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ABSTRACT

In this paper it is proven that the estimation of the separat-
ing system can be based on the cancellation of some second
partial derivatives of the output cross-cumulants. We pro-
pose a new contrast function that must be optimized on the
Stiefel manifold. A conjugate gradient method is used in
order to obtain a fast convergence speed.

1. INTRODUCTION

This paper deals with the separation of instantaneous lin-
ear mixtures of the sources, which is widely considered to
be the core problem in many scenarios. It is also closely
related to the Independent Component Analysis (ICA) ap-
proach, whose goal is to transform the data linearly in order
to obtain transformed variables which are as statistically in-
dependent ’as possible’.

In the past ten years, many solutions to this problem
have been proposed, starting from the seminal work of Jut-
ten and Herault [10]. In recent times, independence cri-
teria that are based on Information-Theoretic models have
attracted a great deal of attention: for example, think of en-
tropy maximization[3] and minimization of the mutual in-
formation between the outputs of the separation system[1].
We would point out that one must estimate the marginal
distributions of the sources in order to use these criteria.
By contrast, cumulant-based approaches are universal in the
sense that they do not require any a priori knowledge of the
probability density functions of the signals, although they
may be computationally intensive. Depending on the sce-
nario, one approach may be better than the other.

ICA [6], JADE [5] and FastICA [9] are representative
cumulant-based algorithms. In order to smooth out the ef-
fect of additive noise on the estimated cumulants, both ICA
and JADE solve a large amount of statistical equations [16],

whereas FastICA uses a reduced set of cumulants (the kur-
toses of the signals) in order to have a very low computa-
tional cost. Our work can be placed within the latter ap-
proach. We derive a small set of sufficient equations for
BSS; nevertheless, in contrast to FastIca, we explore a non-
deflation procedure to extract the sources.

The next Section of this paper is devoted to present the
basic notation which will be used in the sequel. Section 3
proposes a new set of necessary and sufficient conditions
for BSS. In Section 4, in view of the preceeding results, a
new contrast function is presented. This contrast is mini-
mized by using a conjugate gradient algorithm within the
framework of the Stiefel manifold (Sections 5 and 6). Ex-
perimental results are given in Section 7. Finally, Section 8
is concerned with the conclusions.

2. PROBLEM STATEMENT AND NOTATION

Throughout the paper, the mixture model is represented by
the equation: �������
	���
������

(1)

where s(t) = [ ���
�����

,..., ���
���������

is a vector of N source sig-
nals, A = ( ��� � ) is an unknown ��� � invertible mixing
matrix and vector x(t) collects the observed signals, being
the only data available. The aim of BSS is to determine a
�!�"� separating matrix B = ( #$� � ) such that:

% �����
	'&(�������
	*)+
������ (2)

is an estimate of the source signals, i.e., the global matrix
G = ( ,-� � ) has one and only one non-zero coefficient per row
and column, where G = A . B. In this case, G is said to be
a ’generalized permutation matrix’. The only assumptions
are that the sources are statistically independent, station-
ary, unit-variance and zero-mean. In addition, at most one
source is gaussian-distributed.
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3. DIFFERENTIATING THE OUTPUT
CUMULANTS

Comon ([6], Theorem 11) showed that G is a generalized
permutation matrix if the � components of %

�����
are pair-

wise independent. Then, the cross-cumulants of any order
between different outputs ��� ����� and � � ����� vanish. Let us
consider the output cross-cumulant ������� � � �-� ����� � � � ������� 	����� � �-� ����� � �-� ����� � �-� ����� � � � ������� . By using the multi-linearity
property of the cumulants, it can be expanded as follows:

�����	� � � �-� ����� � � � �������
	 �
 � � � , ��
�
, �
��
��

(3)

where


��
is the kurtosis (fourth-order cumulant) of the l-th

source. By setting (3) to zero for all ���	�� , we obtain a
set of equations which are obviously satisfied when G is a
generalized permutation matrix. Our first contribution is to
show that these equations can be simplified by differentia-
tion without losing any fundamental property, i.e., consider
the following second-order derivatives of (3):

� � ���	������� ��� �� # �� �
	 �
 � � � ,-�

�
, �
�
� ��
� 
�� � � ���	 ��� (4)

which can be written as

� � � 	 �
 � � �
�
! � � # �

�
#�� ! ����� �#"

� � " ! � " � � " � � � (5)

where we have used cum(
" �

,
" ! ,
"
� ,
"
� )= $&%��

� % � ! % � �� %

 % .

