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Abstract— Pixel unmixing of multispectral astronomical
images was examined as a blind source separation of an
instantaneous mixture. The capabilities of separation al-
gorithms were tested on different simulated images. The
results showed that only in case of a high signal-to-noise
ratio fine separations can be carried out. In this commu-
nication, the improvements resulting from a pre denoising
are examined. Optimal linear smoothing and two adaptive
wavelet denoisings were applied before separation. The in-
crease of the separation quality of the obtained sources is
discussed according to both the separation algorithms and
the denoising methods.
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I. INTRODUCTION.

HE analysis of multispectral astronomical images can
be examined as a blind source separation (BSS) of
an instantaneous mixture [13]. The image model consists
to set that each pixel value results from the contribution
of different physical sources S; giving a pixel mixing. In
the hypothesis that this mixing is linear, each image X; is
written as:
X; = Zaiij + N; (1)
where the matrix A = [a;;] is called the mixing matrix, N;
is the noise of image X;. A and S, the vector formed by the
sources S;, are unknowns. The equation (1) is an ill-posed
problem. Then a unique solution can only be obtained by
introducing some constraint. It is a goal of BSS methods
to provide the optimal one. The mixing generally increases
the statistical dependence between the images; thus the
search for the most physically independent sources is the
main working direction.

A typical astronomical images set was analyzed with BSS
algorithms [13]. The resulting sources obtained with dif-
ferent algorithms were pertinent from a physical insight.
A set of experiments was also done on different simulated
images the statistical properties of which being similar to
astronomical ones [14].

The experimented BSS methods were based on different

assumptions:
o A first kind of methods, called Independent Component
Analysis (ICA) [5], takes into account the non-Gaussianity
of the source probability density functions (PDF), which is
measured by high order statistics (HOS);
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¢ The reduction of the spatial correlations between shifted
sources is taken into account in the Second Order Blind
Identification algorithm (SOBI,[1]) and related methods.

Our results on simulated images showed that fine sep-
arations can be provided from the two BSS types in case
of a high signal-to-noise ratio (SNR). For low SNRs the
separation quality felt down for both approaches.

The application of denoising methods is a natural idea.
Linear smoothing was first applied in order to reduce the
noise. That led to increase the separation quality. As
smoothing decreases the peak intensities, we examined
adaptive denoising methods in order to keep the largest
values which play an important role in ICA. In this com-
munication the effect of different denoising methods on dif-
ferent BSS algorithms was examined.

II. TESTs oF BSS ALGORITHMS.
A. The simulation.

We tested BSS algorithms on a set of simulated images
with properties similar to astronomical ones. First, a pro-
gram generated a set of images containing random Gaus-
sian patterns (Figure 1). Each Gaussian was characterized
by a central position, a major and a minor axes, an orienta-
tion and a central intensity. Each parameter was randomly
determined with a probability density function (PDF) tak-
ing into account the properties of an astronomical image.

Then, the images were randomly mixed with positive
weighting coefficients. This positivity constraint was set in
order to take into account the specificity of astronomical
images. The mixtures to be processed are displayed on
Figure 2. We note that the PDFs and the autocorrelation
functions of the sources are statistically identical.

B. Euvaluation of the restoration quality.

As the true mixing coefficients @;; are known, the quality
of the restoration can be evaluated. The restored sources
S are computed by the relation:

S = BX (2)

where B = [b;;] = A~! is the demixing matrix and X
the mixtures. Without taking into account the noise, the
following relation is verified:

X=45 (3)

where A is the true mixing matrix and S the true source
vector. Hence it comes:

S=BAG. (4)



Fig. 1. Simulated Gaussian patterns. Each block corresponds to an
initial source.
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Fig. 2. Simulated mixtures without noise.

