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ABSTRACT

In this paper we introduce the recent normal inverse Gaus-
sian (NIG) probability density as a new model for sparsely
coded data. The NIG density is a flexible, four-parameter
density, which is highly suitable for modeling unimodal
super-Gaussian data.

We demonstrate that the NIG density provides a very
good fit to the sparsely coded data, obtained here via an
independent component analysis (ICA) transform of the ob-
servations. In image denoising, we utilize this new density
by developing a NIG-based maximum a posteriori estima-
tor of a sparsely coded image corrupted by white Gaussian
noise. The estimator acts as a shrinkage operator on the
noisy components in the sparse domain. We demonstrate
the technique by an image denoising experiment.

1. INTRODUCTION

Wavelet transformed images, or images in an ICA repre-
sentation, typically have super-Gaussian probability density
functions (pdf’s), i.e. they have positive normalized kurto-
sis. We refer to such representations as sparse codes, since
the components of the representation only rarely deviate
significantly from zero.

In the recent years sparse coding has been exploited in
image denoising, by a “coring” [1], or a “shrinkage” [2, 3]
technique. Small amplitude values are thought to originate
from zero-valued components influenced by noise, and are
suppressed, while large values are preserved.

Common for these techniques are the need for a parame-
terized pdf model for the super-Gaussian components in the
transform domain. A classical sparse density is the Lapla-
cian density [4]. This is a one-parameter density, thus it
is unable to model different degrees of kurtosis for a given
variance. The two-parameter generalized Laplacian density
[1] represents a modification of the Laplace density. This
is a zero mean, symmetric density whose parameters are
directly related to the second and fourth order moments.
Other models were proposed by Hyvärinen in [3], and the

author referred to these models as mildly sparse and very
sparse densities. These are two-parameter, zero mean, sym-
metric models. The parameters are related to the second
order moment, the expected absolute value, and in addition
to the peak value of the density.

A proper statistical model should be flexible enough to
provide a good fit to the data by having the ability to model
various degrees of super-Gaussianity, and to take into ac-
count a possible skewness. In addition it should be possible
to estimate the model parameters readily from the noisy ob-
servation.

In this paper we propose to use the recent normal inverse
Gaussian (NIG) density [5] to model the super-Gaussian
components. The NIG density has the flexibility that makes
it capable of satisfying the requirements listed above, and
in addition very fast cumulant based estimators for the four
parameters of the density exist [6]. In the symmetric case, it
can model data ranging from zero normalized kurtosis, i.e.
the Gaussian distribution, to any positive valued kurtosis.

In this paper we develop a maximum a posteriori (MAP)
denoising technique based on NIG modeled ICA-decomposed
image data contaminated by white Gaussian noise. We show
that the NIG density model fits the sparsely coded data well,
and we provide an example of the method applied to a real
noisy image.

2. MAXIMUM A POSTERIORI ESTIMATION OF
SPARSE CODED SIGNAL

2.1. Sparse coding by ICA

In linear sparse coding we search for an ( ����� ) matrix
�

which transforms a set of observations ���	��
����
�������������
������
into a new representation ����� �!���"�#�!���������"�#$%��� , making the
components of � as sparse as possible. Hence,

��� � �&� (1)

and � can be considered a � -dimensional random vector.
The ICA transform, on the other hand, aims at making

the components of � as jointly statistically independent as
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possible [7]. This reduces to a search for uncorrelated com-
ponents being as non-Gaussian as possible [3]. Thus, if we
constrain the components ��� of the sparse code model (1)
to be uncorrelated, and if the ICA transformed data are in
fact super-Gaussian, ICA will obey the sparse code model.
Since ICA transformed image data are super-Gaussian, sparse
coding can be accomplished. In ICA, � and � are normally
equal. This is referred to as the complete case.

