[f1,f2,...,fn]

T are the set of invertible nonlinear 
transfer functions. The BSS problem consists in recovering the 
source vector s(t) using only the observed data x(t), the 
assumption of independence between the entries of the input 
vector s(t) and possibly some a priori information about the 
probability distribution of the inputs. Statistical independence 
means that given one of the source signals, nothing can be 
estimated or predicted about any other source signal.  If all the 
functions fi are linear, (1) reduces to the linear mixing model. 
Even though the dimensions of x and s generally need not be 
equal, we make this assumption here for simplicity. 

 

Figure 1: Nonlinear mixing and unmixing model. 

Figure 1 shows that the mixing system is divided into two 
different phases: first, a linear mixing and second, for each 
channel i, a nonlinear transfer part. The unmixing system is the 
inverse; first we need to approximate the invert of the nonlinear 
function in each channel gi, and then unmix the linear mixing by 
applying W to the output of the gi nonlinear function. 
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In various approaches, the inverse function gj is approximated by 
a sigmoidal transfer function, but because in certain situations 
where the a priori knowledge about the mixing model is not 
given by the human expert, a more flexible nonlinear transfer 
function based on a p-th order polynomial (odd polynomial) is 
used: 
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Where [ ]jPjj ggg ,...,1=  is a parameter vector to be 

determined. In this way, the output sources are calculated as: 
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However, computation of the parameter vector jg is not easy, as 

it presents a problem with numerous local minima. Thus we 
require an algorithm that is capable of avoiding entrapment in 
such a minimum. As a solution to this first unmixing stage, we 
propose the hybridization of Genetic Algorithms. We have just 
used new meta-heuristics, as simulated annealing and genetic 
algorithms for the linear case [5],[15],[16], but in this paper we 
will focused in a more difficult problem as is the nonlinear ICA. 

3. GENETIC ALGORITHMS AND BLIND 
SEPARATION IN NONLINEAR 
MIXTURES 

3.1 Genetic Algorithms 

GAs are currently one of the most popular stochastic optimisation 
techniques. They are inspired by natural genetics and the biological 
evolutionary process, and can be characterized by the following 
features [6],[11]: 

• A scheme for encoding solutions to a problem in the 
form of a chromosome (chromosomal representation). 

• An evaluation function which indicates the fitness of 
each chromosome relative to the others in the current set 
of chromosomes (referred to as population). 

• An initialisation procedure for the population of 
chromosomes. 

• Genetic operators which are used to manipulate the 
composition of the population. 

• A set of parameters that provide the initial settings for the 
algorithm: the population size and probabilities 
employed by the genetic operators. 

The GA evaluates a given population and generates a new one 
iteratively, with each successive population referred to as a 
generation. Given the current generation at iteration t, G(t), the GA 
generates a new generation, G(t+1), based on the previous 
generation, applying a set of genetic operations. The GA uses three 
basic operators to manipulate the genetic composition of a 
population: reproduction, crossover and mutation [6]. 
Reproduction consists in copying chromosomes according to their 
objective function (strings with higher evaluations will have more 
chances to survive). The crossover operator mixes the genes of two 
chromosomes selected in the phase of reproduction, in order to 
combine the features, especially their positive ones. Mutation is 
occasional, producing with low probability an alteration of some of 
the gene values in a chromosome (for example, in binary 
representation a 1 is changed into a 0 or vice versa). Mutation 
avoids the convergence to a population with a homogeneous gene 
pool and thus guarantees a certain variety of chromosomes. 

Given an optimisation problem, simple GAs encode the 
parameters concerned into finite bit strings (or real numbers), and 
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then run iteratively using genetic operators in a random way but 
based on the fitness function evolution to perform the 
optimisation task.  To perform the GA, it is first very important 
to define the fitness function (or contrast function in the BSS 
context). This fitness function is constructed bearing in mind that 
the output sources must be independent of their nonlinear 
mixtures. For this purpose, we must utilize a measure of the 
independence between random variables. Here, the mutual 
information is chosen as the measure of independence. 

3.2 Fitness function 

Evaluation functions of many forms can be used in a GA, subject 
to the minimal requirement that the function can map the 
population into a partially ordered set. As stated, the evaluation 
function is independent of the GA (i.e., stochastic decision rules). 
K-L e Mutual Information are stronger than cumulants or 
moments, since they use the definition of independence 
completely. The problem is to estimate the p.d.f. of the sources; 
the estimation of cumulants or moments is easier , more precise 
and faster than the estimation of p.d.f. Unfortunately, regarding 
the separation of a nonlinear mixture, independence alone is not 
sufficient to perform blind recovery of the original signals. Some 
knowledge of the moments of the sources, in addition to the 
independence, is required. An index similar to that proposed in  
[18] and [20],is used for the fitness function: 
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In the above expression, the calculation of H(yi) needs to 
approximate each marginal pdf of the output source vector y, 
which are unknown. One useful method is the application of the 
Gram-Charlier expansion, which only needs some moments of yi 
as suggested by Amari et al. [1] to express each marginal pdf of y 
as: 
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Where 3 and , 4433 −== iiii mkmk .  

