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ABSTRACT

Independent Component Analysis (ICA) is an important tool for
extracting structure from data. ICA is traditionally performed un-
der a maximum likelihood scheme in a latent variable model and
in the absence of noise. Although extensively utilised, maximum
likelihood estimation has well known drawbacks such as overfit-
ting and sensitivity to local-maxima. In this paper, we propose a
Bayesian learning scheme using the variational paradigm to learn
the parameters of the model, estimate the source densities, and -
together with Automatic Relevance Determination (ARD) - to in-
fer the number of latent dimensions. We illustrate our method by
separating a noisy mixture of images, estimating the noise and cor-
rectly inferring the true number of sources.

1. INTRODUCTION

Independent Component Analysis (ICA) seeks to extract salient
features and structure from a dataset which is assumed to be a
linear mixture of independent underlying (hidden) features. The
goal of ICA is to “‘unmix’ the dataset and recover these features.

ICA has traditionally been performed in the noise-less limit
[1], [2], with noise often being dealt with as an extra source. More
recently, however, Attias [3] extended ICA and incorporated full
covariance noise into the ICA framework. The model, dubbed
by Attias as Independent Factor Analysis (IFA), was subsequently
learnt through a maximum likelihood EM algorithm.

Lappalainen introduced an ensemble learning formalism (a
special case of the variational framework) for ICA in [4], where
the posterior over the ‘ensemble’ of hidden variables and param-
eters is approximated. A similar method is used in [5] but where
a richer variety of functional forms for the priors is used. In ad-
dition to this, an extra distribution is placed over the variances in
the mixing matrix prior in an attempt to automatically determine
the number of hidden sources, a practice known as Automatic Rel-
evance Determination (ARD) [6]. Crucially, however, the source
model used in [5] is kept fixed and only the parameters of the sen-
sor model are learnt. If the source model is not known, or not cho-
sen correctly, an incorrect and ill-fitting model will be learnt. This
is relaxed in [7], but only unimodal source densities are modelled,
greatly restricting its flexibility.

In line with [3], we choose a fully-adaptable factorial Mix-
ture of Gaussians (MoG) as our source model allowing us to re-
cover arbitrary source densities. We further extend this formalism
by bringing the model into the Bayesian sphere, allowing us to
incorporate prior knowledge of the problem domain while avoid-
ing over-fitting. We also employ ARD to infer the number of la-
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tent dimensions as part of the learning process. To overcome the
heavy computational load associated with Bayesian learning, we
use the variational framework to make assumptions about the pos-
terior and thus allow tractability of the Bayesian model.

2. THE MODEL

In common with ICA in the literature, we choose a generative
model to work with. The observed variables, y, of dimension .S
are modelled as a linear combination of statistically independent
latent variables, x, of dimension L with added Gaussian noise
y=Hzx+u 1)
where H isan S x L mixing matrix and « is S-dimensional addi-
tive noise. In signal processing nomenclature, S is the number of
(observed) sensors and L is the number of latent (hidden) sources.
The noise is assumed to be Gaussian, with zero mean and diag-
onal precision matrix A.The probability of observing data vector
y™ is then given by

1
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Since the sources = {z1, .., xs,.., 21} are mutually indepen-
dent, the distribution over « for data point n can be written as

(4)

where the product runs over the L sources.

In ICA, one attempts to uncover the hidden source signals
that give rise to a set of observed sensor signals. In principle,
this is achieved by calculating the posterior over the latent vari-
ables (sources) given the observed variables (sensor signals) and
the model

p(y"|z", M)p(z"|M)
p(y" M)
where p(z™| M) is the source model and p(y™|M) is a normal-

ising factor often called the marginal likelihood, or evidence for
model M.

p(z"|y", M) = 5)



2.1. SourceModé€

The choice of a flexible and mathematically attractive (tractable)
source model is crucial if a wide variety of source distributions
are to be modelled; in particular, the source model should be ca-
pable of encompassing both super- and sub-Gaussian distributions
(distributions with positive and negative kurtosis respectively) and
complex multi-modal distributions.

One such distribution is a factorised mixture of Gaussians with
L factors (i.e. sources) and m; components per source:
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where the mixing proportions 7; ., = p(ql' = g¢:|m;), the prior
probability of choosing component ¢; of the ' source. ¢ is
a variable indicating which component of the ‘" source is cho-
sen for generating =7 and takes on values of {¢; = 1,... ,¢; =
m;}. The mean and precision of component ¢; in source 4 are
Hiq; and B; 4, respectively. The parameters of source i are 8; =
{mi, u;,B;} where bold face indicates the vector of m; param-
eters. The complete parameter set of the source model is 8 =
{01, 02, . ,0[,}.

