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ABSTRACT

In this article, the asymptotic properties of the empirical
characteristic function are discussed. The residual of the
joint and marginal empirical characteristic functions is stud-
ied and the uniform convergence of the residual in the wider
sense and the weak convergence of the scaled residual to a
Gaussian process are investigated. Taking into account of
the result, a statistical test for independence against alterna-
tives is considered.

1. INTRODUCTION

Independent component analysis (ICA,[1]) deals with a prob-
lem of decomposing signals which are generated from an
unknown linear mixture of mutually independent sources,
and is applied to many problems in various engineering fields,
such as source separation problem, dimension reduction,
and data mining. ICA is often compared with principle
component analysis (PCA), which is a method of multivari-
ate data analysis based on the covariance structure of sig-
nals with the Euclidean metric. However, in the ICA frame-
work, the notion of independence, which is not affected by
the metric of signals, plays a central role. Supported by the
recent improvement of computer systems, which allows us
to handle massive data and to estimate computationally te-
dious higher order information within reasonable time, the
concept of ICA gives a new viewpoint of using the mutual
information instead of the covariance to the multivariate
data analysis. It is also pointed out that, in the context of
learning, self-organization of information transformations
based on infomax criteria in neural networks is closely re-
lated with ICA ([2], and so on).

A simple setting of ICA is as follows. Let
���������

�
	������������������	����������
�
(
���������������������

) be a source signal,
which consists of zero mean � independent random vari-
ables. We assume that each component is an i.i.d. sequence
or a strong stationary ergodic sequence, and at most only
one component is subject to a Gaussian distribution and the
others are non-Gaussian. Let � ������� �"!#�����������������!%$&�������
� be

an observation and we assume that it is produced as a linear
transformation of the source signal by an unknown matrix' � �
()�����������(*���

, that is

� ������� ' ���������+()��	�������*,+-�-�-�,�(*��	���������� (1)

Here the problem is to recover the source signal
�������

and es-
timate the matrix

'
from the observation without any knowl-

edge about them, that is, find a matrix . such that the ele-
ments of a recovered signal / �����&�0�"1������������������1��*�������
� ,
which is determined by a certain matrix . as

/ ������� .�� ������� (2)

are mutually independent. In other words, find a decompo-
sition of observation � ����� ,

� �����2�43()��1��������,5-�-�-�,63(*��1�������� (3)

where elements of / ����� are mutually independent. Ideally
the matrix . is an inverse (or generalized inverse) of the
matrix

'
. However, as well known, the order and amplitude

of elements of the recovered signal are ambiguous.
In general, ICA algorithms are implemented as mini-

mization or maximization of a certain contrast function which
measures the independence among elements of the recov-
ered signal / ����� . Motivated by mainly stability of algo-
rithms and speed of the convergence, many contrast func-
tions are proposed, and typical ones are as follows. Let7�8:9<; ; ; 8:=��
>������������>����

and
7�8:?<�
>��

be the joint probability den-
sity and the marginal probability density of the recovered
signal, respectively. The definition of independence is stated
as 7�8:9�; ; ; 8:=��
>������������>����)�+7�8:9��
>����*-�-�-<7�8:=��
>������

(4)

Therefore, a certain statistical distance between the joint
and the marginal distributions can be a contrast function,
such as the Kullback-Leibler divergence and the Hellinger
distance. Since these distances are defined with probability
distributions, we have to approximate probability distribu-
tions by kernel methods or polynomial expansion based on
moments or cumulants, in order to calculate them by using
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only observations, i.e. by using empirical distributions. In
practice, the Kullback-Leibler divergence is often used, and
in this case entropy or differentials of entropy of the recov-
ered signals have to be estimated utilizing such as Gram-
Charlier expansion or non-linear function approximations
([3] and so on).

There are also some methods using higher order statis-
tics in which shape of probability distributions are not ex-
actly assumed. A method of blind separation by Jutten and
Herault [4] is one of this type. In the simplest case, they
assume only the symmetry of the distributions and use the
condition that�&�"1��� 1����)�+�������	��� ����������� � �
������� (5)

Also cumulants, in particular kurtosis, are often used in con-
trast functions ([5] and so on).

