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ABSTRACT

In the frequency-domain, a convolutive mixture can be interpreted
as several instantaneous mixtures which may be separated using
many existing algorithms. The main limitation of this approach is
the large number of frequencies that must be considered. In addi-
tion, a permutation/amplitude correction must be performed when
the sources are recovered in a different order or with different am-
plitudes in some frequency bins. In this paper we propose a novel
approach for solving the convolutive problem using only two fre-
quency bins. The idea deals with finding a

�����
invertible matrix

which relates the signals recovered in these frequency bins and the
temporal sources. The existence of this matrix is due to use zero-
padding for computing the Fourier transform of the observations.
Several simulation results show the good performance of this sim-
plified approach in different applications.
Keywords: Blind source separation, convolutive mixtures,
frequency-domain approaches.

1. INTRODUCTION

Blind Source Separation (BSS) consists in recovering statistically
independent signals (sources) from the observations recorded by
several sensors. This is a fundamental problem in signal process-
ing that arises in a large number of applications such as digital
communications and audio processing [7]. Many BSS algorithms
have been proposed supposing that the observations are instan-
taneous mixtures of the sources [2]. Unfortunately, this kind of
mixture is seldom found in real world applications and it is more
suitable to consider convolutive mixtures of the sources.

During the last years several authors have proposed to sepa-
rate the convolutive mixtures in the frequency-domain by solving
instantaneous mixing problems [4, 5, 9, 10, 11]. The main limita-
tion of this approach is the large number of instantaneous mixtures
that must be separated in order to achieve a good performance. In
addition, it is not easy to remove the permutation and the ampli-
tude indeterminacies that appear when the sources are recovered in
a different order or with different amplitudes in some frequencies.

In this paper, we will propose a frequency-domain separat-
ing system which only considers two frequency bins. We will

show that the original temporal sources and the signals recov-
ered in these frequencies are related by an invertible matrix when
the Fourier transform of the observations is computed using zero-
padding. As a consequence, the sources can be recovered multi-
plying the outputs by the inverse of this matrix. It is apparent that
the computational cost of this simplified approach is reduced be-
cause only two instantaneous mixtures must be separated and the
solution of the permutation/amplitude indeterminacy involves two
frequency bins. We will present several simulations results which
show the good performance of our approach in different applica-
tions. First, we will consider the cocktail-party problem where
voice signals must be recovered from the observations recorded
by several microphones [10, 11]. In the second experiment, we
will consider an industrial application where several motors must
be monitored [5, 6].

This paper is structured as follows. Section 2 presents the sig-
nals model. Section 3 presents the simplified frequency-domain
approach. In Section 4 we apply the proposed solution to the
cocktail-party problem. In Section 5 we test the performance of
our system for machine monitoring. Finally, Section 6 is devoted
to the conclusions.

2. SIGNALS MODEL

We will consider the following model. Let �����
	�� ��� ���
	���� � � � ��� ���
	�� � be the vector of � sources whose exact prob-
ability density functions are unknown. We assume that the sources
are real-valued, non-Gaussian distributed and statistically indepen-
dent. The observation vector �����
	��  ��� ���
	�� � � � � �!� ���
	�� � pro-
vides a convolutive combination of the � sources, i.e.,

�����
	"�
#$

%�&�' #)( �+*,	-�����/.0*,	 (1)

where ( �+*,	 is an unknown � � � matrix representing the mixing
system.

In the frequency-domain, the convolutive mixture (1) takes the
form

�  1 �2� (
 1 � �  1 � (2)

569



where �  1 � , �  1 � and the matrix (
 1 � represent the observations,

the sources and the mixing coefficients in the frequency-domain,
respectively. Note that the observation vector �  1 � at each fre-
quency corresponds to an instantaneous mixture of the sources�  1 � . Therefore, in order to recover the sources at each frequency,
we can use a MIMO (Multiple Inputs-Multiple Outputs) system
with output

�  1 �2��� �  1 � �  1 � (3)

where �  1 � is a � � � coefficients matrix which can be obtained
using many existing algorithms proposed for separating instanta-
neous mixtures (see [2] and references therein). Combining both
(2) and (3) together, we can express the outputs as follows

�  1 �!���  1 � �  1 � (4)

where �  1 � ��� �  1 � (
 1 � is the overall mixing/separating ma-

trix. The sources are optimally recovered when each output in
vector �  1 � extracts a single and different source. This means that
the optimum matrix �  1 � has the form

�  1 �!���  1 � �  1 � (5)

where �  1 � is a diagonal matrix and �  1 � is a permutation matrix.
Note that since the separating matrix at each frequency is indepen-
dently obtained, the sources may be recovered in a different order
(permutation indeterminacy) and with different amplitudes (am-
plitude indeterminacy) in some frequency bins. To remove both
indeterminacies is a crucial task because the sources in the time-
domain are recovered combining the outputs in different frequen-
cies by the inverse Fourier transform.

