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ABSTRACT

We examine curious behaviors of the Independent Compo-
nent Analysis (ICA) and Sparse Component Analysis (SCA)
when they are applied to some simple stochastic processes
called the “simple” and “generalized” spike processes. Both
processes put a single spike at a random location in the zero
vector of length n for each realization. The simple spike
process puts a unit impulse whereas the generalized spike
process puts a sample from the standard normal distribu-
tion. We obtained interesting set of theorems for these pro-
cesses. The behavior of SCA to these processes turned out
to be much simpler than that of ICA. Our results are use-
ful for validating any ICA/SCA software package because
it is very easy to simulate these processes and the desirable
answers are known from our theorems.

1. INTRODUCTION

Both sparsity and statistical independence are important cri-
teria for signal and image representations as demonstrated
by the work in computational neuroscience [1], [2], [3], [4]
as well as in computational harmonic analysis [5], [6], [7],
to name a few. The concept of sparsity and that of statistical
independence are intrinsically different. Sparsity empha-
sizes the issue of compression directly, whereas statistical
independence concerns the relationship among the coordi-
nates. Yet, for certain stochastic processes, these two are
intimately related, and often confusing. For example, OI-
shausen and Field [1], [2] emphasized the sparsity as the
basis selection criterion, but they also assumed the statis-
tical independence of the coordinates. For a set of natu-
ral scene image patches, their algorithm generated Gabor-
like basis functions, which are similar to the receptive field
profiles of the neurons in our primary visual cortex. Bell
and Sejnowski [3] used the statistical independence crite-
rion and obtained the basis functions similar to those of Ol-
shausen and Field. They claimed that they did not impose
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the sparsity explicitly and such sparsity emerged by min-
imizing the statistical dependence among the coordinates.
These motivated us to study these two criteria. However,
the mathematical relationship between these two criteria in
the general case has not been understood completely. We
wish to deepen our understanding of this intricate relation-
ship. Therefore we chose to study the so-called “spike” pro-
cess, a simple synthetic stochastic process that generates an
impulse at a random location in an n-dimensional vector
for each realization. There are two different spike processes
we deal with in this paper. One is the so-called “simple”
spike process, which puts a unit impulse whose amplitude
is constant 1. The other is the so-called “generalized” spike
process, which puts an impulse whose amplitude is sam-
pled from the standard normal distribution N(0,1). It is
important to use simple stochastic processes first since we
can gain insights and make precise statements in terms of
theorems. By these theorems, we now understand what are
the precise conditions for the sparsity and statistical inde-
pendence criteria to select the same basis for the spike pro-
cesses. Most of the proofs of the theorems below about the
simple and generalized spike process can be found in [7]
and [8], respectively.

2. NOTATIONS AND TERMINOLOGY

Let us first set our notation and the terminology. Let X €
R™ be a random vector with some unknown pdf fx. Let
B € D, where D is the so-called basis dictionary. For very
high dimensional data, we often use the wavelet packets and
local Fourier bases as D (see [9] and references therein for
more about such basis dictionaries). In this paper, however,
we use much more larger dictionaries: O(n) (the group
of orthonormal transformations in R™) or SLi(n,]R) (the
group of invertible volume-preserving transformations in R™
i.e., their determinants are £1). We are interested in search-
ing a basis under which the original stochastic process be-
comes either the sparsest or the least statistically dependent
among the bases in D. Let €(B | X) be a numerical mea-
sure of deficiency or cost of the basis B given the input
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stochastic process X . Under this setting, the best basis for
the stochastic process X among D relative to the cost € is
written as B, = argmingep C(B| X).

3. SPARSITY VS. STATISTICAL INDEPENDENCE

Let us now define the measure of sparsity and that of sta-
tistical independence to evaluate a given basis (coordinate
system).

