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Abstract— The analysis of multispectral astronomical im-
ages was examined as a blind source separation (BSS) of
an instantaneous mixture. The experimented BSS methods
were based on different assumptions: i/ the non-Gaussianity
measured by high order statistics (HOS), ii/ the correlation
between shifted sources. A HOS approach taking into ac-
count the spatial organization is proposed from a decom-
position in the wavelet space. A multiscale contrast taking
into account the probability density function (PDF) at each
scale, was first introduced. The resulting contrast provides
few improvement in the separation. Thus a definition of
the multiscale contrast which took into account a mask as-
sociated to a thresholding was examined. We show in this
communication that this new statistical quantity provides
an available criterion for BSS.

Keywords— Multispectral analysis, Blind Source Separa-
tion, Mutual Information, Independent Component Analy-
sis, Wavelet transform

I. INTRODUCTION.

N paper [16] the analysis of multispectral images was ex-

amined as a blind source separation (BSS) of an instan-
taneous mixture. Each image X; was written as a linear
mixture:

X; = Zaiij + N; (1)

where the matrix A = [a;;] is the mixing matrix and N;
the noise of image X;. The capabilities of different BSS al-
gorithms were examined on simulated images [17]. The ex-
perimented methods were based on different assumptions:
¢ The non-Gaussianity, measured by high order statistics
(HOS). This leads to what has been called Independent
Component Analysis (ICA) [6];
o The spatial correlation by reducing the correlations be-
tween shifted sources as it is taken into account in Second
Order Blind Identification (SOBI, [1]) and related methods.
Fine separations were carried out in case of a high signal-
to-noise ratio (SNR), but for low SNRs the separation qual-
ity felt down. In paper [2] it was shown that an adaptive
denoising by the wavelet transform improved this quality.
Then the idea of building a HOS approach associated to the
spatial organization from a decomposition in the wavelet
space raised. A multiscale contrast taking into account the
probability density function (PDF) at each scale was in-
troduced. The improvement in the separation obtained by
this contrast was faint. The gain obtained by denoising
the images was due to a thresholding, i.e. a coefficient se-
lection. Thus a definition of the multiscale contrast using
such a mask was examined. In this paper, it is shown that
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this new statistical quantity provides an available criterion
for BSS.

Some basic notions on BSS are given in section 2. The
wavelet transform and the multiscale mask are introduced
in the following section. Then, the related multiscale con-
trast is defined. TIts capabilities to separate sources are
shown on simulated mixtures in section four. The feasibil-
ity to build a new BSS algorithm based on this contrast is
discussed in conclusion.

II. DECORRELATION, INDEPENDENCE AND MUTUAL
INFORMATION.

A. Decorrelation and the Karhunen-Loéve expansion.

BSS is a class of statistical methods that decompose a
set of m signals into n independent sources and estimate
the mixing matrix A. The simplest model corresponds to
equation (1). The sources are constrained to have unit
variance. The mixing matrix A can be estimated up to
permutation and phase shifts. The problem remains ill-
posed and additional considerations are needed to solve it.

The Karhunen-Loéve expansion (KL) carries out decor-
related sources. Any rotation of the resulting sources keeps
this property, since KL provides the sources which maxi-
mize the energy concentration. If v; is pixel value of source
i, the sources PDF is p(v1,...,v,). The statistical inde-
pendence between the source intensities means that:

= sz'(vi) (2)

where p;(v;) is the marginal PDF of ¢-th source. This re-
lation implies that the variables v; are not correlated, but
the converse proposition is not true. It may exist sources
more independent than those given by KL.

p(v1, ...y V)

B. The source mutual information.

The mutual information of a set of n sources (SMT) is de-
fined as the Kullback-Leibler divergence between the joint
probability and the probability obtained by the product of
the marginal probabilities [6]:

Z p(v1,..., 0,

U1i,...,Up

o p(v1, ...y V)
1o [Licinpivi)
(3)

If the sources are independent this divergence is equal to
0, then SMI carries out an available independence criterion
between the sources. We have also:

I(S1,. .., Z H(S
where H(S;) is the entropy of source i defined by:

Z pz log2 pz ) (5)

I(S1,...,S,) =

H(Si,...,8)  (4)
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and H(Sy,...

