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ABSTRACT

We introduce two nonparametric independent component
analysis (ICA) criteria based on factorization of character-
istic functions. This approach has potential to separate wide
class of distributions because characteristic function always
exists. A simple criterion allowing for efficient search of the
separating matrix and a more advanced criterion possessing
desirable consistency property are presented. These criteria
may easily be used in orthogonal ICA algorithms. Sepa-
rating matrix is estimated by establishing pairwise indepen-
dence among the source signals. Theoretical characteristic
functions used in the criteria are replaced by empirical ones.
In the examples, the reliable performance of the methods is
demonstrated using a variety of source distributions includ-
ing skewed and heavy-tailed distributions.

1. INTRODUCTION

This paper introduces a new approach to the Blind Source
Separation (BSS). It is an Independent Component Analy-
sis (ICA) method that assumes that the source signals are
statistically independent. We exploit an alternative defini-
tion of the independence expressed in terms of characteris-
tic functions: the joint characteristic function may be fac-
tored to a product of the characteristic functions of the inde-
pendent marginals. Two novel separation criteria based on
this factorization are proposed: a simple criterion with low-
complexity computational solution and a more advanced
criterion with desirable large sample properties. The latter
one is a distribution-free, consistent estimator of indepen-
dence (see [1]).

Conventionally, the factorization of the cumulative dis-
tribution function (cdf) is used as a starting point in deriving
ICA algorithms. In such approach, cdfs

���
and

�	�
con-

sist of independent components if and only if
��
� ��� � �����

����
���� � ��
���� �
for all pairs


��� � ��� �
. Naturally this factoriza-

tion holds for � components. A similar factorization holds
for probability density functions (pdf) if the components

�
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are assumed to be (absolutely) continuous. Many widely
used ICA algorithms are based on the factorization of cdf
either explicitly or implicitly through derived contrast func-
tions [2, 3]. In practice, contrast functions are approximated
through estimating functions [3]. This is usually done either
using parametric models for distributions, or by computing
some related statistics. However, such algorithms [4, 5, 6]
may even fail in separating certain type of sources encoun-
tered in many key application areas, as it is demonstrated
in [7, 8], even though these sources are separable in theory.
This happens because the sources may not have a good fit
in the parametric model, or the computed statistics are not
good measures of independence for the sources.

In this paper, the factorization of the characteristic func-
tion is used as an objective function (contrast) in blind sep-
aration. This approach has significant benefits. First, the
source separation is nonparametric since the definition of
independence is used directly as a criterion. Moreover,
characteristic function always exists and consequently the
method has the potential to separate wider class of source
distributions than conventional methods. In the process of
estimating the separating matrix, the characteristic func-
tions in the definition are just replaced by empirical char-
acteristic functions (ecf). In the case of simple criterion, the
joint characteristic function may factorize on a finite inter-
val even though the marginals are not independent. Thus a
novel criterion that takes into account the whole real line is
proposed.

This paper is organized as follows. Section 2 describes
briefly the basic ICA model. In Section 3 the general or-
thogonal Jacobi algorithm is outlined. In Section 4, the def-
inition of independence is given in terms of characteristic
functions. Two objective functions which employ charac-
teristic functions are derived and their properties are dis-
cussed in Sections 5 and 6. Optimization of the objective
functions is considered as well. Simulations illustrating the
reliable performance of the proposed methods are presented
in Section 7. Finally, Section 8 concludes the paper.

108



2. ICA SYSTEM MODEL

We consider the classical noise-free linear ICA model with
instantaneous mixing � ����� �

(1)

where the sources
� ��� � ������� �
	
	
	 ���
����

are mutually in-
dependent real random variables with finite variances and� �����

is an unknown invertible mixing matrix. The model
(1) admits a unique solution up to scaling and permutation
indeterminacy � ��� � (2)

such that
��� �����

, where
�

diagonal scaling matrix and�
is permutation matrix (see [9]). At most one source is

allowed to be Gaussian to ensure the identifiability. The
goal of a ICA method is to find a separating matrix

�
such

that the recovered sources are as independent as possible.

3. ORTHOGONAL JACOBI APPROACH TO ICA

In finding statistically independent components under the
model (1), it suffices that all signals are pairwise indepen-
dent. Then matrix

�
in expression (2) is a separating ma-

trix [9]. If a prewhitening step [3] is applied, the matrix
�

will be orthogonal. This allows for developing an ICA al-
gorithm that employs Jacobi type orthogonal optimization
and pairwise processing [9, 10]. Such ICA algorithms were
called Jacobi algorithms, and they can be summarized as
follows [10]:

1. Whitening transform.

2. Sweep. For all pairs �������! "� � , do

(a) Compute the Givens angle #$�&%')( * �,+.-0/
that maximize the pairwise independence for
the signals 1 ( and 1 * .

