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ABSTRACT

Contribution of this paper is the derivation of an algorithm
that generalizes Bell & Sejnowski’s classic ICA to tackle
nonlinear ICA and the introduction of a new and efficient
form of ”natural gradient”. This algorithm uses power se-
ries of non-linear mixtures to approximate the Taylor ex-
pansion of the inverse function mapping from sources to
mixtures. The approximation enables derivation of learn-
ing rules for weight matrix associated with power series of
any order. When applied to blind source separation, it suc-
cessfully separated non-linear mixtures for which Bell &
Sejnowski’s algorithm could not due to its linear mixture
model. In separating linear mixtures using this algorithm,
the weight matrices for higher order mixtures converge to
zero matrix. This is consistent with intuition, suggesting
the validity of the generalization.

1. INTRODUCTION

Recently three classes of methods have been proposed for
problems in which nonlinear mixtures of independent sources
are to be separated, i.e, nonlinear ICA. The first class of
methods adds nonlinear mixing model to the linear model
[1] [2] [3] [4]. These methods resemble linear ICA meth-
ods very much with the only drastic difference being the in-
troduction of unknown scaling and slope parameters to the
nonlinear transfer function(recall that in ICA, this nonlinear
transfer function is the same for all mixtures, e.g, logistic
function

�
���������
	 ). The drawback of introducing these pa-

rameters is that it limits the flexibilityof the model. The sec-
ond class of methods employ self-organizing maps(SOM)[5]
to form a network structure equivalent to topology of the
sources so that the SOM represents the inverse of the non-
linear transformation [6] [7]. SOM-based methods offer
greater flexibilitywithout introducing more parameters. One
disadvantage of SOM-based approaches is its computational
complexity. The third class of methods use traditional lin-

ear approximation to non-linear problems using Taylor ex-
pansion or other orthogonal expansion such as Fourier ex-
pansion and discrete wavelet expansion [8]. Some methods
have been reported to use Taylor expansion around sources
to approximate the nonlinear mixing process. The problem
with these methods is that the sources are unknown before-
hand hence the Taylor expansion is hard to do the around
unknown sources. So far only an expansion to the second
order has been shown in literature due to this difficulty. Our
approach belongs to the third class of methods. Instead of
expanding the nonlinear mapping from sources to mixtures,
our expansion is done in the other direction, i.e, from mix-
tures to sources. This is justified by observations that ex-
pansion can be done around the given mixtures and that the
mixing process can modeled by doing the Taylor expansion
of the inverse of the un-mixing process.

This paper presents an algorithm that generalizes Bell
& Sejnowski’s [9] classic ICA to tackle nonlinear ICA. The
generalization lies in that more weight matrices are intro-
duced to higher order mixtures while in Bell & Sejnowski’s
work [9] there is only one weight matrix for the mixtures of
first order and another one of zero-th order. The key idea of
this algorithm is to use power series of non-linear mixtures
to approximate the Taylor expansion of the inverse func-
tion mapping from independent sources to mixtures. This
approximation enables the derivation of learning rules for
weight matrix associated with power series of any order.
Simulation results have shown success of this generaliza-
tion. When applied to blind audio source separation, it suc-
cessfully separated two non-linear mixtures for which Bell
& Sejnowski’s algorithm [9] could not, inherently due to
its linear mixture model. Interestingly, in separating lin-
ear mixtures using this algorithm, the weight matrices for
higher order mixtures converge to zero matrix. This is con-
sistent with intuition, suggesting the validity of the general-
ization. And what’s more, in contrast to the notion of ”nat-
ural gradient” [10] by multiplying a symmetric matrix to
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the right-hand side of the learning rules, another new and
efficient notion of ”natural gradient” is introduced by mul-
tiplying from the left-hand side of the rules.

The organization of the paper is as follows. In Section
2, an overview of the nonlinear ICA model is given, our ap-
proach is introduced. Generalization of Tony & Sejnowski’s
one-input-one-output network is shown in Section 3. Gen-
eralization of their N-input-N-output network is shown in
Section 4. Section 5 details the experiment results. Some
discussion on the weakness of the proposed algorithm is
carried out in Section 6. Conclusions and future research
can be found in Section 7.