,Sp) = — Z p(vr, ...

U1i,...,Up

,Sp) is the mutual entropy:

H(Sy, ...

) Vn)-

(6)
In the case of Gaussian PDFs, SMI is equal to the expres-
sion [12]:

,Un) logs p(vy, ...

1
IMs = —§log2 det R (7)

where R is the matrix of the coefficients of correlation. If
the sources are not correlated, TMs = 0. Any set of sources
obtained by rotation from the KL expansion carries out a
null 7Ms, i.e. a null SMI. Then SMI in this case does not
add any information.

If the source PDFs are non-Gaussian, SMI depends also
on HOS. The application of Edgeworth’s expansion of the
PDF [13] introduces cumulants from which SMT can be
estimated. This approximation may be not sufficient and a
set of methods has been developed in order to get the best
SMI evaluation.

C. SMI and its related contrast function.

The observed SMT can be derived from equation (3). Tt
is generally impossible to obtain an available estimation
of the probability p(vi,va, ..., v,) from experimental data.
Then H(Sy,S2,...,S,) is badly estimated. Comon [6] no-
ticed that the exact SMI value was not needed and it was
only necessary to know for which mixing matrix A, or its in-
verse B = A~!, the mutual information is minimum. The
sources are obtained from the images from the demixing
relation:

S =BX (8)
since we obtain:
H(S1,...,8,) = H(X1,...,Xn) + logz| det B|. (9)
Then we get:
I(S1,...,S0) =Y H(S;)) — H(X1,...,X,) — logs| det B].

= (10)

Next it is sufficient to maximize the function [6]:

C = =) H(Si)+loga|det B
i=1

= =) H(Si) — logs|det Al. (11)
i=1

C is a contrast function which depends on the entropy eval-
uation for each source separately.

ITI. CONTRAST AND MULTIRESOLUTION.
A. Contrast of a pizel pair.

Let us consider two image pixels with values y; € Y; and
zi € Z; for image X; = V; P 7;. Applying relation (8) to
this pair we get:

(12)

where T; and U; are the subsets of the source S; pixels
homologous to y; and z; (S; =T; PU; ).

The mutual information related to the pair is:
I(Ty,...,T,,Uy,...,Upy) such that:
Ty, T, Uy Un) =Y (H(Ty) + H(U3)
—H(Tl,...,Tn,Ul,...,Un).Z (13)
We have the relation:
Co)=(0 s )2 ) e
If we set:
v:(UT ),W:(? ),c:(g . ) (15)
The relation (14) is written as:
V=CW. (16)
Then we get:
HWVi,..., Vo) = HWy,...,W,) +log, |det C|.  (17)
Now, we have the relation:
det C' = det B? (18)
Thus we obtain:
I(Vi,..., V)= > H(V)
—H(Wl,...,Wn)Z—Qlogz|detB|. (19)

Consequently the following contrast for a BSS insight is:

sz_ZH(VZ»)—i—Qlog2|detB|. (20)

Obviously H(V;) = H(T;) + H(U;) et H(T;) = H(U;).
Thus we can write:

Then the pixel dependencies do not play a role for BSS.
But we implicitly admit that the image is stationary, the
y; and z; PDFs being the same. Now if we apply a trans-
formation on the image the resulting coefficients can have
different PDFs so that new contrasts, eventually more ef-
ficient than the direct one, may be computed from these
PDFs.

B. Transformation and Information.

At the second order the best transform of a single im-
age 1s the Karhunen-Loéve expansion related to the spatial
auto-correlation. For an increasing window size this trans-
form tends to the Fourier one. The coefficient PDFs, then
their entropy, depend on the spatial frequency, the variance
at low frequencies being generally higher than the one at
high frequencies. Thus we could compute a contrast from
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the Fourier coefficients and then use it as a criterion for
BSS. The entropy per coefficient becomes the problem to
solve. This implies a statistical model on the Fourier trans-
form. These remarks lead us to examine a linear transform
close to the Fourier transform but allowing one to estimate
the PDF or at least the first four cumulants. Taking into
account its compression capabilities, the wavelet transform
seemed to be more suitable than the shift windowed Fourier
transform [7].