3.1. Sparsity

Sparsity is a key property as a good coordinate system for
compression. The true sparsity measure for a given vector
x € R™ is the so-called ¢° quasi-norm which is defined as

lllo £ #{i € [1,n] : @; # 0},

i.e., the number of nonzero components in x. This measure
is, however, very unstable for even small perturbation of the
components in a vector. Therefore, a better measure is the
£P norm:

n 1/p
A
||$||p=<§ |$z’|p> , 0<p<l1.
i=1

In fact, this is a quasi-norm for 0 < p < 1 since this does
not satisfy the triangle inequality. It is easy to show that
limy, | o |25 = ||z||o. See [5] for the details of the 7 norm
properties.

Thus, we can use the expected ¢ norm minimization
as a criterion to find the best basis for a given stochastic
process in terms of sparsity:

C,(B|X) = E|B' X|I}, (1)

We propose to use the minimization of this cost to select
the best sparsifying basis (BSB):

B, = argglei% Cp(B| X).

3.2. Statistical Independence

The statistical independence of the coordinates of Y € R”
means fy (y) = fvi(y1)fyo(y2) - fv, (yn), Where fy, is
a one-dimensional marginal pdf of fy-. The statistical inde-
pendence is a key property as a good coordinate system for
compression and particularly modeling because: 1) dam-
age of one coordinate does not propagate to the others; and
2) it allows us to model the n-dimensional stochastic pro-
cess of interest as a set of 1D processes. Of course, in gen-
eral, it is difficult to find a truly statistically independent
coordinate system for a given stochastic process. Such a

coordinate system may not even exist for a certain stochas-
tic process. Therefore, we should be satisfied with finding
the least-statistically dependent coordinate system within a
basis dictionary. Naturally, then, we need to measure the
“closeness” of a coordinate system Y7, ... . Y,, to the statis-
tical independence. This can be measured by mutual infor-
mation or relative entropy between the true pdf fy and the
product of its marginal pdf’s:

>

1) )

—H(Y)+ Y H(Y),

/fY(y)log Hf&dy

where H(Y') and H(Y;) are the differential entropy of Y
and Y; respectively. We notethat I(Y') > 0,and I(Y) =0
if and only if the components of Y are mutually indepen-
dent.

Suppose Y = B~' X and B € GL(n, R) withdet B =
+1. We denote such a group of matrices by SL*(n, R).
Note that the usual SL(n, R) is a subgroup of SL* (n, R).
Then, we have

since the differential entropy is invariant under such an in-
vertible volume-preserving linear transformation, i.e.,
H(B'X) = H(X) + log|det B™'| = H(X), because
|det B~1| = 1. Based on this fact, we proposed the mini-
mization of the following cost function as the criterion to se-
lect the so-called least statistically-dependent basis (LSDB)
in the basis dictionary context [9]:

n

Cu(B|X) =) H((B'X))=3 HY).

1=1
Now, we can define the LSDB as

Brspp = arg glel% Cu(B|X).

We were informed that Pham [10] had proposed the mini-
mization of the same cost (2) earlier. We would like to point
out the main difference between our work [9] and Pham’s.
We used the basis libraries such as wavelet packets and local
Fourier bases that allow us to deal with datasets with large
dimensions such as face images whereas Pham used more
general dictionary GL(n, R). In practice, however, the nu-
merical optimization (2) clearly becomes more difficult in
his general case particularly if one wants to use this for high
dimensional datasets.

Closely related to the LSDB is the concept of the kurtosis-
maximizing basis (KMB). This is based on the approxima-
tion of the marginal differential entropy (2) by higher or-
der moments/cumulants using the Edgeworth expansion and
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was derived by Comon [11]:

1 1

EK(YJ = _E(IM(YZ') —-3u3(Y3) ()
where p,(Y;) is the kth central moment of Y;, and x(Y;) /
u2(Y;) is called the kurtosis of ;. See also Cardoso [12]
for a nice exposition of the various approximations to the
mutual information. Now, the KMB is defined as follows:*

H(Y;) = —

n

By = arg min C.(B| X) = arg %;n(m, (4)

where C,.(B| X) = — > "' | k(Y;). We note that the LSDB
and the KMB are tightly related, yet can be different. Af-
ter all, (3) is simply an approximation to the entropy up to
the fourth order cumulant. We also would like to point out
that Buckheit and Donoho [13] independently proposed the
same measure as a basis selection criterion, whose objective
was to find a basis under which an input stochastic process
looks maximally “non-Gaussian.”