3. SIMPLIFIED FREQUENCY-DOMAIN APPROACH

In order to recover the sources in the frequency-domain we pro-
pose to use the Simplified Frequency-Domain Approach (SFDA)
shown in Figure 1. The convolutive mixture is transformed in sev-
eral instantaneous mixtures by computing the Short-Time Fourier
Transform (STFT) of zero-padded observations. Note that we only
take the observations corresponding to two frequency bins. In the
next stage, the mixtures in these frequency bins are separated and
the permutation/amplitude indeterminacy is solved. As a conse-
quence, we obtain the estimated sources in these frequency bins.
In the paper, we show that the estimated frequency-domain sources
are related to the temporal sources by an invertible matrix because
of the use of zero-padding in the Fourier transform. Finally, the
temporal sources are recovered multiplying the outputs by this in-
vertible matrix instead to apply the Inverse Short-Time Fourier
Transform (ISTFT). In the next subsections we describe each stage
of SFDA in detail.

3.1. Instantaneous Mixing Separation

The first stage of the separating system consists in applying the
Short-Time Fourier Transform to moving windows of observa-
tions. We split each particular observation,

�
	 ��� 	 , in windows
of  points, i.e., � 	 ����� 	 �  ��	 ����� 	�� ��	 ����������	���� � � � ��	 �������� .
��	�� ������� ��� ����� � � � . Subsequently, we compute the � -points DFT
( ���� with zero-padding of � .� points) of two frequency
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Fig. 1. Separating system

bins given by

��	  1�� �������!�
 ' �$
! &
"

��	 �����#�%$�	�& '('*),+ !

��	  1�- �������!�
 ' �$
! &
"

��	 �������%$�	�& '('*)(. ! (6)

where
1�� � �0/21�3 � and

1�- � �0/
453 � denote the two frequency
bins. We will assume that the observations at each frequency bin
are instantaneous mixtures of the sources, i.e.,

�  1�� ����� �2� (
 1�� � �  1�� �������

�  1�- ����� �2� (
 1�- � �  1�- ������� (7)

In the next step, these observations are independently processed
by MIMO systems whose outputs have the form

�  1�� �������!��� �  1�� � �  1�� ����� �
�  1�- ����� �2��� �  1�- � �  1�- ����� � (8)

Although in this paper the separating matrices will be found using
the JADE (Joint Approximate Diagonalization of Eigen-matrices)
algorithm proposed in [3] for complex-valued sources, another al-
gorithms can be used (see [2] and references therein).

The objective of the BSS algorithms is to find the matrices
�  1�� � and �  1�- � such as each output corresponds to a single
and different source. This means that the sources are separated
when the outputs have the following form

687  1�� ����� � � 4 7 	  1�� � �9	  1�� �������
� 4 7 	  1�� �

 ' �$
! &
"

�9	 �������%$�	�& '(';:�<
+*=>

687  1�- ����� � � 4 7 	  1�- � �9	  1�- �������
� 4 7 	  1�- �

 ' �$
! &
"

�9	 �������%$�	�& '(';:�<
. =>

? �*@ ������� � � � � (9)
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and different outputs at the same frequency bin extract different
sources. Here,

4 7 	  1�� � and
4 7 	  1�- � represent the gains introduced

by the separating systems. Since the matrices �  1#� � and �  1�- �
are independently computed, a permutation/amplitude correction
must be performed in the two frequency bins.