The complete collection of possible source states is denoted
q = {q,,49,,-.. g~} and runs over all m = T, m; possible
combinations of source states. The probability of state g™ being
chosen and generating source vector =" is

L
P($n:qn|a) = H i —q1|771 (zmqiaﬂi,qmﬂim)a)
= (q |m)p(z"|q", 0)
where w = {mi,m2,... ,wz}. Note that the product of L 1-

dimensional MoGs in (6) is equivalent to a single MoG in L-
dimensional space with m states.

The likelihood of the 11D data D = {y',%>,... ,y" } given
the model parameters ® = {H, A, 8} can now be written as

p(D|©) = HZ/ (", z", q"@)da

n=1q=1

®)

where do = ], dz;.

The parameters, ®, of the model can be learnt through a max-
imum likelihood approach such as the Expectation-Maximisation
(EM) algorithm ([8], [9]) (see [3] for a comprehensive derivation
of the EM algorithm with regard to ICA/IFA). The resultant values
can then be used to reconstruct the sources via (5).

3. BAYESIAN INFERENCE AND VARIATIONAL
LEARNING

The maximum likelihood approach to learning the parameters of
the model is well documented (see [10], [11], [3] for an introduc-
tion), as are the pitfalls. We choose to take the Bayesian approach
and infer the posterior distributions over parameters {H, A, 8}
and hidden variables {z, g}. First, we will state the prior distribu-
tions over the hidden variables and model parameters.
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3.1. ThePriors

Because of source independence, it follows that the distribution
over the MoG component indicator variables, p(q|=), is a product
over all 7}’ where 4 indexes the sources and n the data. The prior
over the source model (MoG) parameters is a product of priors
over m, i, 3. The prior over the mixing proportions, =;, for the
th source is a symmetric Dirichlet with hyper-parameter X;o. The
prior over each MoG mean, p;,q;, is @ Gaussian with mean mio
and precision 7;0 and the prior over the associated precision, 3;.q;,
is a Gamma with width and scale hyper-parameters b;o and c;o
respectively.

The prior over the sensor noise precision, A, is a product of
Gamma distributions for each diagonal element, A;, with width
and scale hyper-parameters b,; and ca;. The prior over each el-
ement of the mixing matrix, H;; is a zero-mean Gaussian with
precision «; for each column. By monitoring the evolution of
the precisions «, the relevance of each source may be determined
(ARD). If a; is large, column ¢ of H will be close to zero, indi-
cating source < is irrelevant. Finally, the prior over each «; is a
Gamma(ba; , Ca;)-

Bayesian inference in such a model is computationally inten-
sive and often intractable. An important and efficient tool in ap-
proximating posterior distributions is the variational method (see
[12] for an excellent tutorial). In particular, we take the variational
Bayes approach detailed in [13].

3.2. Variational Bayesian Learning
In the variational Bayes framework, the objective function to be
maximised is the negative free energy, F’

F = (logp(D, W), oy + H [t/ (W)

] )
where W = {A, H,a,x,q,0}. The first term in (9) is the ex-
pectation of the joint density of hidden and observed variables with
respect to an approximating posterior p' (W'). The second term is
the entropy of p’(W). The negative free energy forms a strict
lower bound on the evidence, p(D|M), of the model, with the
difference being the Kullback-Leibler (KL) divergence between
the true and approximating posteriors. Maximising this function is
equivalent to minimising the KL divergence between the true and
approximate posteriors. A wide variety of models and assumptions
can be compared and contrasted by calculating the free energy of
each model. The higher the free energy, the higher the likelihood
of the data under that model, and, therefore, the better that model
is at ‘explaining’ the data.

By choosing p’ (W) such that it factorises, terms in each hid-
den variable can be maximised individually. We choose the fol-
lowing factorisation

=9 (A)p'(H)p' (e)p' (z]q)p' (q)p'(6)

where p’ (8) = p'(w)p'(1)p’ (3) and p’ (a|b) is the approximating
density of p(a|b, D). The term p’(z|q) in (10) implies a mixture
posterior source density for source 4

(W) (10)
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where we have stipulated a MoG density for reasons explained
later.

We will also stipulate that the posteriors over the sources fac-
torise such that

L
=[] (zi) andtherefore p'(H) =

i=1

L

¢ (13

i=1
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where H; is the i** column of the mixing matrix, H. This ad-
ditional factorisation allows efficient scaling of computation with
the number of hidden sources, with little loss of accuracy [7].