C. The wavelet transforms and multiscale contrasts.

The wavelet transform was popularized by the introduc-
tion of the multiresolution theory and the discrete wavelet
transform (DWT) [14].

The goal is to define a multiscale contrast based on the
information contained in the wavelet coefficients at each
scale. Let us consider a DWT. After transformation, a set
of coefficients w(i, k, 1, d) is obtained. At a scale level i, the
scale factor is 27, (k,1) is the current pixel location and d
is the direction (horizontal, vertical and diagonal). For an
image of 27 x 27 pixels, three arrays of 2777 x 277 pixels
are computed at each scale i.

At the first scale, the number of pixels per array 1s suf-
ficient for computing the empirical entropy H(1,d). But
the number of pixels exponentially decreasing with ¢, the
entropy can not be any more directly estimated. A way to
solve this drawback lies in the application of a redundant
transform for which at each scale the number of coefficients
is not decimated. It i1s the case of the a trous algorithm
(AT) [18] or of the Coifman & Donoho shift-invariant dis-
crete wavelet transform (SIDWT) [5]. Clearly, it exists a
statistical dependence between the coefficients; the infor-
mation amount is quite not increased by the redundancy,
but the number of values allows to compute an empirical
PDF and then its related entropy. The Haar transform [8],
in 1ts SIDWT version, was first applied in order to com-
pute a contrast on the data. An AT transform based on a
B-spline scaling function was also applied. In this case the
wavelet function was regular up to order two, contrary to
the Haar wavelet which is irregular from order 0. The AT
transform carried out better results.

The redundancy is only applied for the PDF evaluation.
The empirical entropy per coefficient at given scale and
direction is computed from this estimation. But the im-
age can be restored by the decimated coefficients, then the
number of useful coefficients decreases by a factor 4 from
a scale to the following one. Consequently, the multiscale
contrast (MSC) is defined as:

MSC=- Y Z[%H(i,d) ~ log, | det BI].

i=1,1 d

(22)

The redundancy allowed us to keep the full pixel sample
for the PDF estimation, but the wavelet coefficients, at
given scale and direction, are correlated. Then H(i,d) is
still badly estimated for increasing 2, but its value has a
decreasing influence.

The first results obtained with different transforms did
not show a significant gain for this criterion. It is useful

to remind that the idea to apply the wavelet transform for
BSS came from the denoising. In this operation a coeffi-
cient selection was performed in order to further restore a
clean image. For this selection a mask was computed scale
per scale from different rules. Then a new ingredient was
introduced : the multiscale mask.

D. Multiscale mask of a set of images.

Let us consider a set of n images. At the ¢-th scale and
the (k,1) location the wavelet coefficients w(m, i, k,1, d) are
obtained, where m is the image index. The local energy is

defined as:

E(ik,ldy= > w(m,i k1 d).

m=1n

(23)

If the images are globally constant in the neighborhood
defined by the compact support of the wavelet at scale 1,
the PDF of the energy F results from the noise distribution.
If the noise is Gaussian, the wavelet coefficients are also
Gaussianly distributed. Tts mean is equal to 0 whatever the
local mean because the wavelet function has a null mean.
Its standard deviation is k;o, where k; is a coefficient factor
depending on the chosen transform and on the current scale
t. k; is equal to 1 for DWT and its SIDWT variant. For
AT it is easy to evaluate numerically the k; coefficients.

If the images have a white Gaussian noise with identi-
cal deviations o, E(i, k,l,d) follows a y?-square law with
n degrees of freedom, P,(E). Tts mean is equal to nk?o?
and its standard deviation is \/ﬁk?dz. Let us consider
the case of constant but noisy images, the energy coeffi-
cients F(i, k,1, d) are distributed according to the distribu-
tion P,(FE). At the i-th scale, the (k1) location and the d
direction, Eq(i, k,l, d) is measured, the hypothesis Hy that
the images are locally constant can be tested. A statistical
level € 1s introduced. If:

Po[E(i k1, d) > Eo(i, k,1,d] < ¢ (24)
is satisfied the probability for the local energy to be greater
that Eo(é, k,1,d) under the Hy hypothesis is smaller than
€. Then the Hg hypothesis is rejected and a detection is
obtained. For a decreasing ¢ value, the number of false
detections decreases but the misses of real local variations
increase. ¢ is chosen as a compromise between false de-
tection and misses. This allows one to define the selection

thresholds T'(é, d) such that:

Po[E(i, k1, d) > T(i,d)] < e. (25)
The multiscale mask is obtained by taking account this
selection. In our experiments a fuzzy mask was computed:
o For E(i, k,l,d) < m+3s, where m is the expectation and
s the deviation in case of uniform image, the mask value
M(i, k1, d) = 0;

o For E(i,k,l,d) > m+8s, M(i,k,1,d)=1;

¢ For an intermediate energy, the mask value is computed
by a linear relation.
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FE. Multiscale contrasts and the multiscale mask.

A contrast can be computed from the multiscale mask by
applying equation (22). For each wavelet set the number
of selected coefficients is too small for computing an em-
pirical entropy, even with a redundant transform. Then we
derived it from the third and the fourth order cumulants,
C3 and Cy, using the Edgeworth expansion [10]:

. 1 1
H(i,d) =loga — ﬁcg - ECZ. (26)

For the cumulant estimations the wavelet coefficients are
weighted by the mask values. Then the criterion called the
Multiscale Masked Contrast (MSMC) is computed by the
following algorithm:

o Compute the wavelet transform of the images;

¢ Deduce the full energy at each scale, each location and,
if necessary, each direction;

o From a statistical detection rule, determine the fuzzy
mask;

o For each scale and, if necessary, each direction, compute
the entropy from the cumulants (equation 26);

+ Compute the contrast from relation (22).

IV. EXPERIMENTAL TESTS.
A. The simulation.

We tested BSS algorithms on a set of simulated images
with properties similar to astronomical ones. A program
generated a set of images each containing random Gaussian
patterns (Figure 1). Then the images were randomly mixed
with positive weighting coefficients. The mixtures to be
processed are drawn on Figure 2.

-
y \b. '

Fig. 1. Simulated Gaussian patterns. Each block corresponds to an
initial source.

4"

Fig. 2.

Simulated mixtures without noise.

B. Evaluation of the restoration quality.

As we know the true mixing coefficients A = [a;;], it is
possible to quantify the quality of the restoration. A crite-
rion based on the estimation of the energy concentration of
the restored sources versus the original ones can be applied
[17]. The restored sources are computed by the relation (8).
If S is the true source vector we get:

Sy (27)

In the case of a perfect separation the matrix D =
[d;;/] = BA is the product of a diagonal matrix with a
permutation one. If not, its coefficients are spread, the
restored sources being a combination of the original ones.
For a given j, The energy terms e; = d?j, are computed
and sorted by increasing values; ;s is the rank of e;:. For
perfect restoration and for any permutation between the
restored and the original sources, only the last term is not
equal to 0. The Gini concentration index of the energy is
[11]:

12y ey
G = [2
Zj’ €5’

n—1
G; = 01if all the e;: are equal, GG; = 1 if all the e;: are null
except one value. The separation is then evaluated by:

G=> G
J

G defines a criterion which is experimentally consistent
with visual inspection.

—(n+ 1)) (28)

(29)

C. ICA applied tools.

We applied two different tools. ITn JADE [3] the statisti-
cal independence between the sources is obtained through
the joint maximization of the fourth order cumulants since
these fourth order terms behave as contrast functions [6].



In FastICA [9] non-Gaussianity is measured by a fixed-
point algorithm using an approximation of negentropy
through a neural network. FastICA was extended for con-
trast functions such as:

Jaly) = [Ey{G(y)} — Ev{Gv)}

where v corresponds to the Gaussian variable which has
the same mean and the same variance as y. G(y) is used
in its derivative form, g(y), in the algorithm. The func-
tion g(y) = tanh(ay) was selected with p = 2. The algo-
rithm works in two different ways: a symmetric solution
1s used for which the sources are computed simultaneously
(FastTCA-st), or a deflation one for which the sources are
extracted successively (FastTCA-dt).