3.2. Permutation Indeterminacy

In order to solve the permutation indeterminacy, we will use a
method similar to the proposed in [1]. We filter the outputs687  1�� ����� � and 687  1�- ����� � versus the index ��� using sliding Fourier
transform with delay of one point�07  1�� ������� � 687  1�� �������,. 687  1�� �����#��� � & '(';:�<

+>�07  1�- ������� � 687  1�- ������� . 687  1�- �����#� � � & '(';:�<
.>

? ����� � � � ��� (10)

From the expression of the DFT in (9) and considering the redun-
dancy in the sliding Fourier transform, we obtain�07  1�� ������� � 4 7 	  1�� ��� �9	 ������	�. �9	 �����#�% 	�& '(';:�<

+��> 	���  1�- ������� � 4 ���  1�- ��� � � ����� 	�. � � �������  	�& '(';:�<
. �> 	 (11)

Note that this expression only depends on the gain introduced by
the separating system and on the temporal sources

� ���*� 	 and
� ����� �

 	 but there does not exist a dependence on the sources in the
frequency-domain. The cross-correlation between � 7  1�� ������� and���  1�- ������� is given by�  �07  1�� ������� �	��  1�- ������� �!� 4 7 	  1�� � 4 ����  1�- ��� �  �9	 ����� 	 � � ����� 	��

. �  �9	 �������  	 � � ������	�� & '(';:�< +��>
. �  �9	 ����� 	 � � �������  	�� & ';:�<

. �>
� �  �9	 �����#�  	 � � �������  	�� & ';:�<�
 .�� +� �> 	

(12)

Since the sources are statistically independent in the time-domain,
the expression (12) will be zero when the outputs � 7  1�� ������� and���  1�- ������� correspond to different sources, @����� . On the contrary,
if the outputs extract the same source and the window length is suf-
ficient large such as

�  �9	 �����0�  	 �9	 ����� 	������ , the cross-correlation
can be written as �  �07  1�� ����� � �	��  1�- ����� � ���

4 7 	  1�� � 4 �� 	  1�- � �  � :	 ����� 	������ �%& ';:�<
� 
 .�� +�> 	 (13)

This expression will be non-zero if & ';:�<
� 
 .�� +�> �� . � .

From the explanation above, we can devise a simple method
to solve the permutation indeterminacy. We apply the filter (10)
to the outputs 687  1�� ������� and 687  1�- ������� . Subsequently, for each fil-
tered output at frequency

1#�
, we compute the cross-correlation

between �07  1�� ������� and each filtered output at frequency
1 -

,�  �07  1�� ����� � � ��  1�- ����� � �+��� � ����� � � � � � . Finally, we select the
filtered output ���  1�- ������� corresponding to the maximum cross-
correlation in absolute value. Using this procedure, we obtain
a vector � 7 whose components correspond to the same temporal
source ��7  1�� ������� � �07  1�� ����� ���7  1�- ������� � ������ ��! )(.�" #%$�&�' �  �07  1�� ������� �	��  1�- ������� � ' (14)

3.3. Amplitude Indeterminacy

Since the components into each vector � 7 determined in the per-
mutation stage depend on the same temporal source and on the
gain introduced by the separating system, we can write��7  1�� ����� � �)( 7 7  1�� ��� � 7 ������	�. � 7 �������  	�& '(';:�<

+��> 	��7  1�- ����� � �)( 7 7  1�- ��� � 7 ����� 	�. � 7 �������  	�& '(';:�<
. �> 	 (15)

where ( 7 7  1�� � may be different to ( 7 7  1�- � . In order to solve the
amplitude indeterminacy, we will obtain a new output ��* 7  1�- ����� �
with the same gain like � * 7  1�� ����� �!� ��7  1�� ����� � . Towards this end,
we compute� * 7  1�- ������� � ( 7 7  1�� �( 7 7  1�- � ��7  1�- ����� �

� ( 7 7  1�� � ( �7 7  1�- �' ( 7 7  1�- � ' : ��7  1�- ������� (16)

The correction factor in (16) can be found using the cross-
correlation between �
7  1�� ������� and ��7  1�- ����� � given by (13). We
obtain ( 7 7  1�� � ( �7 7  1�- � � �  ��7  1�� ����� � � �7  1�- ������� ��  � :	 ����� 	������ �%& ';:�<�
 .�� +� �> 	' ( 7 7  1�- � ' : � �  ' ��7  1�- � ' : �� �  � :	 ����� 	�� (17)

Substituting in (16), the new output can be written as� * 7  1�- �������!� � �  ��7  1�� ������� � �7  1�- ������� �
� � & ';:�< 
 .�� +� �> ��7  1�- ������� (18)