2. NONLINEAR ICA MODEL & POWER SERIES
APPROXIMATION

The N nonlinear mixed signals � ����� � � � ��� are related to N
independent source signals � ����� � � � �	� through:� ��

����� � ����� � � � �	������ 

� � � � ����� � � � �	���

...��� 
�� � � � ����� � � � �	��� �
This can be denoted in vector form:� 

����� � (1)

To reconstruct the original signals, another nonlinear
transformation is applied to � ����� � � � ��� to get � ����� � � � ��� through:� ��
�� ��� � ����� � � � �������� 
�� � � � ����� � � � �����

...��� 
�� � � � ����� � � � ����� �
Or equivalently: � 

��� � � (2)

Hopefully � ����� � � � ��� can be a good approximation to � ����� � � � �	�
subject to permutation and scaling and statistically indepen-
dent of each other.

Our proposed approach to this problem is using power
series of � ����� � � � ��� to approximate the Taylor expansion
of functions � ����� � � � � � . The approximated relationship be-
tween � ����� � � � ��� and � ����� � � � ��� is expressed as:� 
"!$#&%�!('*) � %�!,+-) � + %.������%�!$/0) � / %.�����

(3)
where !$# is a bias-weight vector and !,/ is the weight
matrix associated with the n-th power of X, i.e,

�21
. To

clarify notations, !,# , !$/ and
� 1

are expressed in the
following matrix and vector form:

!$#*
 345 687
�

...687 �
9�:; � (4)

!$/<
 345 �>= 1 � ���?�����@�>= 1 � � �
...

...�>= 1 �A� �B�����C�>= 1 �A���
9�:; (5)

� / 
 345 � 1 �
...� 1�

9�:; � (6)

Then
�

is passed through a transformation function D to
give an output vector E , i.e,345GF �...F �

9 :; 
 345 �
����� ����H

...
�

���������JI
9 :; � (7)

Here the logistic function E 
 �
����� �LK is used although

other strictly increasing or decreasing functions can also be
used such as tanh.

In order to maximize the mutual information between
X and U, i.e, the sources and the mixtures, it is equivalent
to maximize the mutual information between X and Y since
the mapping from U to Y is deterministic. Bell & Sejnowski
[9] have shown the above information maximization is also
equivalent to maximizing the differential entropy [11] of the
output Y alone. The generalization here is that weight ma-
trices are introduced to higher power terms of X hence more
learning needs to be done.

Derivation of the learning rules for the weight matrices!$#M�N!('L��� � � �N!$/O��� � � is by a similar method to Bell & Se-
jnowski’s. Some key differences are also worth discussing.
The derivation starts now.

3. GENERALIZATION OF TONY & SEJNOWSKI’S
ONE-INPUT-ONE-OUTPUT NETWORK

In the case of one-input-one-output network from x to u and
transfer function from u to y being logistic, their relation-
ships can be expressed as � 
P= 7 %"= � � %"= ��� � %Q� � �L%= 1 � 1 %
� � � and F 
 �

����� �LR . The stochastic gradient ascent
ruleS =UTWVYX�Z � F �X =UT 
[XX =UT]\M^>_2```` X FX � ````

a 
 \ X FX � a�b � XX =UT*\ X FX � a
(8)

gives us the following learning rules:
S = 7 Vc�AdUe�f F � (9)
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S = ��V �= � % f�= ��� %.� � ��% _ = 1 � 1 b � %.� � � %
�Ad�e�f F � �(10)
S = � V f �= � % f�= �J� %.� � ��% _ = 1 � 1 b � %.� � � %
�AdUe�f F � � �(11)

...S = 1 V _ � 1 b �= � % f�= �J� %.� � ��% _ = 1 � 1 b � %.� � � %
�AdUe�f F � � 1(12)
where the following useful equation is used:X FX � 
 F �Ad e F � X �X � 
 F �Ad e F � �>= ��%�f�= � � %*� � � % _ = 1 � 1 b � %*� � � � �

(13)
In one-input-one-output network case, the above results are
the direct generalization of Bell & Sejnowski’s [9] in that if
only = 7 �N= � are used to form u then the derivation becomes
identical.

The above derivation serves as good guideline for the
N-input-N-output network problem, which is much more
mathematically involved.