The key point is that the set of equations
� � � = 0 for all���	'� can provide us with a set of necessary and sufficient

conditions to asssure the source separation.
Proof. Trivial non-separating solutions, in which the

separating matrix is not full-row rank, are avoided by as-
suming that the signals in x(t) are uncorrelated and have
unit variance since, in this case, A, B and G must necesarily
be orthogonal matrices. This assumption can be easily ac-
complished by means of the so-called whitening or sphering
of the original mixtures[6].

Observe that (4) can be written compactly in a matrix
form as: � � � 	)( ��+* � ( � (6)

where
( �,

is the k-th row of G and * � is the diagonal matrix
whose (l,l)-entry is equal to � ��

� 
��
. If at most one source is

gaussian (i.e., its kurtosis equals zero), we can also assume
without loss of generality that each diagonal element of * �
is different (i.e. * � has no repeated eigenvalues) since A
(and thus * � ) can be properly adjusted by multipliying the
observations x(t) by any orthogonal matrix.

Since both A and B are orthogonal matrices, it follows
that
( �
�
(
�
	.-
� � , where

-
� � stands for the Kronecker delta.

Now, we prove our main result:
(Necessity). If B is a separating matrix, then each vector(
� is a different canonical vector. Therefore, it follows from

(6) that
� � � = 0 for all i, j ( ���	 � ).

(Sufficiency). Let us assume that
� � � = 0 for all ���	/� .

The vector * � ( � can be expressed as a linear combination
of the vectors

(
� since the set 0 ( � , ( � , ... ,

(�132
forms an

orthonormal basis of the space. Therefore:

* � ( � 	 � � � ( �54 
 �76� � � � �
(
� (7)

where
� � � =

( �
� * � ( � , as before, and

� � � =
( �
� * � ( � . Since,� � � = 0 for all �8�	9� , we obtain that * � ( � =
� � � ( � , which

implies that each
(
� is an eigenvector of a diagonal matrix,

i.e., a canonical vector. As a consequence, B is a separating
matrix. :

The proposed equations are simpler than the original
ones: in contrast to (5), notice that (3) depends on as-high-
as-fourth order powers of B through the relation G =

& �
.

Interestingly, it can be easily shown that the equations
� � � 	;

( �<�	=� ) are a subset of those equations which are solved
by JADE[14]. In the two-source case, a direct solution can
be easily obtained [12]. Finally, it should be emphasized
that additional equations can be obtained by differentiating
other cumulants, as will be shown in a future paper.

4. SEPARATION CRITERION

Instead of solving directly the equations, we propose to min-
imize the following cost function:> � & ��	 


�76� � � �� � � (8)

where
�������

satisfies ?<0 � � ����� �������@2�	BA (see above), being
I the identity matrix, and B is constrained to the set of ma-
trices such that & � & 	)A

(9)

i.e., B belongs to the group of orthogonal matrices. Gen-
erally speaking, the constraint surface (9) is known as the
Stiefeld manifold1. It has been shown [7, 2] that the gradi-
ent of

> � & �
at B on this manifold is given by:C > � & � 	 � >

� & �+D &*�
� >
� & ��� � &

(10)

where � >
� & �

is the �!� � matrix of partial derivatives of> � & �
with respect to the elements of

&
, i.e.,

�
� >
� & ���
� �
	 � >

� & �

� # � � (11)

1The Stiefel manifold consists of all the EGF+H matrices Q which verify
that IKJ�I equals the identity matrix. If EMLNH ( OQP in our case), we
have the orthogonal group.
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whose calculation is straightforward in view of (5).

5. INSIGHT INTO THE GRADIENT ON THE
STIEFEL MANIFOLD

Some properties of the above-defined gradient are quite il-
lustrative:

a. Consider small deviations of B in direction
D C > � & �

,
i.e.: &����& � &=D � C > � & � (12)

where ��� ; . If matrix B is orthogonal, then it is
straightforward to check that the translation (12) pre-
serves the orthogonality constraint, in the sense that�& �& � 	 A 4	� � � �

�
.

b. The first order Taylor expansion of
> � & �

gives> � & 4 � & ��	 > � & � 4�
 � >
� & �
� � & � 4�� � � & �

(13)
where 
�� � � � = TRACE � � � �+� stands for the
standard inner product of matrices. If B is modified
into

�&
, by virtue of (12) and (13) we obtain that> � �& ��	 > � & � D � 
 � >

� & �
� C > � & � � 4�� � � � (14)