3.4. Time-domain Recovering

The last stage of the separating system consists in recovering the
sources in the time-domain. Recall that we have corrected the
amplitudes of the outputs (15) by obtaining new vectors � * 7 � ? �
��� � � � ��� whose components are related to the the temporal sources
by the following expression� * 7  1�� �������!�+( 7 7  1�� ��� � 7 ����� 	�. � 7 �������  	�& '(';:�<

+��> 	� * 7  1�- �������!�+( 7 7  1�� ��� � 7 ������	�. � 7 �������  	�& '(';:�<
. �> 	 (19)

In a compact form, we can write� * 7 �-,/.� 7 (20)

where .� 7 �  ( 7 7  1�� � � 7 ����� 	��0( 7 7  1�� � � 7 �������  	�� � and , is a
� �/�

matrix which depends on the value of the frequencies
1

and
4

.
This matrix is given by, �

1
� . & '(';:�<

+��>
� . & '(';:�< .

�>32 (21)

Since we have computed the DFT of the observations (6) with
zero-padding of � .  points ( �54  ), the condition

1 ��4 �6��� 3  (where � is an integer number) guarantees that , is an
invertible matrix and the sources can be recovered using.� 7 �-, ' � � * 7 � ? ����� � � � ��� (22)

Finally, the component corresponding to .� 7 ����� 	 is taken. Note that
we recover .� 7 ����� 	��+( 7 7  1�� � � 7 ����� 	 where ( 7 7  1�� � may be complex-
valued. If this occurs, only the real part must be considered.
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4. APPLICATION I: THE COCKTAIL PARTY PROBLEM

The cocktail party problem deals with the recuperation of voice
signals from the observations recorded by several microphones
[8, 10, 11]. In our experiment, we have considered two sources
recorded to 11kHz and two synthetic observations obtained by us-
ing the following mixing system

( � � 	"�
1�������� � � �� ������� � � � ���	�
� � � �� �����	� � � �������� � � �� ������� � � � . �����
� � � �� ������� � � � 2 (23)

where the coefficients  7 ' have been randomly generated.
In the separating system, the DFT of � � �����

points has been
applied over windows of  � � � observations. We have chosen
the frequency bins

1 � �9� and
4 � � � , and we have solved the

permutation and the amplitude indeterminacy using the solutions
proposed in Section 3. In order to validate the accuracy of the pro-
posed approach, we have also considered the theoretical solution
(SFDA-TS) where the two instantaneous mixtures are separated
using the inverse of the true mixing matrix. The performance has
been measured in terms of the MSE (Mean Square Error) between
the original temporal sources and the recovered temporal sources.
The MSE has been averaged over 10 independent realizations. We
have eliminated the gain � 7 7  1�� � before computing the MSE of
SFDA-JADE.

From the results in Table 1, we can conclude that both SFDA-
JADE and SFDA-TS present a similar behavior. By listening the
recovered signals, we have also tested the good performance of
the two approaches. For instance, Figure 2 shows the sources, the
observations and the recovered signals for a simulation where the
MSE have been of -39.0385 dB for SFDA-TS and of -36.0185 dB
for SFDA-JADE. Note the high quality of all the recovered signals.
Finally, in order to verify the accuracy of the method proposed for
solving the amplitude indeterminacy, Table 2 shows the true value
and the estimated value of � 7 7  1�� � 3 � 7 7  1�- � .

The results above show that SFDA is an adequate solution to
the cocktail-party problem. Also, it is interesting to note that the
blind solution using JADE presents a similar performance to the
theoretical solution where the true mixing matrix is used. We have
obtained similar results considering another frequency bins.

SFDA-TS SFDA-JADE
Cocktail party -36.6326 dB -34.4974 dB

Rotating machines -67.1731 dB -45.3598 dB

Table 1. MSE obtained in the simulations

� � �� 1�� � 3 � � �  1�- � � :�:  1�� � 3 � :�:  1�- �
True value 0.9429 + 0.0082i -0.9172 + 0.0025i

Estimated value 0.9618 + 0.0002i -0.9235 + 0.0002i

Table 2. Cocktail-party problem: true and estimated amplitudes

5. APPLICATION II: ROTATING MACHINES
MONITORING

There exists a great interest to apply BSS in mechanical system
signals processing for monitoring and diagnosis purpose [5, 6].
The idea is to use BSS for recovering the signatures of several
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Fig. 2. Experimental results obtained using SFDA for solving the
cocktail-party problem: (a) Temporal sources; (b) Observations
and (c) Outputs obtained with SFDA-TS and SFDA-JADE.
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motors without having to stop them. From the signatures, it is
possible to obtain important information about the motors such as,
for example, the existence of faults.