(30)

D. SOBI and its derived versions.
SOBI (Second Order Blind Tdentification, [1]) is an ef-

ficient second order algorithm. It depends on the number
of spatial shifts p of sources with themselves and on their
values. The variance-covariance matrix at any shift is com-
puted from the cross correlations between sources and the
shifted ones. Cross-correlation terms are minimized, thus
diagonal terms are maximized. A joint diagonalization cri-
terion of several p covariance matrices is applied.

Nuzillard [15] modified SOBT by computing the cross-
correlations of the Fourier transforms, which are easily es-
timated in the direct space. This can be viewed as an alter-
native correlation choice. SOBI takes into account the cor-
relation at short distances, while the correlations at short
frequency distances play the main role in f-SOBI.

The algorithms were adapted to 2D images. SOBI-1D
and f-SOBI-1D correspond to these algorithms for which
the image data are considered as one line, while the 2D
structure is taken in account for SOBI-2D and f-SOBI-2D.

E. MSMC and separation quality.

In table I the different contrast values are given. In the
first column the BSS algorithms are indicated. A positive
constraint [15] was also applied (the symbol '+’ is added
at the end of the BSS algorithm name in the table). This
algorithm variant essentially improves SOBI and f-SOBI.

It exists a general correlation between the contrast and
the index of the quality separation. The coefficients of
correlation are given in table II.

F. Discussion.

Clearly the criterion based on the multiscale masked con-
trast carries out the best correlation with the quality sep-
aration criterion. Getting the highest MSMC value allows
one to obtain a separation which could be as close as pos-
sible of the original sources. Nevertheless this assumption
supposes that the conditions of validity of equation (1) are
true, providing that the mixtures are separable and that
the sources check the MSMC criterion.

Let us consider a set of sources S, their observed mix-
tures are X on which a BSS algorithm 7" is applied bringing
the set of sources S. If we apply 7' on S we obtain S also
when:

TABLE 1
COMPARISON OF THE QUALITY INDEX (G WITH DIFFERENT SEPARATION
CRITERIA. C IS THE CONTRAST DEDUCED FROM THE EMPIRICAL
ENTROPY, C-BS, THE MULTISCALE CONTRAST FROM A REDUNDANT
WAVELET (AT) WITH A CUBIC B-SPLINE AS SCALING FUNCTION, C-H,
THE MULTISCALE CONTRAST OBTAINED WITH THE SI-DWT WITH THE
HAAR TRANSFORM, MSMC, THE MULTISCALE MASKED CONTRAST
WITH THE AT TRANSFORM AND A CUBIC B-SPLINE SCALING

FUNCTION.
BSS G C C-BS | C-H | MSMC
Sources 4. 30.09 | 62.24 | 45.49 | 185.99
Mixtures 253 | 17.88 | 47.46 | 34.63 | 30.04
KL 2.60 | 17.88 | 49.15 | 35.85 | 31.92
FastICA-dt 399 | 28.84 | 61.48 | 45.05 | 184.95
FastICA-st 3.49 | 29.00 | 61.50 | 45.17 | 185.34
JADE 3.10 | 26.99 | 60.90 | 44.54 | 180.98
SOBI-1D 1.44 | 21.47 | 54.93 | 40.42 | 39.75
SOBI-2D 1.49 | 22.03 | 54.37 | 40.75 | 26.25
f-SOBI-1D 3.97 | 26.96 | 60.89 | 44.52 | 181.21
f-SOBI-2D 3.96 | 26.71 | 60.73 | 44.42 | 179.64
FastICA-dt+ | 2.58 | 23.57 | 56.79 | 41.51 | 112.21
FastICA-st+ | 3.17 | 23.94 | 57.31 | 41.81 | 118.90
JADE+ 2.80 | 28.98 | 61.88 | 45.30 | 185.36
SOBI-1D+ 3.24 | 20.58 | 53.72 | 39.36 | 150.19
SOBI-2D+ 2.85 | 23.12 | 55.78 | 40.83 | 64.88
f-SOBI-1D+ | 4.00 | 30.03 | 62.21 | 45.49 | 186.00
f-SOBI-2D+ | 3.99 | 28.93 | 61.86 | 45.27 | 185.19
TABLE 11

CORRELATION BETWEEN THE CONTRASTS AND THE QUALITY INDEX.