The matrix D = BA is the product of a permutation
matrix by a diagonal one in case of a perfect separation.
If not, its coefficients are spread since the restored sources
are a combination of the original ones. A criterion is then
provided by this dispersion. For a given restored source 5

we have:
Sj = djpSp. (5)
j/

The energy terms e;; = d?j, are computed and sorted by
increasing values. For a perfect restoration, only the last
term is not equal to 0 for any permutation between the
restored and the original sources. Let us call r;: the e;
rank; the concentration of the energy is measured through
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the Gini index [9]:
1 2 2o €T
Zj’ €5’

G; = 01if all the e;» are equal, G; = 1 if all the e;: but
one are null. Then G; provides a perfect information on
the quality of the source restoration. The separation is

evaluated by:
G=> Gy (7)
J

Experimentally G defines a criterion which is consistent
with a visual inspection of the resulting sources.

Gy = —(n+ 1. (6)

n—1

IT1I. SMOOTHING AND ADAPTIVE DENOISING.
A. BSS and linear smoothing.

Since the noise decreases the algorithm performances, it
is natural to try to reduce it. A linear smoothing of the
data is a common way to do it. Many filters can be im-
plemented. The Wiener filter is theoretically the optimal
one for stationary Gaussian signal and noise. If we may
often admit that the noise is effectively stationary Gaus-
sian, there is generally no evidence that the signal can be
associated to a stationary Gaussian process.

ICA is based on the non-Gaussianity and the main infor-
mation for these related algorithms is therefore supported
by the largest pixel values. The smoothing tends to de-
crease the peak intensities reducing the non-Gaussianity of
the distribution.

The cross correlations between shifted sources are used
in SOBI [1]. The information at the highest frequencies
is removed by a smoothing and this slightly modifies the
correlations between the sources.

Hence a linear smoothing would not be a priori optimal
for improving the separation of the sources for the two
types of BSS algorithms.

In order to avoid the reduction of the peak intensities
related to the signal an adaptive denoising on the mixtures
can be applied. Within this approach, the signal proper-
ties are not considered as stationary and the smoothing de-
pends on the local environment. In the past decade, many
algorithms based on the wavelet transform were proposed
for this task. This transformation concentrates the signif-
icant information into few coefficients, while the noise 1s
spread on the whole set. By restoring the signal from the
relevant coefficients a large part of the noise is removed.
When compared to a linear smoothing the results are com-
pletely different. The smoothing spreads the peaks whereas
the adaptive denoising selects them and restores a signal
quite free of noise while keeping the peaks with their true
intensity. The information in the highest frequency band
is also selectively kept, leading to larger shifted cross cor-
relations than in case of a uniform smoothing.

B. The optimal smoothing.
The Wiener filter is computed by [15]:
S(u,v)
S(u,v) + N(u,v)




where S(u,v) and N (u,v) are respectively the spectral en-
ergy density of the signal and of the noise. (u,v) are the
spatial frequencies.

S(u,v) was estimated by taking into account the four
mixtures without noise. The different Wiener filters were
computed for each experimented Gaussian white noise.
The filters looked like the Fourier transform of a Gaussian.
Then the optimal smoothing was achieved by a simple fit-
ted Gaussian smoothing. The mixture images correspond-
ing to the same noise are smoothed with the same Gaussian
mask.

C. The wavelet transform denoising.

Many different approaches of denoising with the wavelet
transform were developed. The main principles are :

o Application of a discrete wavelet transform (DWT): The
standard DWT based on the multiresolution theory [10]
is unredundant. The shift invariance is not kept and ar-
tifacts are consequently generated. Starck & Bijaoui [17]
developed another approach based on the so-called d trous
algorithm while Coifman & Donoho introduced a special
case of this algorithm, called the shift-invariant discrete
wavelet transform (STDWT) [6].

o Thresholding: Donoho applied first a hard thresholding
[7], zeroing the coefficients under the threshold, then a soft
thresholding which reduces artifacts implied by the result-
ing discontinuities. Starck & Bijaoui developed a thresh-
olding from a statistical decision rule [17].

¢ Restoration: In the case of a unredundant transform
the restoration is generally done by a simple inverse trans-
form. The application of a redundant transform enlarges
the restoration possibilities. A regularization criterion can
be introduced for selecting the best restoration [2].

The a trous algorithm with a cubic B-spline wavelet was
chosen for denoising the mixtures. This transform is well
suited for processing astronomical images which display dif-
fuse spots.