By substituting p(D, W) and (10) into (9), we obtain expres-
sions for the negative free energy, F', of our model. One may now
proceed by specifying functional forms of each of the approximat-
ing posteriors and using these in (9) as shown by [4]. As shown
in [14], however, there is no need to specify functional forms for
(all) the approximating posteriors as they ‘fall-out’ of the max-
imisation process, helped by the factorised form of p'(W
optimal form for each posterior is simply given by

P/ (W) o< p(Wi) exp [(1og p(D, W, wown ] (19)
where the index k refers to the k" parameter in W,

This can be fully applied if p’ () = p’(x|q), allowing free-
form optimisation giving the ensemble learning algorithms pre-
sented in [15]. This factorisation gives a Gaussian posterior over
x. Using (10), however, requires a functional form for (11) to
allow expectations of the data likelihood, (2), under the mixture
density (11) to be taken. To allow flexibility (and conjugacy with
the prior), we specify (12). The posterior expectations are then
given by

(z:") = Z P (" = gi){i"|a:) (15)
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The energy F' is maximised in a similar way to the full free-form
approach, except p’(x,q) which is found by differentiating this
term and optimising w.r.t. the variational parameters in (12). The
update equations for these parameters are very similar to those
found in [3] (albeit with expectations of arguments rather than
point estimates).

All the derived posteriors require solving a set of coupled hyper-
parameter update equations. In practice, this is best achieved by
firstcycling throughp’ (), p' (H), p () until convergence. These
values are then passed to p’(6), whose constituent updates are cy-
cled until convergence. The hyper-parameters for p’(A) are up-
dated, then the whole process is repeated until convergence.

Once trained, the model can be used to reconstruct hidden
source signals (to within a scaling and permutation) given a data-
set by calculating {(g;) and (x;) under their respective posteriors
over the whole data-set, and given the (now fixed) model parame-
ter posteriors.
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Fig. 1. The source images and their reconstructions using VB-ICA

4. RESULTS

Four 127x127 images with very different densities (see figures 1
and 2) were mixed to produce eight sensor signals giving a 8x16129
data matrix. This was duplicated with zero-mean isotropic noise
added with a variance of 0.1 (approximately 5pct noise) to one set
while noise with a variance of 2 (approximately 30pct noise) was
added to the other. 1000 data-vectors were drawn at random from
each set (the same random vectors from both). Two sets of models
ranging from latent dimensionality 1-8, and with 5 components per
MoG, were trained on the two datasets using the variational Bayes
ICA (VB-ICA) algorithm. The variables , H, a and A were
initialised using SVD while the MoG parameters were initialised
using k-means clustering on . We then ran the models until the
negative free energy converged (to within 0.01 pct) or until a max-
imum of 200 iterations was reached. We then used the trained
models to unmix the whole 8x16129 data-matrix and reassemble
the original pictures. Due to the indeterminancy introduced by the
noise, ICA can only ever recover a scaled permutation of the orig-
inal sources. In the results that follow, the reconstructions have
been re-ordered and scaled by -1 (if necessary) to aid comparison.

4.1. Blind source seperation

Figure 1 compares the reconstructed images with the originals for
the 4-source models. Both low and high noise data matrices are
unmixed convincingly well. All images are very well seperated,
albeit with the high-noise reconstructions exhibiting some noise.
The low-noise reconstructions are particularly impressive, with lit-
tle or no cross-talk. The reasons for such good recovery are evident
in figure 2. The first column shows a histogram of the original im-
ages. The low-noise models capture the shape of the densities very
accurately, while the high-noise pdfs have captured the general
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Fig. 2. The source densities and their reconstructions

shapes even though they have modelled some of the noise. In par-
ticular, note the final row; the recovered densities are *smoothed’
versions of the quantised original. This is an effect of using 5 MoG
components to try and capture the 15 sharp peaks of the original. If
the number of components is increased, the MoGs start to capture
the inherent quantisation. This increases the quality of the recon-
struction (in this case *Einstein”) marginally, although what effect
this has on generality is a point for further research.

An important aspect of Bayesian reasoning is a model’s abil-
ity to quantify its confidence in its results. For example, figure 3
plots 30 sample points from the reconstruction of source 2 (‘S. J.
Roberts’). The dashed line is the reconstruction ({x2)), while the
solid line contours 1 standard deviation according to p’(z2). The
difference in uncertainty between the low- and high-noise source
reconstructions is clear to see, with an average precision of 10.93
for the low-noise estimate, and 0.67 for the high-noise source sig-
nal. The quantification of uncertainty in parameter and hidden
variable values can be extracted for any variable in the model. This
extra information is obviously very important if and when results
are assessed, especially if results are to be used for any decision-
making or training of some other network.