4. GENERALIZATION ON N-INPUT-N-OUTPUT
NETWORK

In the case of N-input-N-output network from X to U and
transfer function from U to Y again being logistic, the stochas-
tic gradient ascent rule becomes:S ! � V XX ! � � ^>_ � ��� � (14)

The Jacobian J of the transformation [12] from X to Y can
be shown to have the following relation with ! ' ��� � � �N!$/���� � � :

� 
 �����
	�� � ) 
�1�� � F �T (15)

where

F �T 
 X F TX � T (16)

�$
.!('U% f�!,+��������O� � � %.� � ��% _ !$/��������O� � / b ' � %.� � �
(17)

and diag(X) represents forming a diagonal matrix using the
elements of vector X, i.e,

�������O� � � 
 34445 �
��� �������

� ��� �������
...

...
� ����� ����� ���

9�:::; (18)

The learning rules for !,# �N!(' ��� � � �N!$/���� � � can be shown
to be the following:

S !$#*V��]e�� E (19)

S !('�V � �"! � b � %
���]e�� E8� �$#
(20)

S !,+]V�fM� �"! � b � �������O� � � %
���]e�� E8� � � + � # (21)

...
S !$/ V _ � �"! � b � �������O� � / b ' � % ���]e�� E8� � � / � # (22)

...

where 1 is a vector of ones. A skeleton of the derivation
is in the Appendix. The extreme similarity of the above
results to the ones in one-input-one-outputnetwork can help
to understand these results.

These results resemble Bell & Sejnowski’s [9] when
only !$# �N!(' are taken into account. However a major
difference between these results and theirs is that weight
matrices !$# �N!('L��� � � �N!$/O��� � � appear in the update rules
for !$# �N!(' ��� � � �N!$/���� � � due to the Jacobian term J. An-
other big difference is the appearance of multiplication from
right-hand side of the diagonal matrix terms. This makes it
inappropriate to use the ordinary notion of ”natural gradi-
ent” [10] for the learning rules to avoid matrix inversion and
speed up convergence. The introduction of ”natural gradi-
ent” by Amari et al has been a big step in the research of
ICA where a term ! # ! is multiplied to the learning rules
from the right-hand side of the equations. Instead we pro-
pose that a term �"� #

be multiplied to the above rules from
the left-hand side to avoid matrix inversion. Theoretical im-
pact of this difference is worth further investigation. Doing
this generates another set of learning rules:S !$#*V%�"� # ���]e�� E8� (23)S !('�V&� %��"� # ���]e�� E8� � #

(24)
S !,+]V�f��"�������O� � � %��"� # ���]e�� E8� � � + � # (25)

...
S !$/ V _ �"�������O� � / b ' � %'�"� # ���]e�� E8� � � / � # (26)

Experiment results validate this multiplication from the left-
hand side. Details are in Section 5.

5. EXPERIMENT RESULTS ON BLIND SOURCE
SEPARATION

5.1. Separation with Linear Mixture Using Nonlinear
ICA

4 speech clips from a set of test data clips provided by
Prof. Dan Ellis at Columbia University are mixed by a ran-
domly generated linear matrix M. These clips are available
at http://www.ee.columbia.edu/ ( dpwe. The pre-whitened
mixtures are fed into the nonlinear ICA algorithms devel-
oped above. The pre-whitening is done using linear Princi-
ple Component Analysis(PCA).
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In one experiment, only power series up to second order
without bias-weight term, i.e, only ! ' �N!,+ are used. First,
the algorithm using the Euclidean gradient is tested, i.e, the
weight update uses Equation (19), ����� , (22). Intuitively, if
the original statically independent sources are to be sepa-
rated, the matrix !(+ should converge to zero matrix and!(' should converge to contribute mostly to the reconstruc-
tion of the original sources. Experiment results confirm this
intuition. An example of the final values of ! ' �N!,+ after
sweeping the speech samples once are:

!('�
 3445 �M� ������� �M� ������� e �M� ����� d �M� �Md	�Lf
�M� d	����� e �M� �����Lf �M� d�f
��� e �M� ���Lf��
�M� f��Lf�� �M� ���
��� e �M� d
��� f e �M� �����Lf
�M� ������� �M� d	����� d � f������ e �M� d d
�
�

9�::;
(27)!,+]
 3445 �M� ������� �M� �Md�f�� �M� �Lf��Lf e �M� �������

�M� �Lf
��� e �M� ������� �M� �Md d	� e �M� �Lf��Md
�M� ������� �M� ������� �M� �Md d	� e �M� �����
�
�M� ������� e �M� ������� �M� ���Md
� e �M� ���Md	�

9�::; (28)

Most of the elements in ! ' are 10 times greater in magni-
tude than those in !(+ . !,+ shows the trend of converging
to zero matrix. The product of ! ' and the above mixing
matrix after undoing the pre-whitening is shown to be:

!('�� 
 3445 e �M� f
����� f d � �����
� �M� f������ f � f f d�f
�M� d	���Md e �M� � f���� e&f��M� ���Md
� �M� ���
���e�d � �����Md d � ���Lf f �M� ���Md�� e&f�� � ���Md
�e&f��M� ������� e �M� d	����� �M� ��� d�f d � �
�����

9�::;
(29)

Listening test shows clearly the separation of the mixtures
and almost perfect reconstruction of the originals.

When the weight matrices are updated by Equation (23),����� , (26), same conclusion about ! ' �N!,+ can be drawn
and moreover the convergence is greatly sped up plus the
quality of the reconstruction of the original speeches is even
better. To illustrate this, the product of ! '
� in this case
is shown below:

!('�� 
 3445 e �M� f f���� e&f��M� ���Md	� e �M� d	����� �M� �������
�M� �����Md e �M� �Md	�Lf �M� ���
��� e����M� �������
�M� ������� e �M� ���
��� f��M� ���Lf f �M� ���Lf��d	�M� �Lf���� e �M� d	����� �M� �Md���� e�d � d�f��
�

9�::;
(30)

The masking of the target speech over interference speeches
can be seen to be more dramatic in Equation (30) than Equa-
tion (29). This can explain why the quality of the recon-
struction of the original speeches is better using the ”natural
gradient”. Once again, notice that this ”natural gradient” is
implemented by multiplying �"� #

from the left-hand side.

5.2. Separation with Nonlinear Mixtures

Two audio clips from the same collection of test data as
above are non-linearly mixed manually. One example of

the nonlinear relationship used is as follows:

\ � ���� a 
 \ ����� � ��� �	���� � � � ��� �	��� a 
 \ f-) � �
� ) � � � % �	� a (31)

This examples gives a rather simple reconstruction formula:

\ � ���� a 
 \ � � � � ��� ���	�� � � � ��� ���	� a 
 \ �� � ���� e��� � � � a (32)

That is,

\ � ���� a 
 \ �� �
� d a \ � ���� a % \ � �e��� �

a \ � � �� �� a
(33)

The mixtures were not able to be separated by Bell & Se-
jnowski’s [9] algorithm due to the inherent nonlinearity of
the problem and the nature of their linear algorithm. Our
nonlinear algorithm with our version of ”natural gradient”,
however successfully separates out the independent sources
and the listening tests show almost perfect masking of the
interfering speech. ! ' �N!,+ are shown to be of the fol-
lowing after convergence one sweep through all the speech
samples: !('�
 \ �M� ���Lf�� e �M� �������

�M� d	���Md �M� � f��Md a
(34)!,+�
 \ �M� d d���� e �M� d
�����

�M� f��Md
� e �M� �Md
�
� a (35)

The above !('L�N!,+ resemble the ideal weight matrices sub-
ject to scaling and sign change.

Interestingly, when an order 3 algorithm is applied to
this problem, the weight matrix associated with power se-
ries of the third power also converges to zero matrix as it
is the case when a nonlinear ICA is used in linear mixture
case. This shows that the algorithm successfully captures
the quadratic relationship between U and X. The experiment
gives essentially the same ! ' �N!,+ and the following val-
ues for element of matrix !�� :!��*
 \ e �M� ������� e �M� �Md	���e �M� �����MdBe �M� �����Lf a (36)

The proposed ”natural gradient” by multiplying �"� #
is

also shown to be effective.

6. DISCUSSION

The proposed algorithm using power series for nonlinear
ICA has shown some success in certain applications. How-
ever the algorithm is still quite limited for real world non-
linear ICA problems. This is due to at least the following
two reasons.