D. The a trous algorithm.

Let us consider a discrete image v(k,l). We pose :
v(k, ) = (0, k) =< f(x,y), ¢z —k,y—1) > (9)

where ¢(x,y) is the scaling function which satisfies the di-
lation equation:

:Zh(n m)¢(x —n,y—m) (10)
We define the approximation coefficients as:
. 1 x—k y—1

c(i k1) = Y < f(z,1), 6( TR ) > (11)

where 7 1s the current scale. The recursive relation is ob-

tained:

cli+1,k1) =

Zhnm

ik +n2' 1+m2Y). (12
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The centered cubic B-spline is chosen. It corresponds to:
h(n,m) = hg(n)hs(m) (13)

were hz(n) is equal to 0 outside [—2, 2] and otherwise:

- 2+n
hs(n) = 160 (14)
The wavelet function ¢(z,1) is defined as:
1z y, 1 x y
the wavelet coefficients are computed by the relation:
w(ii+ 1,k ) =c(i, k) —c(i+1,k]1) (16)

These coefficients are the details lost from one approxi-
mation to the following one. Due to the redundancy, the
inversion rule is not unique, but a trivial one exists:

clik,)=c(i+ 1,k D)+ w(i+1,k,1) (17)

This relation is true only if the wavelet coefficients cor-

respond to a wavelet transform. After thresholding this is

not the case and a correct inversion requires a restoration
algorithm.

FE. The multiresolution mask.

After transformation we get a set of noisy coefficient
w(i, k,1). A process on this set must be done in order to
denoise them. Many rules were proposed :

o Donoho’s hard thresholding. The threshold ¢ is given by

the rule :
t = op/2log(N)

where oy, 1s the standard deviation of the wavelet coefficient
and N the number of independent coefficients. Even with
a redundant transform, this number N decreases with the
scale by a factor 4.

o Donoho’s soft thresholding. Artifacts are generated with
this previous rule. The thresholding is softened with the

(18)

rule:
w = wt w < —t
W o= 0 —t<w<t
w o= w—t w>1 (19)

o Significant coefficients. For object detection a selection
rule based on the coefficient PDF in the case of local con-
stant signal was introduced [16]. Here ¢ = koy, where k is a
coefficient which depends on an uncertainty threshold. A
soft thresholding can be done by taking into account two
levels of detection k; and ks.

We tested different rules and we selected two soft thresh-
oldings with two levels #; and t2. Below #; (in absolute
value) the coefficients are set to 0. Above ¢5 they are kept.
Between the two thresholds the relation w versus w is lin-
ear.



Two processes were done wavel and wave2. For wavel
denoising ¢1 and ¢2 are:

t1 = 3.50; ty = 4.50; (20)

while for wave2 denoising ¢ and ¢; were computed with a

rule similar to Donoho’s one:

t1 = 0.70;(1 — 9) to = o (I — 1) (21)

where [ is the largest scale. This rule gave better results

than the classical Donoho’s one for our images.

F. Reconstruction and iterations

The image can be directly restored from the set w(i, k, 1),
but many artifacts are generally observed. This is due to
the fact that the applied transform is redundant and then
the wavelet transform of the restored image is not exactly
the set w(7,k,1). Some iterative processes were proposed
in order to fit the restored image with the threshold coef-
ficients.

For wavel the iterative process is based on the signif-
icant residual [11]. At each step the difference between
the original image and the previously restored one is done,
the coefficients of its wavelet transform with absolute value
greater than the thresholds are kept, the image restored
from these values is called the significant residue. This
residue is added to the previous restored image for a next
step. Few iterations are needed.

For restoring compressed images we introduced a method
based on a regularization [2]. This method was applied for
wave2 in order to improve the restoration. The negative
image values are thresholded to zero.

IV. BSS ON DENOISED MIXTURES.
A. Noisy and denoised images.

A stationary Gaussian noise was added for each mix-
ture. Three standard deviations 0.007 (b1), 0.07 (b2), 0.7
(b3) were examined. The introduced Gaussian noise led
to signal-to-noise ratios (SN R) equal to 14.73, —5.27 and
—25.27 dB respectively.