4. THE SIMPLE SPIKE PROCESS

An n-dimensional simple spike process generates the stan-
dard basis vectors {e;}7_; C R" in arandom order, where
e; has one at the jth entry and all the other entries are zero.
One can view this process as a unit impulse located at a ran-
dom position between 1 and n.

4.1. The Karhunen-Loéve Basis

Let us first consider the Karhunen-Loéve basis of this pro-
cess from which we can learn a few things.

Proposition 4.1. The Karhunen-Loéve basis for the simple
spike process is any orthonormal basis in R™ containing the
“DC” vector 1,, = (1,1,...,1)7T.

This means that the KLB is not useful for this process.
This is because the simple spike process is highly non-Gaussian.

4.2. The Best Sparsifying Basis

It is obvious that the standard basis is the BSB among O(n)
by construction; an expansion of a realization of this pro-
cess into any other basis simply increases the number of
nonzero coefficients. More precisely, we have the following
proposition.

Theorem 4.2. The BSB for the spike process is the standard
basis if D = O(n) or SL*(n, R). If D = GL(n, R), then
it must be a scalar multiple of the identity matrix, i.e., al,
where a is a nonzero constant.

INote that there is a slight abuse of the terminology; We call the
kurtosis-maximizing basis in spite of maximizing unnormalized version
(without the division by p% (Y3)) of thekurtosis.

Remark 4.3. Note that when we say the basis is a matrix
such as al,,, we really mean that the column vectors of that
matrix form the basis. This also means that any permuted
and/or sign-flipped (i.e., multiplied by —1) versions of those
column vectors also form the basis. Therefore, when we
say the basis is a matrix A, we mean not only A but also its
permuted and sign-flipped versions of A. This remark also
applies to all the propositions and theorems below, unless
stated otherwise.

4.3. Statistical Dependence and Entropy of the Simple
Spike Process

Before considering the LSDB of this process, let us note a
few specifics about the simple spike process. First, although
the standard basis is the BSB for this process, it clearly does
not provide the statistically independent coordinates. The
existence of a single spike at one location prohibits spike
generation at other locations. This implies that these coor-
dinates are highly statistically dependent.

Second, we can compute the true entropy H(X) for
this process unlike other complicated stochastic processes.
Since the simple spike process selects one possible vector
from the standard basis of R with uniform probability 1/,
the true entropy H(X) is clearly logn. This is one of the
rare cases where we know the true high-dimensional en-
tropy of the process.

4.4. The LSDB among O(n)
For D = O(n), we have the following theorem.

Theorem 4.4. The LSDB among O(n) is the following:

e for n > 5, either the standard basis or the basis
whose matrix representation is

[n—2 -2 ... -2 -2
-2 n-2 . -2
1
Bom) =
—2 n-2 -2
| 2 -2 -2 -2
()

e for n = 4, the Walsh basis, i.e.,

1 1 1 1
11 1 -1 -1
BO(4>:§ 1 -1 1 —1]|°

1 -1 -1 1
11 1
vy

e forn =3, Bogs) = ? L/_§ 7 ; and
% 0
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1 1
1 -1
only case where the true independence is achieved.

o forn =2, Bop) = % , and this is the

Remark 4.5. There is an important geometric interpreta-
tion of (5). This matrix can also be written as:

1, 1}
I, —2-L-n,
Vn/n
In other words, this matrix represents the Householder re-
flection with respect to the hyperplane {y € R" | > ;i =
0} whose unit normal vector is 1,,/+/n.