For one, it is difficult to decide the accuracy of the ap-
proximation when power series are used to approximate the
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Taylor expansion. Ideally Equation (3) should involve many
cross production terms such as � � ��� � � � � 1 and ���&� 1 . One
example is used to better illustrate this. A second order Tay-
lor expansion takes the following form:

\ � ���� a 
 3445 � � %�� ��� � � %�� � �J��� %�� � � � ���% � ��� � � � %�� � ��� ��
� � %�� � � � � %�� � �J��� %�� �J� � ���% � � � � � � %�� � ��� ��

9�::; (37)

or another matrix form:

\ � ���� a 
 \ � �
� � a % \ � ����� � � � � � ��� � � �

� � ��� � � � � � � � � � � a
344445

� ����� � ���� � �� ��
9�::::;

(38)
Altogether there are 12 weight elements that need to be
updated. But the power series expansion is Equation (3)
only update 10 of them, ignoring the ones( � �	��� � ) for cross
production term � � ��� . The approximation can be worse
when even higher power series are used. The justification
on using power series as in Equation (3) may be its elegant
derivation of the learning rules for all square matrices as
shown in Equation (19), ����� , (22) or Equation (23), ����� , (26)
rather than learning a rectangular matrix as in Equation (38),
which has been shown to be of much higher complexity[13].
Our experiment results do show the degradation of perfor-
mance when higher and higher order power series are used
for Taylor expansion, partly due to this reason.

For another, the introduction of higher order power se-
ries causes a problem that is not in accordance with the
assumption that statistically independent un-mixed outputs
are the original sources, i.e, the independence criteria is
not enough to recover the original sources. For example,� � 
 � ��% � � � � ��� 
 � �� are statistically independent and
possibly be the recovered signals, but obviously they are not
the original sources. This is also one problem for the Taylor
expansion based approaches, as explained on Page 134-135
in [8]. More research is needed to find other criteria to solve
this problem.

7. CONCLUSION AND FUTURE WORK

Contribution of this paper is the derivation of an algorithm
that generalizes Bell & Sejnowski’s [9] classic ICA to tackle
nonlinear ICA and the introduction of a new and efficient
form of ”natural gradient”. The proposed algorithm has
shown some success in certain applications. However the
algorithm is still quite limited for real world nonlinear ICA
problems due to degradation of the approximation accuracy
when higher and higher power series are used and the fact
that the independence criteria is not enough to recover the

original sources when power series are used without the in-
troduction of other criteria.

Several directions are ahead. One is the theoretic study
on the introductionof new criteria to solve the inherent prob-
lem pointed out in Section 6 and [8]. Another is the ap-
plication of the derived algorithm to the eigen-face deriva-
tion and face recognition project at University of Illinois
at Urbana-Champaign(see http://www.ifp.uiuc.edu for more
detail), at least using the lower order power series. The third
one is the application of nonlinear ICA to over-complete
representations in which fewer mixtures than sources are
available [13]. Our approach will rely on making as many
mixtures as sources by decomposing a mixtures into two
using digital wavelet transformation. The manually-made
mixtures, having the same number of mixtures as sources,
are complex nonlinear mixtures.

8. APPENDIX: PROOF OF EQUATION (19), ����� , (22)

The proof is similar to that by Bell & Sejnowski [9] with
some subtle difference. First notice K in Equation (17) is
the derivative of U in Equation (3). Next, the stochastic
gradient can be shown to be:S ! � VYX�Z � E8�X ! � 
 XX ! � ^>_ � ���

(39)

or, S ! � V XX ! � ^>_ � ���
	�� � % XX ! � ^>_ � T ``` F �T ``` � (40)

Assume ! � ’s are pair-wise independent variables for all i
and all �>=UT �	��
 ’s are also pair-wise independent for any fixed
i and all j, k. The following equation can be obtained:XX �>= 1 � T � ^>_ � ���
	�� � 
 �
� � ��� 	���� �N�>= 1 � T ��� _ � 1 b �T

���
	�� � � (41)

In vector form, it is:XX !$/ ^>_ � ���
	�� � 
 _ � � ����� � !
���
	��

� 1 b � 
 _ � �"!�� b � � 1 b � �
(42)

which gives the first term in Equation (22). Notice the term_ � 1 b �T in Equation (41) leads into the difference between
the final result here and Bell & Sejnowski’s.

The second term in Equation (22) follows the same ar-
gument as in Bell & Sejnowski [9]. The derivation is thus
omitted.
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