When observing noisy data, sparse coding is used to
separate the statistics of the noise free signal from the noise
in the transform domain. In the case of a signal � corrupted
by white Gaussian noise i.e. ��� � ��� �	� ��
 � , where � � is
the noise variance, the result of the transform

� � � ������ � � ���� � (2)

will lead to a maximally sparse � and yet Gaussian � . We
assume that � is statistically independent of � .

Let �� denote the estimate of � , based on � . By doing
the inverse transformation of �� we obtain �� as the denoised
version of � .

In ICA, the transform matrix
�

is in general not or-
thogonal. Thus, the components of � will be correlated.
If we require

�
to be orthogonal, then ��� � ��� �	� ��
 � .

The orthogonalization of
�

can be accomplished by
���

� � � � � ��� ��� � [3].
To estimate

�
in (2) directly from noisy data has proven

to be an inherently difficult task. Therefore, when taking
noisy data to the ICA domain, we assume that

�
has been

estimated from noise free data in advance. This is the draw-
back of using ICA to obtain a sparse code.

The advantage is that the components of the representa-
tion are thought to be mutually independent. Thus, the MAP
estimation of � given � , which generally requires knowl-
edge of the joint density of the sparse components, � � � � ,
can be approximated by a componentwise factorized opera-
tion for each individual component.

2.2. Maximum a posteriori estimation

Consider now a single noisy component

� � �� � � (3)

where � � � ���%�	� � � . Our task is now to estimate � given� by �� �! � � � . The MAP estimator �� of � is the value of �
which maximizes � � �#" � � , the conditional density of � given� . This is called the a posteriori probability density of � . It
can be expressed via Bayes formula as

� � �#" � � � � � � " � ��� � � �
� � � � � (4)

where � � � " � � is the conditional density of the observation� given � , � � � � is the density of the sparse component and

� � � � is the density of the noisy observation. Maximizing
the a posteriori density (4) is equivalent to maximizing the
product � � � " � ��� � � � since � � � � is independent of the param-
eter � .

Furthermore,

� � � " � � �$��$ � �&% � � � (5)

where ��$ � �'% � � is the density of the Gaussian noise eval-
uated at �(% � . For an unimodal, differentiable a posteriori
density, �� MAP can be obtained by solving

�� MAP )
*
* �
+ , - ��$ � �.% � �/ , - � � � �10 �$�%� (6)

Since ��$ � �&% � � is known, we readily derive �� MAP to be
the � for which

� %2�
� � �354 � � � �6�%� (7)

where 3 � � � � % , - � � � � is the negative log-density of � , and
3 4 � � � �877:9 3 � � � , is the score function of � . The resulting
function �� MAP �� � � � acts as a shrinkage operator on the
noisy observation. For certain densities, eq. (7) cannot be
solved in closed form. In that case, the following approxi-
mation to the MAP estimator may be applied [3]

���� sign � � �<;'=?> ���%��" � " % � � " 354 � � ��" � � (8)

3. NIG SHRINKAGE

3.1. The normal inverse Gaussian density

The NIG density is a variance-mean mixture of a Gaussian
density with an inverse Gaussian. The stochastic variable �
is said to be normal inverse Gaussian if it has a probability
density of the form [5]

� � � � �A@
B
C
D >FE + G � � �10H � � �

I � + @
H � � �10 � (9)

where
I ��� � � is the modified Bessel function of the second

kind with index 1,
G � � � � BKJ

@
� %2L �  L � � %2M � , H � � � �

��� � %NM � �  B � � ��� � , �.OP" L "FQ @ � B.R � and %TS Q M Q S .
The shape of the NIG density is specified by the four-

dimensional parameter vector
+
@ � L � M � B 0�� . The rich parametriza-

tion makes the NIG density a suitable model for a variety of
unimodal positive kurtotic data. The @ -parameter controls
the steepness or pointiness of the density, which increases
monotonically with increasing @ . A large @ implies light
tails, a small value implies heavy tails. The L -parameter
controls the skewness. For L QP� the density is skewed to
the left, for L R � the density is skewed to the right, whileL �U� implies a symmetric density around M , which is a
centrality parameter. The