4.5. The LSDB among GL(n, R)

As discussed in [7], for the simple spike process, there is no
important distinction in the LSDB selection from GL(n, R)
and from SL*(n,R). Therefore, we do not have to treat
these two cases separately. On the other hand, the general-
ized spike process in Section 5 requires us to treat SL* (n, R)
and GL(n, R) differently due to the continuous amplitude
of the generated spikes.
We now have the following curious theorem:

Theorem 4.6. The LSDB among GL(n,R) with n > 2 is
the following basis pair (for analysis and synthesis respec-
tively):

( a a - a ]
ba cy by b2
b3 b3 C3 b3 b3
(6)
bnfl . . . b’IL71 Cn—1 bn71

where a, by, ¢, are arbitrary real-valued constants satisfy-
inga #0,by ¢, k=2,...,n,and

A+ X0 bedy) Ja —dy —ds - —dy,
—badz/a dy 0o --- 0
—bsds/a 0 ds ©)

; )

where dy, = 1/(¢cr, —bi), k=2,... ,n.
If we restrict ourselves to D = SL*(n,R), then the
parameter a must satisfy:

a== H(ck — b))t
k=2

Remark 4.7. The LSDB such as (5) and the LSDB pair (6),
(7) provide us with further insight into the difference be-
tween sparsity and statistical independence. In the case of
(5), this is the LSDB, yet does not sparsify the simple spike
process at all. In fact, these coordinates are completely
dense, i.e., 6o = n. We can also show that the sparsity
measure €, gets worse as n — oco. More precisely, we have
the following proposition.

Proposition 4.8.

' 00 if0<p<1;
lim €, (Bo() | X) ={ 3 ifp=1.

It is interesting to note that this LSDB approaches to the
standard basis as n — oo. This also implies that

Tim €, (Bon | X) # €, ( lim Bow | X).

As for the analysis LSDB (6), the ability to sparsify the
spike process depends on the values of b, and ¢,. Since the
parameters a, by, and ¢y, are arbitrary as long as a # 0 and
b # c, letusputa = 1,b, = 0,¢, = 1,fork =2,... . n.
Then we get the following specific LSDB pair:

11 - 1 1 -1 - -1
0 0

. I’n,—l ’ In—l

0 0

This analysis LSDB provides us with a sparse representa-
tion for the simple spike process (though this is clearly not
better than the standard basis). For this analysis LSDB, we
have

1 n—1 1
CO:E[||Y||0]:—><1+ X2=2—-—.
n n
Now, letustakea = 1,0, = 1,¢cp =2fork=2,... ,nin
(6) and (7). Then we get
11 -1 n o -1 -1
1 2 -1
1 ’ : Infl
1 1 2 -1

®)

The spike process under this analysis basis is completely
dense, i.e., Gy = n. Yet this is still the LSDB.

Finally, from Theorems 4.4 and 4.6, we can prove the
following corollary:

Corollary 4.9. There is no invertible linear transformation
providing the statistically independent coordinates for the
spike process for n > 2.
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5. THE GENERALIZED SPIKE PROCESS

In [14], Donoho et al. analyzed the following generalization
of the simple spike process in terms of the KLB and the rate
distortion function. This process first picks one coordinate
out of n coordinates randomly as before, but then the ampli-
tude of this single spike is picked according to the standard
normal distribution N(0, 1). The pdf of this process can be
written as follows:

3

S (Hé w») ow), O

=1 \j#i

where §(-) is the Dirac delta function, and g(z) = (1/+/27)
-exp(—z?2/2), i.e., the pdf of the standard normal distribu-
tion. According to Martin Vetterli, this is one of his favorite
stochastic processes. Interestingly enough, this generalized
spike process shows rather different behavior (particularly
in the statistical independence) from the simple spike pro-
cess in Section 4.

5.1. The Karhunen-Loéve Basis

We can easily compute the covariance matrix of this pro-
cess, which is proportional to the identity matrix. In fact, it
is just I,, /n. Therefore, we have the following proposition.

Proposition 5.1. The Karhunen-Loéve basis for the gener-
alized spike process is any orthonormal basis in R™.

In other words, the KLB for this process is less restric-
tive than that for the simple spike process (Proposition 4.1),
and the KLB is again completely useless for this process.

5.2. The Best Sparsifying Basis

As for the BSB, there is no difference between the general-
ized spike process and the simple spike process.