(b) If %')( *32 %' min, rotate the pair accordingly.

3. If no pair has been rotated in the previous sweep, end.
Otherwise go to step 2.

The constant %' min above is a threshold value that controls
the accuracy of the optimization. It defines the minimum
rotation angle that is considered to be significant in finding
the separating matrix. In our experiments, we have used
the threshold %' min

� # 	 �4-65 7 , where 7 is the number of
samples, following the guidelines given in [10].

The key point of the algorithm for the ICA problem is
the pairwise independence measure in Step 2. Traditionally,
cumulant (or moment) based criteria [10] are used. Alterna-
tively, one could use criteria based on factorization of char-
acteristic functions as proposed in Sections 5 and 6.

4. CHARACTERISTIC FUNCTIONS AND
INDEPENDENCE

The independence condition for the components of a � -
dimensional random vector � may be written using char-
acteristic functions as follows

8.9 
;: � � �<=
> � 8.?
@ 
;A = � (3)

for all
: � 
;A � � A � �
	
	
	 � AB� �B��CED �

, where
8

is the corre-
sponding � -dimensional characteristic function defined as8.9 
;: �GFIHKJML (ONQPSR 9ST�U �
where �WV � V 2 denotes the standard vector inner product,
and

8 ?)@
, � � � �
	
	
	 � � , is the characteristic function of

the X :th marginal. Denoting the X :th standard unit vector
by Y = � 
 # �
	
	
	 � � �
	
	
	 � # �B� with � at the X :th position, the
marginals can be written as

8 
 � : � Y = 2 � in terms of the
joint characteristic function.

The characteristic functions used in the factorization
may be estimated from data by means of empirical charac-
teristic functions %8[Z . For 7 samples, it is defined as follows

%8 Z�
O: ��F\�7
Z] ^ > � L

(ONQPSR 90_ T �
where �

^
is the ` :th sample


 ` � � �
	 	 	 � 7 � . At every fixed
point the estimator converges both in the mean square and
almost sure sense [11]. Substituting the empirical charac-
teristic functions into the difference

a 9 
;: �GF 8 9 
O: �cb �<=
> � 8 9 
 � : � Y = 2 ��� (4)

following from the expression (3), we may directly measure
the independence instead of using indirect methods (cumu-
lants, approximations of mutual information, etc., see [3]).
We use the expression (4) as the basis of constructing the
criterion needed in the step 2 of the Jacobi algorithm as de-
scribed in the following two sections.

5. A SIMPLE ICA CRITERION FOR PAIRWISE
INDEPENDENCE

Two scalar random variables d and e are independent if
and only if f�g)hcikj 
 d �ml 
 e �Qn � # for all j and

l
ranging

over a separating class of functions [12, 13]. A well-known
separating class consist of the functions o
g6p 
;A � � � prq s 
OA � � ,AKt # . Therefore it is in our interest to define the following
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four functions� 9 ��� 
 � � A ��F f�g)h.i6o
g0p 
 � � � � Y � 2 ��� o
g0p 
;A � � � Y � 2 �Qn �� 9 ��� 
 � � A ��F f�g)h.i6o
g0p 
 � � � � Y � 2 ��� pBq s 
OA � � � Y � 2 �Qn �� 9 ��� 
 � � A ��F f�g)h.i6pBq s 
 � � � � Y � 2 � � o
g6p 
OA � � � Y � 2 �Qn �
and� 9 ��� 
 � � A ��F f�g)h.i6pBq s 
 � � � � Y � 2 � � prq s 
OA � � � Y � 2 �
n �

(5)

which are all zero for all pairs

 � � A �

if the components of
two dimensional variable � are independent. It is easy to
see the connection to the characteristic function equation
(4), namelya 9 
 � � A � �W� � 9 ��� 
 � � A �cb � 9 ��� 
 � � A �m��� � � � 9 ��� 
 � � A �	� � 9 ��� 
 � � A � � 	
Since

a 9 
 b�� �
b A �
is the complex conjugate of

a 9 
 � � A �
anda 9 
 b� � A � � � � 9 ��� 
 � � A �
� � 9 ��� 
 � � A �m��� � � � 9 ��� 
 � � A �kb � 9 ��� 
 � � A � ��

we can define a real-valued function��9 
 � � A ��F a 9 
 � � A � a 9 
 b� �
b A �	� a 9 
 � �
b A � a 9 
 b� � A �
�� a 9 
 � � A �� � �� a 9 
 b� � A �� �
� /	� � 9 ��� 
 � � A � � � � 9 ��� 
 � � A � �� � 9 ��� 
 � � A � � � � 9 ��� 
 � � A � ��� 	