B
-parameter is a scale-like param-

eter.
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In [6], Hanssen and Øigård derived a cumulant based es-
timator for the NIG parameters. By estimating the first four
lowest cumulants � � ��� ��� � ��� ��� � � � and � � � � from the sample
data, and use these to estimate skewness �� � � �� � � ��	 + �� � ��� 0 � � �
and normalized kurtosis �� � � �� � � � 	 + �� � ��� 0 � we form the aux-
iliary variables


 ���  �� � %��� �� ���� �
�
��� � �� �� J 
 � (10)

Thereafter, the parameter estimators can easily be shown to
be [6]

�B ��� �� � ��� 
 ��� % � � � � (11)

�@ �



�B J � % � � � (12)

�L � �@ ��� (13)

�M � �� � ��� % � J �� � ��� 
 � (14)

This estimation technique requires fairly large sample sets
to be accurate, and it yields statistically consistent estima-
tors [6].

We now estimate the parameters from the noise free data
set, but the parameters can also be estimated from the noisy
observations if we know the noise variance � � , by subtract-
ing � � from the estimate of � � ��� . This can be done since
the zero mean, Gaussian noise only contributes to the sec-
ond order cumulant, and in addition it is independent of the
signal.

3.2. Shrinkage function

The score function of the NIG density is found to be

3 4����� � � � � @ � � %2M �H � � �
 I�� +

@
H � � �10I � + @
H � � �10  �

@
H � � � � %2L � (15)

To find �� MAP based on the NIG density, 3 4����� � � � should be
inserted into (7) and the equation solved for � . Unfortu-
nately, the equation is to complex to be solved in closed
form. Instead we use the approximate MAP-estimator given
in (8).

4. SPARSE CODE SHRINKAGE ALGORITHM

We assume that we have available a large number � of re-
alizations of noise free ( � � � ) random data vectors � . We
organize the set of vectors in � � + � �������������! N0 . These
vectors are used to estimate the ICA transform matrix

�
.

This can be done by means of any ICA algorithm. In image
denoising, we assume that � can be obtained from other
noise free images of the same category as the image to be
denoised. For instance, if we are to denoise an image of
a natural scene, we estimate

�
based on images of other

natural scenes.
The vectors in � , are transformed into a set of sparse

( � � � ) vectors " � + ��� ��������� �# '0 by the orthogonalized�
. Hence " � � � . The first element of each vector �?� ,

3 �$������������� , is a realization of independent component
no. 1, the second element of independent component no. 2,
and so on. The realization of each component is input to the
cumulant based NIG parameter estimator, which determines
a fit of the NIG density of the noise free component, and
we calculate the corresponding shrinkage function. Now, a
noisy data vector �( � is transformed into its sparse repre-
sentation � . Every component of � is denoised according to
the NIG shrinkage function associated with each noise free
component. The algorithm is summarized as follows [3]

1. Estimate
�

from � , and orthogonalize it.

2. Estimate a NIG density for every independent com-
ponent �&% , ' �(� ����� � , from " � � � , and find the
corresponding shrinkage function  �% .

3. A data vector �  � is observed. Make the transfor-
mation � � � ��� �� � .

4. Apply  #% to every element of � % , to obtain ��&%��  #%�� � % � .
Thus �� �	� �������������� ��#$%��� .

5. Do the inverse transformation ���� � � �� .

If the noise variance is unknown it can be estimated by
taking the median absolute deviation of the � � correspond-
ing to the sparsest noise free ��� and divide by 0.6745 [2, 3].

5. APPLICATION TO IMAGE DATA

We have implemented the NIG shrinkage model to denoise
images of natural scenes, i.e. images void of any man-made
structures. The images are the same as those used in [3]. We
express the two-dimensional signals by a one-dimensional
column vector by a row-by-row scanning of the image. For
computational reasons we can not employ the method di-
rectly on the full size images, but rather we extract 10000
( � � � � � ) patches at random from nine different natural
scene images. These were ordered in ( � �)� � � ) vectors.