The optimal smoothing was performed with a Gaussian
smoothing with a parameter of respectively 1.67 (b1), 2.94
(b2) and 13.05 (b3) pixel.

On Figure 3 the denoised images are drawn for the
smoothing and the wavelet denoisings for b1l simulation.
The differences are faint. On Figure 4 the denoised images
are drawn for b2. With the wavelet denoisings the appar-
ent structures are not smoothed, but the algorithm selects
the information which seems significant. These differences
are still more evident for b3 (Figure 5). The quality of the
denoising can be estimated from the correlation between
the images without noise and the denoised ones (Table T).
wavel appears as the worst method. The signal-to-noise
ratios (SNR) are also given.

B. BSS on denotsed images.

Many experiments were done. We selected four methods:
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Fig. 3. The noisy simulated mixtures (SNR = 14.73 dB), its optimal
smoothing and the wavelet denoisings wavel and wave2.

TABLE T
CORRELATION BETWEEN THE ORIGINAL FIRST MIXTURE AND ITS
DENOISED ONE AND SIGNAL TO NOISE RATIOS.

Image bl b2 b3

Method C SNR C SNR C SNR
Raw 0.979 | 14.73 | 0.435 | -5.27 | 0.054 | -25.27
Wiener | 0.998 | 25.13 | 0.965 | 12.78 | 0.447 | 1.22
Wavel | 0.999 | 26.40 | 0.960 | 12.15 | 0.218 | -0.53
Wave2 | 0.999 | 29.32 | 0.978 | 14.60 | 0.606 | 0.80

+ JADE. In JADE (Joint Approximate Diagonalization
of Eigen-matrices) [3] the statistical independence of the
sources is obtained through the joint maximization of the
fourth order cumulants since these fourth order terms be-
have as contrast functions [5].

o FastTCA. In FastTCA [8] non-Gaussianity is measured by
a fixed-point algorithm using an approximation of negen-
tropy through a neural network. FastlCA was extended for
general contrast functions such as:

Jaly) = [Ey{G(y)} — Ev{Gv)}

where v corresponds to the Gaussian variable which has the
same mean and the same variance as y. The algorithm was
applied with p = 2, G(y) = log(cosh(ay)) and a deflation
solution for which the sources are extracted successively.

+ SOBI. SOBT (Second Order Blind Identification, [1]) is
an efficient second order algorithm. It depends on the
number p of spatial shifts of sources with themselves and
their values. The variance-covariance matrix at any shift is
computed from the cross correlations between the sources

(22)



Fig. 4. The noisy simulated mixtures (SNR = —5.27 dB), its optimal
smoothing and the wavelet denoisings wavel and wave2.

and the shifted ones. After the data whitening, the set
of p variance-covariance matrices is computed. Cross-
correlation terms are minimized, thus diagonal terms are
maximized. A joint diagonalization criterion of several
p covariance matrices is applied [4]. The algorithm was
adapted to 2D images.

+ f-SOBI. Nuzillard [12] modified SOBI by computing the
cross-correlations of the Fourier transforms, which are eas-
ily estimated in the direct space. This can be viewed as
an alternative correlation choice. SOBI takes into account
the correlation at short distances, while the correlations at
short frequency distances play the main role in f-SOBI. The
algorithm was also adapted to the two-dimensional field.

C. Results.

In Table IT the resulting separation quality indices (G are
indicated for the different BSSs. We remark:
o A decrease of the BSS quality with an increasing noise;
o With SOBI, working in the direct space, quite no im-
provement is obtained for all methods. So we do not take
further into account this algorithm.
o A significant gain is obtained with the three other algo-
rithms. This improvement depends on SNR:

— At 15 dB, smoothing and wavelet denoisings lead to
similar results. The three BSS algorithms can be consid-
ered as quite equivalent.

— At —5 dB, a significant gain is obtained, especially for
f-SOBI. For BSS the denoising with the wavelet transform
appears better than the optimal smoothing.