3.3 Synergy between Genetic Algorithms and 
Natural Gradient Descent 

Given a combination of weights obtained by the Genetic 
Algorithms for the nonlinear functions expressed as G=[g1, ..., 
gn], where the parameter vector that defines each function gj is 

expressed by [ ]jPjj ggg ,...,1= , it is necessary to learn the 

elements of the linear unmixing matrix W to obtain the output 
sources yj. For this task, we use the natural gradient descent 
method to derive the learning equation for W as proposed in 
[20]: 

[ ]WyyIW T)(Φ−∝∆ η  (7) 
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And � denotes the Hadamard product of two vectors. 

4. EXPERIMENTAL RESULTS 

To provide an experimental demonstration of the validity of 
GABSS, we use a system of three sources. The independent 
sources are:  
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Where rand(t) is a random source uniformly distributed in [-
1,1].These signals are first linearly mixed with a 3x3 mixture 
matrix 
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The nonlinear distortions are selected as: 

1. f1(x)=Tanh(x) 

2. f2(x)= 3/100*x5-33/200 x3+ 4/5x 

3. f3(x)=9/2500*x5 –83/2000 x3 + x/2 

 

Figure 2: Original signals 
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The goal of the simulation was to analyse the behaviour of the 
GA and observe where the fitness function thus achieved is 
optimised; with this aim, therefore, we studied the mixing matrix 
obtained by the algorithm and the inverse function. When the 
number of generations reached a maximum value, the best 
individual from the population was selected and the estimated 
signals y were extracted, using the mixing matrix W, and the 
inverse function. Figure 2 represents the 1000 samples from the 
original signals. Figure 3 represents the mixed signals. As an 
example, Figure 4 shows the joint distribution of x3 and x2 
mixed signal. 

 

Figure 3: Mixed signal  

 

Figure 4: Detail example of a joint distribution of two mixed 
signal 

Firstly, we demonstrate the existence of different local minima, 
for the simplest example in which only two parameters remain to 
be optimised. As an example, when the matrix W is equal to A-1, 
and each of the functions gj except one (for example, g1) are 
optimally calculated, the surface of the error index is shown in 
Figure 5  (the index is normalized in the interval [0,1]). Even 
with only two parameters, the surface is bumpy and presents 
different local minima. The more parameters there are to be  

optimised, the more complex is the hypersurface of the error 
index and the more local minima exist. 

 

Figure 5: Output surface of the fitness function when  all the 
parameters of the unmixing system are optimally calculated, 
except the two parameters of the function g1 

  

Figure 6: Obtained signal 

 

Figure 7: Evolution of the Best Fitness (Normalized fitness 
function) 
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Figure 6 shows the separated signal obtained with the proposed 
algorithm. Because the these results are achieved directly by the 
presented methodology, there exist a different in the scaling 
factor an in the order of the sources. 

 

Figure 8: Comparison of the unknown f i
-1 and its approximation by 

gi 

 

Figure 9: Representation of the joint distribution of the original 
(S), the mixed (X) and obtained (Y) sources (as there exists a 
permutation within the signals recovered, the joint representations 
are not ordered). 

Figure 7 shows the development of the best fitness of the 
population within each of the generations, normalized in the 
interval [0,1]. It can be seen that, depending on the type of 
selection adopted and its parameters, the value of the optimum 
solution increases generation by generation until it stabilises at 
around the 35th generation. In  the nonlinear transfer function gi 
are presented, which successfully approximate the exact inverse 

of f i. Finally, Figure 9 gives the joint representation of the 
original, mixed and obtained signals. As there exists a 
permutation within the signals recovered, the joint 
representations are not ordered. 

5. CONCLUSIONS 

Many different approaches to the problem of blind separation of 
sources have been adopted by numerous researchers, using 
methods such as neural networks, artificial learning, higher order 
statistics, minimum mutual information, beam forming and 
adaptive noise cancellation, with various degrees of success 
being claimed. Despite the diversity of the approaches, the 
fundamental idea of the source signals being statistically 
independent remains the single most important assumption in 
most of these schemes. The neural network approach has the 
drawback that it may be trapped within local minima and therefore 
does not always guarantee optimal system performance. In blind 
source separation of nonlinear mixtures, the approximation of the 
nonlinear function by the various techniques (nonlinear ICA, 
neural network) meets with a serious diff iculty; there are many 
local minima in the search space of the solution parameters for 
adapting nonlinear functions. For this reason, this article 
discusses a satisfactory application of genetic algorithms to the 
complex problem of the blind separation of sources. It is widely 
believed that the specific potential of Genetic or Evolutionary 
Algorithms originates from their parallel search by means of 
entire populations. In particular, the abil ity of escaping from 
local optima, an ability very unlikely to be observed in steepest-
descent methods [6],[11]. Although to date, and to the best of the 
authors' knowledge, there is no mention in the literature of the 
synergy between BSS in nonlinear mixtures and GA, the article 
shows how GAs provide a tool that is perfectly valid as an 
approach to this problem. 
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