Criterion | Correlation
C 0.693
C-BS 0.657
C-H 0.620
MSMC 0.838

¢ The algorithm takes into account the same constraint on
the mixing matrix;

¢ The convergence towards the absolute maximum of the
criterion is obtained;

¢ Only one absolute maximum exists.

Now, if T"is applied on S, S is also restored. T is a projec-
tion operator. All images set which carries out S can be a
solution of equation (1), even the original mixtures X. But
the set which maximizes a contrast is preferable because a
mixing with random coefficients generally decreases it.

SOBI and f~-SOBI take into account the spatial organiza-
tion. In the case of the tested mixtures f~-SOBI is efficient.
JADE and FastICA based on HOS are also efficient. That
means that the true original sources S have a mutual in-
formation near to 0 and that its cross correlations between
their shifted Fourier transform have very few energy.

The use of the wavelet transform permits to introduce in-
directly the spatial organization. If two pixels are permuted
the mutual information is not changed, but the distribution
of the wavelet coefficients is slightly modified. Then MSC
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TABLE IIT
COMPARISON OF THE QUALITY INDEX (7 WITH DIFFERENT SEPARATION
CRITERIA FOR THE NOISY MIXTURES. C IS THE CONTRAST DEDUCED
FROM THE EMPIRICAL ENTROPY, AND MSMC THE MULTISCALE
MASKED CONTRAST WITH THE AT TRANSFORM AND A CUBIC
B-SPLINE SCALING FUNCTION.

BSS G C MSMC
Sources 4. 13.50 | 9.70
Mixtures 2.53 | 14.67 | 7.64
KL 2.60 | 15.23 | 7.90
FastICA-dt 2.27 | 16.81 | 6.57
FastICA-st 3.49 | 16.56 | 10.35
JADE 3.10 | 16.01 | 10.72
SOBI-1D 1.44 | 16.30 | 4.92
SOBI-2D 1.49 | 16.25 | 6.63
f-SOBI-1D 3.35 | 16.37 | 10.78
f-SOBI-2D 3.22 | 15.80 | 13.68
FastICA-dt+ | 2.58 | 12.95 | 5.52
FastICA-st+ | 3.17 | 14.37 | 5.63
JADE+ 2.80 | 13.87 | 5.96
SOBI-1D+ 2.28 | 15.59 | 7.27
SOBI-2D+ 2.33 | 1540 | 7.31
f-SOBI-1D+ | 3.38 | 16.48 | 13.95
f-SOBI-2D+ | 3.30 | 15.89 | 13.22
TABLE 1V

CORRELATION BETWEEN THE CONTRASTS AND THE QUALITY INDEX
FOR THE NOISY MIXTURES.

Criterion | Correlation
C -0.196
MSMC 0.664

contains an information both on the HOS of the sources
and their spatial organization. But we saw that this crite-
rion was not determinant. The main progress came from
the masking. By retaining only coefficients carrying out a
relevant information a more selective criterion than both

f-SOBI and JADE was derived.

G. The noise influence.

The noise reduces drastically the capabilities of the BSS
algorithms. Then the performance of the empiral contrast
with MSMC was tested on the simulated mixtures where a
Gaussian noise was added so that the signal to noise ratio
became around 15 dB. The results are given in Table III.

We remark that the original mixtures have a contrast
greater than the one obtained after computing the sources
from the original demixing matrix. The added noises were
partially interpreted as independent sources, then their
mixing decreases the contrast. With MSMC the situation is
inverted, but the maximum of this contrast is not obtained
for the original mixing matrix. In table IV the coefficients
of correlation are given confirming the improvement of the
BSS selection from MSMC.

V. CONCLUSION.

A new criterion for quantifying BSS was presented. Tt
is based on the idea that the main information in the im-
ages was included in selected wavelet coefficients and that
a multiscale masked contrast could be derived. The spar-
sity of the wavelet coefficients was elsewhere used for BSS
[19], but in a very different way.

MSMC is a quantity which seems to be closely corre-
lated to the separation quality index. It is evaluated on
the sources without any knowledge on the real sources. In-
stead of using it for quantifying a BSS result it is possible
also to exploit it as a criterion for computing the sources.
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