In another approach, the correlation functions are used
in contrast functions to utilize the time structure of the sig-
nal ([6] and so on). In this case, the assumption on the
source signals may be relaxed to be weakly stationary. From
the assumption of independence, the correlation function
matrix of the source signal is a diagonal matrix

�����������������),���� ��� � ���
��� 9������ ����� �
...

. . .
...� ����� ��� =������

���� � (6)

at any time delay
�

, where ��� ?������ denotes the auto-correlation
function of the signal

	 � ����� . Therefore, a desired matrix . is
a matrix which simultaneously diagonalizes the correlation
function matrices of the recovered signal at any time delays.
In practical calculation, this strategy is reduced as an ap-
proximated simultaneous diagonalization of several delayed
correlation matrices under the least mean square criterion.

So far based on various contrast functions, many algo-
rithms are proposed. Since each method has its own ad-
vantages and disadvantages, in practic it is difficult to know
which algorithm should be used in advance. We sometimes
need to evaluate the validity of the result of an algorithm, or
compare the results of different algorithms from the view-
point of independence of reconstructed signals. Therefore,
it is important to consider methods of test for independence.
In this paper, we propose to use the empirical characteris-
tic function, and investigate basic properties with numerical
experiments.

2. PROPERTIES OF EMPIRICAL
CHARACTERISTIC FUNCTION

The characteristic function of a probability distribution � is
defined as the Fourier-Stieltjes transform of � ,� �����������! #"�$�������! ���)�

where
�

denotes expectation with respect to the distribution� . From the well-known property of the Fourier-Stieltjes
transform, the characteristic function and the distribution
correspond one to one. Therefore, closeness of two distri-
butions can be restated in terms of closeness of their char-
acteristic functions. Moreover the characteristic function is
overall bounded, that is% ���! #"�$)������! ��� %'& ��� %  #"�$�������! � % ��� ���
These uniqueness and boundedness are specific properties
of the characteristic function. The moment generating func-
tion which is the Laplace transform of the probability dis-
tribution is similar to the characteristic function, but it is
not bounded, and there are some pathological examples of
distributions which, for instance, have all degrees of mo-
ments, but do not have the moment generating functions.
Particularly the boundedness is an advantage for stability of
numerical calculations.

The empirical characteristic function is defined as

� �*������� �
�

�(�*)��  #"�$�������!������ (7)

where
!��

,
�+� � ����������� � � is an i.i.d. sequence from the dis-

tribution � . Obviously, the empirical characteristic func-
tion is directly calculated from the empirical distribution,
We should, however, note that all the calculation is done in
the complex domain.

The following two results by Feuerverger and Mureika[7]
are quite important to know the properties of convergence of
the empirical characteristic function to the true characteris-
tic function.

Theorem 1 (Feuerverger and Mureika[7]) For ,�-. ,

70/�1+2+3��4�57698 $: ;	: < � % � �*�����
= � ����� % �+�?> �6� (8)

holds.

Theorem 2 (Feuerverger and Mureika[7]) Let
1��*�����

be a
stochastic process that is a residual of the empirical char-
acteristic function and the true characteristic function:

1��������)�A@ � �*������= � ������BDC � � �	= , & � & , ��� (9)

As �0EF. ,
1��������

converges to a zero mean complex Gaus-
sian process

1#�����
satisfying

1#�������51HG��	=2���
and�H@�1#�����<1#��I���B�� � ���),�I���= � ����� � ��I���� (10)

where
G

denotes complex conjugate.

As �AEJ. , by the strong law of large numbers, the
empirical characteristic function converges almost surely to
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the true characteristic function pointwisely with respect to
�
.

Furthermore, the above theorems respectively claim that the
convergence with respect to

�
is uniform in the wider sense,

and the residual, as a stochastic process, converges weakly
to a complex Gaussian process. Feuerverger and Mureika
have mainly discussed a test for symmetry of the distribu-
tion, but also mentioned about test for fitness, test for in-
dependence, applications to estimating parameters, and so
on. In practice, a studentized version is often used and the
properties of the studentized characteristic function

3� ��������� � ��������	)� (11)

where

	�� � �
� =��

�(�*)�� �"!�� =��! �������! � �
�

�(�*)�� !���� (12)

are also investigated by Murota and Takeuchi[8]. Similarly,
the residual converges to a complex Gaussian process.