4.2. Model selection

We found we could perform model selection in a number of ways
- using ARD, monitoring the estimated noise precision and ob-
serving the negative free energy. The major benefit of ARD is that
multiple models of varying dimensionality need not be trained; any
unnecessary sources are automatically killed. Figure 4.2 shows the
recovered source signals for the training data from a model with
8 sources. Figure 4.2a illustrates how ARD has suppressed the
spurious sources in the low-noise case, inferring the correct latent
dimensionality of 4. The precisions (expectations), «x, are plotted
in figure 5. The first four columns of the mixing matrix have pre-
cisions very close to zero. The prior on H ;. 1.4 is therefore wide
enough to allow the columns to take values significantly different
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Fig. 3. Example reconstruction with errors

to zero (the prior mean), in effect allowing information to be chan-
neled from the data to the source MoGs via these columns. The
last four coefficients are of the order of 10%, tightly constraining
the prior on H ; 5.5 around zero, effectively blocking any informa-
tion flow from the data to sources 5-8.

In the high-noise case, ARD breaks down. The significant
level of noise tricks ARD into thinking an extra source is needed
to explain the extra data variance. The fifth coefficient in figure
5 is sufficiently close to zero, allowing some of the noise through
to an extra source. Although the true latent dimensionality is not
found in this case, one benefit of this noise channeling is to reduce
the amount of noise absorbed by the ‘useful” sources than would
otherwise be the case (something noted in the rms error between
the true and reconstructed images).

We also noticed how the estimated noise variance was a good
indicator for the true number of sources. Figure 6 shows how the
noise estimation varies across model orders. We have plotted the
ratio of estimated to true noise so that a value of 1 indicates a
perfect estimation. The noise estimation absorbs extra variance
when not enough sources are trained. As soon as there are enough
sources to explain the variance (in our case, 4), the noise preci-
sion jumps to a value closer to the true precision. This is particu-
larly marked for the low-noise case, where there is approximately
a six-fold change. Note how the noise precision is actually over-
estimated. No ICA algorithm is perfect - some of the noise will
always be absorbed by the sources, leaving less noise for A to
explain away. For the high-noise case, the peak is much less prou-
nounced, making it harder to judge the true underlying dimension-
ality.

As expected, the free-energy was the best indicator for both the
low- and high-noise data. Figure 7 plots the negative free energy
across model orders. The low-noise curve clearly peaks at model
order 4. The high-noise curve is much shallower, but is still clearly
maximum at 4 sources. In fact, if plotted on its own scale, the
high-noise curve has a similar shape to the low-noise curve. The
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Fig. 4. Reconstructed source signals from the training data

‘one-scale’ plot nicely illustrates how the energy for the high-noise
data is much lower than the low-noise data - i.e. the model is more
confident in its results when trained on the cleaner data.

Both the noise and energy monitoring methods require the
training of multiple models to infer the model order, although the
free-energy is very robust in the presence of noise. ARD, on the
other hand, needs only a single model (full-rank i.e. No. sources
= No. sensors) in order to infer the latent dimensionality. Unfortu-
nately, it can be tripped up if the training data is too noisy. Which
strategy one chooses depends on one’s circumstances. If the data
dimensionality is large, the training of a full-rank model may be
computationally prohibiting, especialy if a relatively small num-
ber of sources is expected. ARD is not as robust as the free-energy
in the presence of noise, so the best strategy maybe to train a full-
rank model to get a rough estimate, then train a few models either
side of this estimate to zero in on the best one. Ultimately, this a
point of further research and investigation.

5. DISCUSSION

In this paper, we have presented a method for Bayesian ICA which
allows potentially any (stationary) source density to be modelled
efficiently and accurately. We have demonstrated this by unmix-
ing a noisy mixture of images with very different and complex
pdfs, something not possible by fixed or uni-modal source models.
This Bayesian formalism trains robust models which can be inter-
rogated to quantify uncertainties in the patterns found and the pa-
rameters learned. We have shown that the true number of sources
can be inferred as part of the learning process using Automatic
Relevance Determination, highlighting both its merits and demer-
its. We have also shown how monitoring the estimated noise and
free-energy across model orders also picks out the true latent di-
mensionality, with the free-energy being particularly robust.

The VB-ICA algorithm can easily be extended to learn positive-
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only bases and mixing using methods introduced in [7], something
that will be presented elsewhere. As well as the Blind Source
Seperation problem, VB-ICA can be used for any ICA related task,
such as adaptive speech filtering, speech signal coding, biomedi-
cal signal processing, image compression, text modeling, finan-
cial data analysis and many other diverse applications. The ability
to capture accurate representations of the latent densities allows
a great flexibility and power. Coupled with the inherent model-
order selection, we believe VB-ICA can be used for a wide variety
of intelligent pattern recognition.
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