Theorem 5.2. The BSB for the generalized spike process is
the standard basis if D = O(n) or SL*(n,R). If D =
GL(n,R), then it must be a scalar multiple of the identity
matrix, i.e., al,, where a is a nonzero constant.

5.3. The LSDB/KMB among O(n)

Here, we can see some difference from the simple spike pro-
cess. In order to analyze the LSDB, we need some back-
ground work. First, let us compute the pdf of the process
relative to a transformation Y = B~'X, B € SL*(n,R)
rather than O(n). From (9), and the fact |det B| = 1, we
have

3

=1 \j#i

DY (Hé rfy>) o(rTy),  (10)

where r;‘.r is the jth row vector of B. The marginal pdf can
be written as

friy Zg (y: |A4)), (1)

where A;; is the (4, j)th cofactor of matrix B, and g(y; o) =
g(y/o)/o represents the normal distribution N(0,02). In
other words, one can interpret this marginal pdf as a mix-
ture of Gaussians with the standard deviations |A;;|, j =
1,...,n. The proof of (11) is an interesting exercise of
multivariate calculus and linear algebra to derive the marginal
pdf [8].

Let us now consider a more specific case of D = O(n).
So far, we have been unable to prove the following conjec-
ture.

Conjecture 5.3. The LSDB among O(n) is the standard
basis.

However, a major simplification occurs if we consider
the KMB instead of the LSDB, and we can prove the fol-
lowing:

Theorem 5.4. The KMB among O(n) is the standard basis.

The complete proof can be found in [8]. Here, we sim-
ply sketch the proof. Because E[Y;] = 0 and E[Y}*] =
1 Z;‘ L A2 for all 4, the fourth order central moment of Y;

can be ertten as g (Y;) = 2 Z] 1 Aj;, and consequently
the cost function in (4) becomes

C.(B| X) = Z ZA (ZA%)
=1
(12)

Note that this is true for any B € SL*(n, R). If we restrict
our basis search within O(n), another major simplification
occurs because we have the following special relationship
between A;; and the matrix element b;; of B € O(n):

1
-1 _ N _ T
B~ = B (Aj;) =B".
In other words,
A,’j = (det B)b“ = :tbij.

Therefore, we have

n n
DAL= =1
j=1 j=1

Inserting this into (12), we get the following simplified cost
for D = O(n):

C.(B|X) = ( ZZA )

i=1 j=1
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This means that the KMB can be rewritten as follows:

B, = arg Brélga) bfj. (13)

2y

The proof of the fact that B, is the identity matrix or its
permuted/sign-flipped versions is based on the observation
that a matrix P = (p;;) = (b3;) belongs to a set of doubly
stochastic matrices 8(n) and the optimization in (13) can be
written as
2
Pesin) > EA

3

5.4. The LSDB/KMB among SL*(n, R)

If we extend our search to this more general case, we have
the following theorem.

Theorem 5.5. The KMB among SL* (n, R) does not exist.

Proof. This simply relies on the fact that the set SL* (n, R)
is not compact. Therefore, the objective function €, (B | X)
cannot have a minimum value in this set. One can also
consider a simple example, B = diag(a,a*,1,---,1),
where a is any nonzero real scalar. Then, one can show
that C.(B|X) = —(a* + a=* + n — 2), which tends to
—ooasa T oo. O

This theorem easily generalizes to the GL(n, R) case.

As for the LSDB, we do not know whether the LSDB
exists among SL* (n, R) or GL(n, R) at this point, although
we believe that the LSDB is the standard basis in both cases.
The negative result in the KMB does not imply the negative
result in the LSDB.

6. DISCUSSION

Because it is very easy to generate many realizations from
these spike processes, and because we have concrete an-
swers to which basis best sparsifies them, makes them least
statistically dependent, make them maximally non-Gaussian,
these realizations can be used to validate any ICA/SCA soft-
ware package. We hope to report the actual numerical ex-
periments using some popular ICA/SCA software packages
at the conference.
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