We extend the above result to the case of the empiri-
cal characteristic function of two independent random vari-
ables. Let

�"!�����1���
,
�+��� ����������� � � be mutually indepen-

dent i.i.d. sequences, and ��� ����� , � 8 ��I�� , and ��� 8 ������I�� be
the characteristic functions of

!��
and
1��

, and their joint
distributions, respectively. Note that in the two dimensional
case, the characteristic function is defined as� � 8 ������I������&�! #"�$�������! ,���I�1&����� (13)

and from the assumption of independence between
!

and1
, it is rewritten as� � 8 ������I��)� � � ����� � 8 ��I���� (14)

The empirical characteristic functions are defined as� �� ������� �
�

�(�*)��  #"�$�������!������ (15)

� 8� ��I���� �
�

�(�*)��  #"�$�����I�1������ (16)

� � 8� ������I���� �
�

�(�*)��  #"�$�������!�� ,���I�1������ (17)

By the strong law of large numbers, the above empirical
characteristic functions converge almost surely to the true
characteristic functions � � ����� , � 8 ��I�� and � � 8 ������I�� point-
wisely with respect to

�
and

I
, respectively. We can show

following two theorems.

Theorem 3 For , - . ,

70/1+2+3��4�5 698 $: ;	: 	 : 
�: < � % � � 8� ������I��
= � �� ����� � 8� ��I�� % �+�?>�� �
(18)

holds.

Theorem 4 Let � ��������I�� be a two-dimensional complex stochas-
tic process:

� ��������I����A@ � � 8� ������I��
= � �� ����� � 8� ��I���BDC � ��	= , & ����I & , ��� (19)

As � EF. , � ��������I�� converges weakly to a zero mean com-
plex Gaussian process � ������I�� satisfying � ������I���� � G��	=2���#= I��
and�H@ � ������I�� � ��������I����B��@ � � ����, � � �?= � � ����� � � ��� � ��B'@ � 8 ��I�, I � �?= � 8 ��I�� � 8 ��I � ��B:�

(20)

We have to be careful about the fact that ��� 8� ������I�� and���� ����� � 8� ��I�� are not independent, which gives the essential
difference from Feuerverger and Mureika’s theorems. For
the proof of Theorem 3, the equality� � 8� ������I���= � �� ����� � 8� ��I����A@ � � 8� ������I��
= � � 8 ������I���B= � � ������@ � 8� ��I���= � 8 ��I���B =�@ � �� �����
= � � ������B � 8 ��I��=@ � �� ������= � � ������B'@ � 8� ��I���= � 8 ��I���B:�
and the continuity theorem of the characteristic function are
applied. Knowing that

� �
8� ������I��)�A@ � � 8� ������I���= � � 8 ������I���B C � � (21)

� �� �����)�A@ � �� �����
= � � ������BDC � � (22)

�
8� ��I����A@ � 8� ��I���= � 8 ��I���BDC � (23)

converge pointwisely to Gaussian distributions satisfying�H@ � � 8� ������I�� � � 8� ��� � ��I � ��B��� � ����,�� � � � 8 ��I2,�I � ��= � � ����� � � ��� � � � 8 ��I�� � 8 ��I � ���
(24)�H@ � �� ����� � �� ��� � ��B � � � ���),�� � �
= � � ����� � � ��� � ��� (25)�H@ � 8� ��I�� � 8� ��I � ��B � � 8 ��I2,�I � ��= � 8 ��I�� � 8 ��I � ��� (26)�H@ � � 8� ������I�� � �� ��� � ��B��@ � � ���),�� � �
= � � ����� � � ��� � ��B � 8 ��I���� (27)�H@ � � 8� ������I�� � 8� ��I � ��B �� � ������@ � 8 ��I2,I � �
= � 8 ��I�� � 8 ��I � ��B:� (28)�H@ � �� ����� � 8� ��I���B��+� (29)

the proof of Theorem 4 basically follow Feuerverger and
Mureika’s.