This function should be minimized over two dimensional
rotations of the variable � to give the Givens angle needed
in the Jacobi optimization. Any /��3/ real orthogonal matrix�

may be described as
��� � ��������� ��� � � !"� ���# �$� !"� ��� ������� ���

�
. Due to

symmetry properties of cosine and sine we have

� � � ��%	&
' � � � � Y � 2 � � ��� � � Y � 2
and� � � ��%	&
' � � � � Y � 2 � b � ��� � � Y � 2 	 (6)

Thus �)(+* ,�-
.�/�0�1 9��� 
 � � A � � � ( , 9��� 
OA ����� �
�)(+* ,�-
.�/�0�1 9��� 
 � � A � � � b � ( , 9��� 
;A �������
�)(+* ,�-
.�/�0�1 9��� 
 � � A � � � ( , 9��� 
OA ����� �

and�)(+* ,�-
.�/�0�1 9��� 
 � � A � � b � ( , 9��� 
;A ������	
Therefore

%� � R 2 
 ' ��F � ( , 9 
 � � A �3� � ( , 9 
OA ����� (7)
� � (4* ,�-5.�/�0�1 9 
 � � A �	� � (+* ,�-
.�/�0�1 9 
OA ����� 	

Since %� � R 2 
 ' � is a +.-0/ -periodic function of
'

it has the
Fourier series representation

%� � R 2 
 ' � �76�89�;:]Z > � 6 Z o
g0p 
$< 7 ' b %' Z ��	

The empirical estimators corresponding functions (5) are
squares of sums of terms in cosine and sine, hence the de-
gree of the representation is low and the estimators should
have low variance. Simple golden section search [14] pro-
vides convenient tool for fast and accurate minimization.

Because of the scaling indeterminacy in the model (1),
we can not give any a priori preference on points


 � � A �
where to test the independence [8]. However, we have found
that the simple choice %� � R � 
 ' � applied to data where the
sample variances are normalized to one works fine in most
cases. Naturally whitening transform performs this normal-
ization.

One could also look for more or better calculation points
as is done in some independence tests [11]. However, it
seems that the improvements in separation are negligible
and the increase in the computational complexity signifi-
cant.

6. A CONSISTENT ICA CRITERION FOR
PAIRWISE INDEPENDENCE

It is not sufficient for two characteristic functions to agree
on a finite interval in order them to be the same [11]. The
criterion (7) calculated on finite number of points


 � � A �
(or

over a finite interval) may fail to be a good measure of in-
dependency for certain signals. Hence, spurious factoriza-
tions may result when using that criterion. If, however, two
analytic characteristic functions agree on any finite interval
around zero, they are the same [11]. Analytic characteris-
tic functions correspond to distributions whose all moments
exists. Thus, we may expect the criterion (7) work well if
the sources correspond to analytic characteristic functions.
However, we would also like to separate reliably other type
of sources e.g., distributions where the moments are not
necessary defined. This leads us to look for an improved
criterion.

Independence tests of the form

= �?>
@"AB a 9 
;: �� � l 
O: ��C : �
(8)

where
l 
 V � is an appropriate real-valued weight function,

were considered in [1] (see also [13]). It is shown under
a very mild tail condition that this test is consistent, and ap-
pears to work better than alternatives found in the literature
(see [1]). A particularly good choice of the weight function
in (8) is the product of the probability density functions of
the standard normal distribution, i.e.

l 
;: � � �<=
> � �5 /4+ L #ED0 2 0 @ 	
In this case, the corresponding test statistic can be writ-
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ten [1] in the form

%= � 7�� �7 �
Z]* > �

Z] ^ > �
�<=
> � L # D0 � ��� @ # � _ @ � 0

b �7 � % � Z]* > �
�<=
> �

Z] ^ > � L # D0 � ��� @ # � _ @ � 0
�&�7 �r�

�<=
> �
Z]* > �

Z] ^ > � L # D0 � ��� @ # � _ @ � 0�� �
(9)

where � is the dimension and 7 is the number of sam-
ples. The sample variances are assumed to be normalized
to unity. Although only the pairwise independence measure
is needed, during the sweeps of the Jacobi algorithm the
signals are sums of independent random variables. Since
the statistic (9) is designed to be a measure of total indepen-
dence, one might expect it to work better than criteria solely
build for two dimensional case. This may also be beneficial
for finding the linearly as independent component as possi-
ble when the linear model (1) does not hold exactly (there
is some non-linear dependence present).

Since the exponent function is monotonic and the cri-
terion (9) is symmetric, it follows from properties (6) that
the two dimensional criterion corresponding to (9) is again
a +.-0/ -periodic function of

'
, and therefore it can easily be

minimized. However, calculation of the criterion is much
slower than that of (7), and is some time-critical applica-
tions one might opt for the simple criterion.