Several authors have applied ICA to image data, and
found that one component represents the local mean image
intensity. It was noted in [3] that this component actually
does not belong to a sparse density, and that it has a large
variance associated with it. Therefore, we ignore this com-
ponent by subtracting the local mean from each ( � �)� � � )
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(a) Normalized histogram and fitted NIG density.
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(b) Variance stabilized p-p plot for NIG fit

Fig. 1. Goodness-of-fit for NIG density modeling of noise
free IC no. 1.

data vector used in the experiment and drop one dimension
by principal component analysis (PCA), before proceeding.
Thus the dataset consists of vectors of dimension ( � � � � � ).

In this manner we had 10000 realizations of noise free
data � to be used in estimating the transform matrix

�
, the

densities of the transformed components, and in calculating
shrinkage functions. When estimating

�
we used the Fas-

tICA [8] algorithm with the hyperbolic tangent nonlinearity.
A separate image was chosen for denoising. In order to

control the signal-to-noise ratio (SNR) of the noisy image,
the original image was normalized to unit variance before
adding noise. In addition the pixels were made zero mean.
This was also done for all the images used in estimating the
transform.

We slide a ( � � � � � ) patch over the noisy image, thus
extracting a number of noisy vectors of dimension ( � � � �� ). The number of vectors depends on the overlap between
the patches. These are ICA transformed, and each vector is
denoised. Since the extracted patches overlap we get several
suggested values for each denoised image pixel, and we take
the result to be the mean of all estimates. In the end, we
add the local means to �� , represent the vectors as ( � � � � � )patches, and order these into a denoised image.
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(a) Normalized histograms, noisy and shrinked
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(b) Shrinkage function

Fig. 2. Effect of denoising noisy IC no. 1 by shrinkage func-
tion calculated from NIG density fitted to noise free data.

6. RESULTS

6.1. Fit to data

It is essential that the NIG density actually fits the trans-
formed data. For the purpose of illustrating how close the
NIG density models the ICA transformed data, we have
used independent component no. 1 (hereafter denoted IC
no. 1). The estimated kurtosis of this component was found
to be �� � ���%� �)� . The four parameters of the NIG density
modeling the underlying probability density function of IC
no. 1 were estimated to be

�@ � ��� � ��� �B �6�%� � � � �L � % �%� ��� and �M �$�%� � � � (16)

The relatively low value of @ indicates a density with rather
heavy tails. It has a negligible skewness and it is centered
close to origo. The resulting NIG density is shown in a log-
plot in figure 1 (a) (solid line) along with a log-plot of the
normalized histogram of IC no. 1 (dashed line). The plots
only deviate slightly in the tails, giving the first indication
of a good data fit.

A common procedure to evaluate the goodness-of-fit of
a probability density model is to construct a variance stabi-
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(a) Original image (b) Noisy image, ���6�%� �

(c) NIG based sparse code shrinkage (d) Wiener filtered

Fig. 3. Denoising experiment on grashopper image. Restoration of image shown in (b) by, (c) NIG based sparse code
shrinkage, and (d) the Wiener filter method.

lized p-p plot [9], which compares inverse sine-transformed
uniformly constructed quantiles of the data with inverse sine-
transformed quantiles calculated from the exact cumulative
distribution of the proposed density. A linear plot indi-
cates a good fit. Given

�
realizations of a random variable,

we construct the uniform quantiles H � � � 3 % � 	 � � 	 � and
the quantiles � � ��� � ����� @ � B � L � M � , 3��$����������� � where
��� O������ O � � are ordered samples from the unknown dis-
tribution, and � is the exact cumulative distribution of the
proposed density. The variance stabilized p-p plot is now
defined as the plot of �
	 � against H 	� , where [9]

� 	 � � �C =������� - ��� ��� �� �
H 	� � �C =������� - � H ��� �� � � (17)

for 3 �(����������� � . The resulting plot for the NIG model of
IC no. 1 is shown in figure 1 (b). It is noted to be very close
to linear, indicating that the NIG density of figure 1 (a) does
indeed provide an excellent fit to the data.