— At —25 dB, the gain is faint but real. The best BSS
is obtained with JADE on the optimal smoothing. Nev-

Fig. 5. The noisy simulated mixtures (SNR = —25.27 dB), its
optimal smoothing and the wavelet denoisings wavel and wave2.

ertheless the wavelet denoisings and f-SOBI lead both to
comparable results.

In the case of adaptive denoising the multiscale mask
depends on the images. So, the sources computed from
the denoised mixtures are not optimal. It could be better
to compute them from the noisy mixtures and to denoise
the resulting images. It is possible to iterate on the new
denoised sources, and so to improve the separation. Then
the procedure is the following one:
¢ Denoise the mixture and apply a BSS algorithm. A
demixing matrix Bl is got;

o Compute the sources by applying B1 on the noisy mix-
tures;

o Process again the resulting sources with a BSS algorithm,
which leads to a new demixing matrix B2;

¢ Compute the new sources by applying B2 on the preced-
ing noisy sources.

The process may be iterated up to convergence. In Table
(IT) the results were obtained from one iteration (wave1i).
At first step wavel was applied and the BSS was done
with f-SOBI. Then wavel was used again, but all the BSSs
methods were tested. We note the significant gain in the
separation quality.

As the optimal smoothing was the same for all the mix-
tures, no gain can be obtained by this procedure.

D. Discussion.

The couple f-SOBI and the wavelet denoisings appears to
be the most robust scheme for BSS of noisy images, even
if it does not bring always the best separation. The de-
noising based on the detection on the significant wavelet
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TABLE II
INDICES OF THE SEPARATION QUALITY OBTAINED ON THE DENOISED
IMAGES. FASTICA 1S APPLIED WITH G(y) = log(cosh(ay)) AND A
DEFLATION ALGORITHM. WN MEANS THE MIXTURES WITHOUT NOISE,
RAW THE NOISY MIXTURES WITHOUT SMOOTHING OR DENOISING.

Image FastICA | JADE | SOBI | f-SOBI
wn 3.99 3.10 1.49 3.96
bl raw 2.27 3.10 1.27 3.22
bl wiener 3.93 3.96 2.01 3.95
bl wavel 3.94 3.97 2.18 3.96
bl wave2 3.93 3.96 2.15 3.96
b2 raw 1.88 1.90 2.01 2.36
b2 wiener 2.40 2.62 1.58 3.26
b2 wavel 2.73 2.79 1.97 3.43
b2 wave2 2.35 2.78 1.70 3.39
b3 raw 2.23 2.03 1.99 2.06
b3 wiener 2.33 2.88 2.46 2.38
b3 wavel 2.67 2.82 2.16 2.80
b3 wave2 2.62 2.77 2.20 2.66
b3 waveli 2.70 2.92 2.52 2.90

coefficients, wavel, carries out better results than the one
based on decreasing thresholds with the scale, wave2, al-
though its SNR was smaller than the SNR of the second
algorithm.

The constant thresholding rule keeps only significant co-
efficients and then removes signal. At the first scale the
percentage of lost information is the same for wavel and
wave2, but at larger scales wave2 keeps all the signal. As
the noise plays a negligible role at large scales, the corre-
lation with the original image is high. But BSS is mainly
based on extreme values, which determines the high or-
der statistics computed for the separation. With wavel
only the significant values are kept and the separation acts
with quite sure data, while the statistic is polluted by noise
residues with wave2 resulting in a separation rather worse
than for wavel.

The main goal for denoising signals for BSS is not to get
the best SNR but to keep the extreme values.

V. CONCLUSION.

BSS is a signal processing sensitive to the noise. In this
paper it was shown that standard procedures of noise re-
duction can really improve the results. The experiments
do not show that the best denoising carries out the best
BSS. Only one simulation was processed; it could then be
interesting to build other ones with different textures in or-
der to get a general overview on the link between denoising

and BSS.

An algorithm based on the spatial organization, like f-
SOBI, carried out more robust results than the ones based
on the independence between the pixel values. This point
urges us to examine a method combining independence and
spatial criteria.

(11]

(12]

(13]

14]

[15]
[16]

(17]
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