Note that � ��������I�� consists of only the empirical char-
acteristic functions, which can be calculated from observa-
tions. That means we can calculate � �*������I�� without any
knowledge about the underlying distributions of

!
and
1

.
Also the multidimensional versions for 3 or more ran-

dom variables can be discussed in a straightforward way.
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3. APPLICATION TO TESTING FOR
INDEPENDENCE

According to the results in the previous section, we con-
struct a test statistics with

� ��������I����A@ � � 8� ������I��
= � �� ����� � 8� ��I���BDC � �
Roughly speaking, the procedure for testing consists of eval-
uating how � ��������I�� is close to

�
with a certain distance.���

-norm,
� 5

-norm and Sobolev-norm may be candi-
dates as a distance function, however, evaluation on the whole

� � is not necessarily plausible, because Theorems 1 and
3 claim that the residual converges uniformly only on a
bounded domain. Actually, the function � ��������I�� approaches
to
�

arbitrarily often as
����I E . and does not converge

uniformly on � or � � . Therefore, at least from the practical
point of view, the distance should be evaluated as�����	�

� ��������I�� ��
� ������I������I
with a weight function


� ������I�� whose support is bounded.
As a special case, the

� �
-norm is used and


� ������I�� can be
decomposed as


� ������I��2� % 
� ������I�� % � using a function


� ������I��
whose inverse Fourier transform is

� ������>��
. The norm is

then rewritten as� % � �*������I�� 
� ������I�� % �����I
� ����� �� ( � � ���H= ! � ��>�=�1 � �= �

� �
( � 	 � � ���H= ! � ��>�=�1���� ��� � ���:>��

In addition, if the function
�

is a probability density func-
tion, the above distance is interpreted as the

� �
-norm of

the difference between joint and marginal probability den-
sity functions estimated by the kernel method. As another
special case, Sobolev-norm weighted around the origin is
almost equivalent to the method of using higher order statis-
tics (moments and cumulants), because the differential coef-
ficients at the origin of the empirical characteristic function
give the information of cumulants.

In any case, these norms are not plausible in practice,
because of the computational cost of the multiple integrals
with respect to

�
and

I
, and weight functions should be care-

fully chosen with quantitative evaluation of the convergence
using, for instance, cross-validation.

Here we try to reduce the computational cost taking ac-
count of the properties of the statistics � ��������I�� . We should
note that the variance of � ��������I�� vanishes on the coordi-
nate axes of

������I��
, that is,

���4�
or
I&�4�

, and is bounded
at the other points. Also from the covariance structure of

the neighborhood, we know that � ��������I�� , as a stochastic
process, changes continuously and smoothly (Fig. 5, see
for example). As discussed in Murota and Takeuchi[8], we
evaluate � ��������I�� at one point or several points on a cer-
tain region of

������I��
taking account of the continuity. Since

� ��������I�� almost obeys a Gaussian distribution if � is suffi-
ciently large, we can adopt the

� �
-norm of � ��������I�� normal-

ized with the variance

, ������I����
���� � ��������I����	3 � ��������I�������� ��� �� � �*������I���	3 � ��������I�� � (30)

where the elements of the matrix
�

are given by� ���2�"!$#&%����� � ��������I����
� �� @&�� '!$#&%�� � ��������I����*,)($*&+*� � ��������I���� � G� ������I�����B2�� � � �,� � ���,($*&+*���� � ��������I������	3 � ��������I����
� �� �	3-!$#&%�� � ��������I������� ��� �"!$#&%��.�	3 � ��������I����
� �� @'=��� '!$#&%�� � ��������I�����,/($*&+*� � ��������I���� � G� ������I�����B2�

Note that � G� ������I��2� � ���	=2���#= I�� holds, and then
�

can be
asymptotically calculated as!$#&%�� � ��������I����10A@ � �� �
������= � �� ����� � B'@ � 8� �
�'I��
= � 8� ��I�� � B($*&+*� � ��������I���� � G� ������I����10A@:� = % � �� ����� % �DB'@:� = % � 8� ��I�� % �DB:�

This test statistics obeys the 2 � distribution with
�

de-
grees of freedom, hence p-values can be evaluated as, for
example,

743&5&6*@ , ������I�� &)7 � 8��:9���B �5��� ;743&5&6*@ , ������I�� & 9�� ;:;���9�B �5��� ;:9743&5&6*@ , ������I�� & ;�� �����:<�B �5��� ;:;
under the null hypothesis that two random variables are mu-
tually independent.

4. NUMERICAL EXPERIMENTS

4.1. Properties of test statistics

First, we check the properties of the test statistics and their= -values discussed in the previous section. In each run, we
generate independent random variables

@�! ��> ���6������������9�����B ,@�1 ��> ���4������������9�����B subject to the beta distribution ? ���������
and calculate the test statistics , ��������� . Figures 1 and 2
shows the histograms of the test statistics and = -values made
from

�������
runs. Theoretically the test statistics obeys 2 �
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distribution with
�

degrees of freedom and the = -value obeys
uniform distribution on � ������� . Comparison of experimental
and theoretical cumulative distributions of the test statistics
in Figure 3 supports our analysis.
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Fig. 1. Histogram of test statistics.
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Fig. 2. Histogram of = -values.
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Fig. 3. Experimental and theoretical cumulative distribu-
tions of the test statistics.

4.2. Application to detecting crosstalk

In the following example, we use two music instrument
sounds

	��
and
	 � which are synthesized on the computer.

Figure 4 shows their waveforms (
��8

KHz sampling rate,
<

secs,
7�� �����

points).
Figure 5 shows the real part and the imaginary part of

the scaled residual of the joint and marginal characteristic

functions

� ��������I����A@ � � 8� ������I��
= � �� ����� � 8� ��I���B C � �������I���� � = 7 � 7 ��� � = 7 � 7 ���
where

! �+	��
and
16�+	 � and the empirical characteristic

functions are calculated from randomly chosen
9������

points
of
!

and
1

. We can see that both of the values are almost�
around the origin, but continuously fluctuate toward the

marginal region.
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Fig. 4. Source signal. (
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Fig. 5. The real part and the imaginary part of the residual
� ��������I�� of the joint and marginal characteristic functions.

Using these signals, we generate artificially mixed sig-
nals � 
	��
	 � � � � � �

��� � 7 �'� � 	��	 � � �
Since


	 � includes
	��

with small amplitude, it simulates
crosstalk in

	 � . To detect the crosstalk, we generate mixed
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signals

! � 
	���
1 � 
	 � ,�� 
	���

and calculate the statistics , ������I�� . In Figures 6 and 7, the
test statistics and the = -values are shown, which are cal-
culated from randomly chosen

9������
points. We plot the

intensity of
�

in the horizontal axis and the test statistics
and the p-values in the vertical axis, respectively, where
�

varies on � = ��������������� and the statistics are evaluated at������I���� �
�������������������
��� ������� ������
��� �����:�����
. The = -values of the

test statistics are maximized at
= ��� �:<:;��#= ��� �:< � ��= ��� �:<&;

at
the applied points, respectively, hence the test statistics de-
tect the true crosstalk ratio

��� � 7
with small errors.
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Fig. 6. Test statistics of artificially mixed signals.
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Fig. 7. p-values of artificially mixed signals.

5. CONCLUDING REMARKS

In this paper, we investigated the properties of the joint and
marginal empirical characteristic functions, and discussed
a test for independence using the characteristic function of
joint and marginal empirical distributions.

With more detailed evaluation of the convergence, quan-
titative consideration about the relationship between the size

of sample � and the evaluation point
������I��

are needed as
a future work. Also, especially for practical use, it is im-
portant to consider the problem in which the observations
are smeared by not negligible noises. In the Gaussian noise
case, a straightforward extension can be made by using the
information of the noise covariance estimated by the con-
ventional factor analysis as discussed in Kawanabe[9],
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