6.2. Shrinkage function obtained from data

We chose to denoise the “grashopper” image used in [3].
The image was normalized in variance before adding white
Gaussian noise with ���$�%� � , resulting in � ��� � � , where
� ��� is defined as the ratio of the variance in the original
image, to the noise variance.

We also used the realizations of noisy IC no. 1 to demon-
strate the effect of the shrinking procedure. The dashed
curve of figure 2 (a) shows a log-plot of the normalized his-
togram of noisy IC no. 1. The component is clearly influ-
enced by the Gaussian noise.

Based on the NIG pdf of figure 1 (a), a shrinkage func-
tion for the noisy IC no. 1 is calculated. This is shown as
the solid non-linearity of figure 2 (b). The horizontal part
of the function close to origo corresponds to those compo-
nents whose non-zero value is thought to be caused by noise
only. These are set to zero. The rest of the components are
shrinked into values less than the original, but still non-zero.
The result of applying the shrinkage function of figure 2 (b)
to noisy IC no. 1 is shown in the solid curve of figure 2
(a). This is the normalized histogram of denoised IC no.
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1. It is evident that the value of the components has been
reduced. The components are concentrated around zero to
a much higher degree in the denoised dataset, compared to
the noisy dataset.

For comparison, the shrinkage function we would obtain
if the data had been modeled by a classical Laplacian den-
sity is shown as dashed curve of figure 1 (b). The shrinkage
function is in this case given by

���� sign � � �#;'=?>
�
�%��" � " %�� � � ���� � (18)

where
�

is the standard deviation of the density model, eas-
ily estimated from the data. In this case the two shrinkage
functions have almost identical thresholds. But the large
components are shrinked less by the NIG model than by the
Laplacian model. The reason for this is that the estimated
NIG density has heavier tails than the estimated Laplacian
density.

6.3. Denoising a natural image

In figure 3 (a) the “grashopper” image is shown. Figure 3 (b)
shows the noisy image, where � �!�%� � . Figure 3 (c) shows
the result of denoising the image of figure 3 (b) by NIG
based sparse code shrinkage. Clearly, noise has been effec-
tively reduced, although it still appears a little bit grainy.
Compared with the original image, figure 3 (a), it can be
seen that some of the contrast is lost, and some blurring is
introduced. For comparison, the same image was denoised
using a standard Wiener-filter ( � � � mask). The result is
shown in figure 3 (d). We note that the Wiener-filter method
has not been able to reduce noise as effectively as in NIG
based sparse code shrinkage.

7. CONCLUSION

In this paper we introduced the recent normal inverse Gaus-
sian density as a model for sparsely coded data. The NIG
density is a flexible, four-parameter density, highly suitable
for modeling possibly skewed super-Gaussian data. In the
symmetric case it can model data having kurtosis of all pos-
itive values.

The NIG-density is an alternative pdf to those used e.g.
in [3] for modeling sparsely coded data. The parameter esti-
mates for the densities in [3] require an estimate of the peak
value of the proposed density, obtained via a non-parametric
kernel method. This may be problematic since the estimate
relies heavily on the kernel bandwidth. In the NIG case,
very fast and simple cumulant based parameter estimators
exist, which for fairly large datasets yield accurate results.
The parameters can moreover be estimated based on the
noisy observation.

We obtained sparsely coded image data by applying ICA
to the images, and demonstrated that the NIG density is ca-
pable of providing a very good fit to the ICA transformed
data.

A NIG-based maximum a posteriori estimator technique
was developed. It acts as a shrinkage operator on the noisy
ICA transformed data. We demonstrated the NIG-based
sparse code shrinkage technique on the “grashopper” im-
age contaminated by Gaussian noise. The technique proved
effective in reducing the noise, comparable to the result ob-
tained in [3].
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