7. SIMULATIONS

In the simulations, the separation performance is measured
in terms of the performance index [15] defined as

� F �] ( > � �
�]* > �

 � ( * 	�
� =  � ( =  b � � � �]* > � �
�] ( > �

 � ( * 	�
� =  � = *  b � � �
where the matrix

� � 
 � ( * ��F ���
, and a zero value in-

dicates perfect separation. In the three signal mixture case
the, values of

�
below 2.5 appear give be meaningful re-

sults, and a value below 1 can be considered a successful
separation. In addition, the performance is quantitatively
measured by the Signal to Interference Ratio (SIR(dB)

�b �
#���g�� � 8 
 MSE
�
, where MSE stands for Mean Square Er-

ror MSE
��� i 
 � 
 7 �cb 1 
 7 � � � n ). To eliminate scaling dif-

ferences both original signals and extracted signals are nor-
malized to have zero mean and unit variance before the cal-
culation of the SIR. After that source signals are matched to
the extracted signals so that the resulting MSE values are as
small as possible.

We compared our methods to two widely used ICA al-
gorithms, JADE [5] and Fast-ICA [4] with two different

nonlinearities. Three simulation examples with different
types of distributions and a variety of sample sizes are pre-
sented. All simulation results are averaged over 200 runs.

In the first simulation, three Rayleigh(1) distributed sig-
nals were mixed. This type of skewed distributions are ex-
tensively employed, for instance, in wireless communica-
tions. For each algorithm, the SIR value at different sample
sizes is shown in Fig. 1. The boxplot figure corresponding

500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

35

40

45

50

Sample length

M
ea

n 
S

IR
 v

al
ue

Separation of the Rayleigh(1) mixture

ECF−ICA (simple)    
JADE                
FastICA (pow3)      
FastICA (skew)      
ECF−ICA (consistent)

Fig. 1. Obtained SIR values in separating Rayleigh(1) dis-
tributed sources with different sample sizes.

to sample size 500 (as all boxplots in this paper) is presented
in Fig. 2. The box has lines at the lower quartile, median,
and upper quartile values. The lines extending from each
end show the extent of the rest of the results with outliers
presented as crosses. It can be seen that ECF-ICA methods,
and Fast-ICA (skew) can separate signals well already with
signal lengths around 200, whereas JADE and Fast-ICA
(pow3) fail even with large sample sizes. Many commonly
used ICA methods implicitly assume that the source distri-
butions are symmetric and consequently perform poorly in
the presence of asymmetric distributions.

The second example is the mixture of three uniformly
distributed signals. Results are shown in figures 3 and 4.
As noted earlier, the simple characteristic function criterion
may fail to find the independent components, since it calcu-
lates the difference (4) only in a single point. This can be
seen from the simulation, where the simple criterion perfor-
mance for 2000 observations is comparable to other algo-
rithms with 100 observations. The Fast-ICA (skew) method
completely fails in separating the sources.

In the third example, mixtures of three heavy tailed � -
stable signals with the characteristic exponent 1.2 (see e.g.
[16]) are separated. This type of signals do not possess fi-
nite variances, and might therefore create problems for sam-
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Fig. 2. Separation of Rayleigh(1) sources for the sam-
ple length 500. Algorithm numbers correspond (in order):
ECF-ICA (simple) (1), JADE (2), Fast-ICA (pow3) (3),
Fast-ICA (skew) (4) and ECF-ICA (consistent) (5).
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Fig. 3. Obtained SIR values in separating mixtures of Uni-
formly distributed sources with different sample sizes.

ple moment based methods. It can be seen from Figure 5,
however, that all the algorithms perform reliably regardless
of the fact that second order moments are not defined. A
boxplot illustrating the performance at sample size 500 is
given in Figure 6. In overall comparison, ECF-ICA (consis-
tent) method has reliable performance in all situations con-
sidered whereas the other methods may fail, in particular if
the underlying assumptions on sources are not completely
valid. This is due to the fact that ECF-ICA is nonparamet-
ric method and it directly minimizes a measure of indepen-
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Fig. 4. Separation performance in case of uniformly dis-
tributed sources and sample size 500. Algorithm numbers
correspond (in order): ECF-ICA (simple) (1), JADE (2),
Fast-ICA (pow3) (3), Fast-ICA (skew) (4) and ECF-ICA
(consistent) (5).

dence instead of approximating such measure through some
statistic.

8. CONCLUSION

We have proposed a new characteristic function based ap-
proach to blind source separation. The method assumes that
sources are statistically independent and minimizes a cri-
terion that follows directly from the definition of indepen-
dence in terms of factorization of the characteristic func-
tions. Two such criteria were proposed. The criteria are
employed in a Jacobi algorithm that establishes the inde-
pendence pairwise. The more advanced criterion possess
desirable consistency property. It is completely nonpara-
metric and the simulation results indicate that it works re-
liably for wide variety of source classes even at relatively
small sample sizes. The method has a reliable performance
even in the cases where the commonly used methods may
perform poorly, for example, in the face of skewed source
distributions.
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