In our experiment, we have considered two DC motors whose
signatures are showed in Figure 3 (a). The motor � � has a rotation
speed of 48.5 Hz. This motor is fed by a single phase wiring (rec-
tified) which presents 100 Hz for fundamental frequency plus har-
monics. Motor � �

turns at 31.5 Hz and is fed by two phase wiring
which present 100 and 200 Hz. Each motor is fitted out with two
single row roller bearing and drives a main shaft equipped with
two self aligning roller bearing. Roller bearing induce several de-
fect frequencies: motor � � presents a fault at 207 Hz and motor
� �

presents three faults at 134 Hz, 179 Hz and 210 Hz. Details
of the test bench can be consulted in [5]. We have used

� � � � � �
samples of the temporal sources recorded to

�
kHz. The sources

are perturbed by Gaussian noise.
The sources have been passed thought the mixing system (23)

to obtain the observations. In the separating system, we have used
 � �9� � and � � �9� ��� . We have selected

1 � � � and
4 �����

because the sources have similar powers in these frequency bins.
Since the objective is to recover the signatures of the sources, it
is more suitable to measure the performance using the MSE be-
tween the original and the recovered signatures. Table 1 shows the
MSE obtained using SFDA-TS and SFDA-JADE. Although both
approaches have achieved a good separation, the performance of
the blind algorithm JADE is far to the optimum value. We conjec-
ture that this result is due to the presence of noise.

Figure 3 shows the Power Spectral Density (PSD) of the ob-
servations (part (b)) and of the recovered signals (part (c)) for a
simulation where the obtained MSE has been of -63.5646 dB for
SFDA-TS and of -45.0820 dB for SFDA-JADE. Each PSD has
been normalized by its maximum value. In Figure 3 (c), we can
see that the rotating frequency plus harmonics of the two motors
have been recovered. However, like in the original signature of
the motor � �

, only the rotating frequency and the first harmonic
can be easily identified. The feeding frequencies (at 100 and 200
Hz) present in both sources have been also recovered. Concern-
ing the bearing frequencies, the fault in 207 Hz is easily associated
to motor � � and the faults at 134 Hz and 179 Hz are associated
to motor � �

. It is difficult to associate the fault at 210 Hz but it
also occurs in the original signatures. For this simulation, Table 2
shows the true value and the estimated value of � 7 7  1�� � 3 � 7 7  1�- � .
It is apparent that again a good result has been obtained.

� � �� 1�� � 3 � � �� 1�- � � :�:  1�� � 3 � :�:  1�- �
True value 0.9998 + 0.0026i 1.1147 + 0.0026i

Estimated value 0.9887 - 0.0004i 1.1637 - 0.0012i

Table 3. Rotating machines: true and estimated amplitudes

6. CONCLUSION

In this paper, we have proposed a method for separating convo-
lutive mixtures in the frequency-domain by using only two fre-
quency bins. We have showed that each temporal source can be
reconstructed multiplying the signals recovered in these frequency
bins by a

� � �
matrix whose exact form depends on both the

parameters of the DFT and the selected frequencies. The exis-
tence of this matrix is due to use zero-padding for computing the
Fourier transform of the observations. The proposed system also

solves the permutation/amplitude indeterminacy by using a novel
method which exploits the statistically independence of the tem-
poral sources. It is apparent that the computational cost of the pro-
posed approach is reduced in comparison with previous frequency-
domain approaches where all the frequency bins are considered. In
addition, several simulations results show its good performance in
different applications.

ACKNOWLEDGEMENTS

This work is the result of a sojourn of Adriana Dapena in the LIS
with the financial support of Xunta de Galicia. We thank to G.
Gelle and M. Colas of LAM (Laboratoire d’Automatique et de Mi-
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(b) Observations Signatures
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(c) Recovered signature #1
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Fig. 3. Experimental results obtained using SFDA for rotating machines monitoring: (a) PSD of the sources; (b) PSD of the observations;
(c) PSD of the outputs obtained with SFDA-TS and SFDA-JADE.
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