Since


 � >
� & �
� C > � & � � � �� 
 C > � & �
� C > � & � �

(15)
is always non-negative, it follows that

> � & �
is de-

creased by the translation (12). Identity (15) is read-
ily obtained by expanding


 � >
� & �
� C > � & � �

and using TR � & � � > � >
� & �

= TR � � >
� & & �

� >
�

=
TR � � >

�
� >
�
and TR � & � � >

& �
� >
�
= TR � � >

� &
� >
� & �

,
where TR � . � denotes the TRACE operator.

c. Consequently, the gradient-step method for minimiz-
ing
> � & �

is given by:&����
�
	'&�� D � C > � &�� ��	'&���D ��� � &�� � &�� (16)

where ��� ; and � � &�� � � � >
� &�� � & �� D &�� � >

� &�� � �
.

We would point out that algorithm (16) is an EASI-
type method [4] for the serial update of matrix B.

6. OPTIMIZATION METHOD

Different algorithms can be chosen to minimize
> � & �

. We
have used a conjugate gradient method [8], which is an im-
proved version of the abovementioned gradient-step algo-
rithm. On the Stiefeld manifold, it is as follows (the algo-
rithm has been adapted from[7]):

CONJUGATE GRADIENT METHOD ON THE

STIEFEL MANIFOLD

1 Let
&��

be the initial point and set
)�� 	C > � &����

and � � 	'D )�� .
2 For

��	 ; � � �
�
�
�
2.1 Let

&����
�
	 &��! #"%$ � � & �� � ��� , where

parameter �&� ;
. When � is small

enough, observe that it can be replaced
with

&����
�(' &�� 4 � � � .

2.2 Compute
)����
�
	 C > � &���� � �

2.3 Compute the new search direction

� ��� � 	=D )���� � 4*) � � �+ #"%$ � � & �� � � � �
where ) � 	&,.-0/21+354 -0/21+376,.-0/84 -0/96 (which gives
a Fletcher-Reeves conjugate gradient for-
mulation [7]).

2.4 Reset � ��� � 	 D )���� � (the steepest de-
scent direction) if

� 4 � � ; �:�<; � �>= �� .

It should be emphasized that both the above algorithm and
the gradient-step method have a similar complexity, in terms
of their practical implementations. Indeed, the dominant
task is, by far, the computation of the statistics of the ob-
servations. In [13], we have successfully used a simulated
annealing algorithm in order to obtain initial conditions for
the conjugate gradient algorithm.

7. COMPUTER SIMULATIONS

Computer simulations have been carried out in order to cor-
roborate the validity of the proposed procedure. Figure 1
shows the time-course of the mean signal to noise ratio of
the estimated sources, averaged over ten independent exper-
iments, for a mixture of six uniform sources. The cumulants
of the observed signals were estimated over 5000 samples.
Mixing matrices were randomly chosen. The parameter �
of the algorithm was set to one. The experiment reveals a
fast convergence speed.

After a few ( ?A@ ; ) iterations, the complete matrix which
relates the sources and the outputs was typically asBCCCCCCCC
D

D ; � �FE D ; � ; � D ; � ; � ; � ;!� ; � ; � 0.98; � ; � ; � ; @ D ; � ;�; D ; � ;HG 0.99
D ; � ;!�

0.98
D ; � ; @ ; � ; � ; � ;�; ; � ;�; ; � � G; � ;�� 0.99

; � ;JI ; � ;�; D ; � ;�� ; � ; �; � ;�; D ; � ; � ; � ;!� -0.99
D ; � ; E ; � ; ED ; � ;�; ; � ;+K -0.99

D ; � ; E D ; � ;�; D ; � ;�;

L MMMMMMMM
N

which shows the successful separation.
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Fig. 1. Mean Signal to Noise Ratio. Mixture of six uniform
sources.

8. SUMMARY AND CONCLUSIONS

We have presented quadratic equations for BSS which sat-
isfy: i.) under a mild condition, they do not have spuri-
ous roots and ii.)

� � � is a quadratic function of the co-
efficients of B whereas the cumulant ������� � � �-� ����� � � � �������
depends on fourth-order powers of these coefficients. To
simplify the cumulant-based equations by means of differ-
entiation seems to be a general procedure. We are currently
studying its extension to the convolutive-mixture problem.

Imposing the orthogonality constraints in (9) is prob-
lematic in practice. Alternating projection methods have
been widely used for this purpose[15]. Nevertheless, it is
difficult to prove their convergence[11]. On the other hand,
we use a conjugate gradient method on the Stiefel manifold
which naturally preserves the constraint.
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