BLIND SOURCE SEPARATION IN POST NONLINEAR MIXTURES
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ABSTRACT

This work implements alternative algorithms to that of Taleb
and Jutten for blind source separation in post nonlinear mix-
tures. We use the same mutual information criterion as
them, but we exploit its invariance with respect to trans-
lation to express its relative gradient in terms of the deriva-
tives of the nonlinear transformations. Then we develop al-
gorithms based on these derivatives. In a semi-parametric
approach, the latter are parametrized by piecewise constant
functions. All algorithms require only the estimation of the
score functions of the reconstructed sources. A new method
for score function estimation is presented for this purpose.

1. INTRODUCTION

Blind source separation has been well studied in the case of
linear mixtures [1, 2, 3, 4], but only begins to attract atten-
tion in the case of nonlinear mixtures. Yet in many situa-
tions, it is more realistic to assume a nonlinear rather than
a linear mixture. The main difficulty in using this class of
mixtures is that they are too broad and thus lead to the prob-
lem of identifiability. Indeed Darmois [5] has shown that
there exist nonlinear mixtures of sources which preserve
their independence. To avoid this difficulty, in this paper
we shall follow Taleb and Jutten [6] by restricting the mix-
ture to the smaller class of post nonlinear mixtures. In such
mixture, the observed channels X, ..., Xk are related to
the sources S, . .. , Sk through the relations

K
Xi:fi(ZAikSk), i=1,....K
k=1

where A denotes the general element of the mixing matrix
A and fi,..., fk are nonlinear functions. It is assumed
here that there are the same number K of sources and sen-
sors and the matrix A is invertible and the functions f; are
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monotonous so that the sources can be recovered from the
observations if one knew A and f1, ..., fk.

The goal of blind source separation is to recover the
sources without any particular knowledge on their distri-
butions and the mixing mecanism. The separation will be
based solely on the mutual independence assumption of the
sources. Specifically, one tries to find a matrix B and K
applications g1, . . . , gx S0 that the random variables

K
Vi=> By, i=1,...,K, where Z, = g(Xy),
k=1

1)
which represent the reconstructed sources, are as indepen-
dent as it is possible. Using the mutual information as the
natural measure of independence, Taleb and Jutten [6] has
obtained the criterion

K

LK) =Y _(H(Y;) — H(Z;)) —log | det BJ.

i=1
)

These authors have derived a separation algorithm based on
the relative gradient of the criterion with respect to B and
g1, - -, g . Our approach stems from the remark that the
above criterion, due to its invariance with respect to trans-
lation, is actually a function of the derivatives ¢/, ... , g%
of g1, ..., gk and not of these functions themselves. Thus
we shall compute the gradient of the criterion with respect
to these derivatives and obtain new algorithms by the gra-
dient descent method. They are described in sections 2 and
3. Section 4 introduces a new method for the score func-
tion estimation. Our algorithms have the nice property that
they can be expessed entirely in terms of the estimated score
functions of the sources, hence these estimations play a cru-
cial role. Section 5 discusses the numerical implementation
of the algorithms and some simulation results are presented
in section 6. Finally, some comments and discussions about
our algorithms are made in section 7.

C(B,gl, PN



2. RELATIVE GRADIENT

We begin by computing the relative gradient of the criterion
with respect to the derivatives ¢/, ..., ¢% of g1,... ,9x.
The general result can then be specialized to the case where
these functions are parametrized.

2.1. Nonparametric approach

To obtain the linear functional of the relative gradient of (',
we express the first order Taylor expansion of
C(B+eB,gi+d10g1,...,9x + 0K ©gK)

with respectto ¢, 41, . . . , 8% around 0. We then deduce the
relative gradient functional

6,(51,... ,(5}( — Z EZkE[1/)yl(YZ)Yk]+
1<iZh<K

ﬁ:/ {E{]l+(zk —2) ﬁ:ﬂ)}’,(yz)sz} - pzk(Z)}(s,/c(z)dz

where ¢y, is the score function of Y; (i.e. ¢y, = —(logpy,)’,
py, being the density of ;) and 1, is the indicator function
of [0, 00) (i.e. X4 (z) = 1 ifz > 0,0 else).
By setting this gradient to zero, we deduce the following
estimating equations:
ElViyy,(Yi)] =0, 1<i#j<K
K
B0 (Zk = 2) Y v, (Vi)Bix| = pz,(2), 1<k <K

i=1

One can verify that these equations are indeed satisfied if
the variables Y1, ..., Yk are independent.

2.2. Semi-parametric approach

The above approach allows arbitrary values for the func-
tions ¢ and thus could give them too much degree of free-
dom, ignoring the fact that they are generally smooth func-
tions. It is thus of interest to consider a semi-parametric ap-
proach which restricts the degree of freedom of these func-
tions but still allows a sufficiently rich nonlinear mixture
model. Our approach consists of representing the functions
g1, - - - , gk by continuous piecewise linear functions. The
main reason, besides simplicity, is that the space of piece-
wise linear functions is stable with respect to composition.
This will simplify considerably the calculation of the rela-
tive gradient, as the increments d4, . . ., dx in subsection 2.1
will be also piecewise linear. As we will show shortly, our
general formula can be specialized to this case with ease.
Note that the function ¢, cannot and (need not) be de-
fined outside the support [£x 1, &k, ar] Of the distribution of
Xj. Although & 1 and & ar could theoretically be —oo
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and +oo, in practice, one can be satisfied with them being
the minimum and the maximum of the observed values of
Xk, since there is no data outside [£x 1, &k ar] and hence
it is not necessary to estimate g, outside this interval. In
this interval, let us denote by & o, ... , &k ar—1 the change
points in slope of the function g, arranged in increasing or-

der. As g is linear in [&x m, &k mt1], m=1,..., M — 1,
it is clear that its relative increment ;. in subsection 2.1 is
also linear in [Cx m, Ck,m41], m = 1, ..., M — 1, where

Com = gr(€k.m), m = 1,..., M. Therefore, the deriva-
tives d;, of & can be repesented as

M-1
0k(2) = D dkm gy camaal ()
m=1

Without loss of generality, we take ¢1,...,¢x to be in-
creasing, which is equivalent to the { ,,, being increasing.
We will see in section 5.2 how this condition can be easily
checked.

By replacing the above expression for d;, in the formula
for relative gradient, we obtain,

¢ Relative gradient of C' according to B:

e Y By, (Vi) Ya.
1<i#zk<K

o Relative gradient of C'accordingtody, 1, ... , di amr—1:

dk,l, R ,dk,M—l —
M-1

Crymt1 K

m=1 " Ck,m

_P(Ck,m < I < Ck,m+1)dk,m, 1<k<K.

3. GRADIENT DESCENT METHOD

The minimization of the criterion is achieved through the
gradient descent method. The method consists of making
successive small relative changes in B and ¢1,...,9x in
the opposite direction of the relative gradient so as to de-
crease the criterion. Explicitly,oneadjustsBand ¢/, . .. , ¢%
by the following iteration,

{B — B - \DB
g = gi(1— phy ogr),

where A and g are two tuning parameters and D and A/, are
obtained from the relative gradient.

<k<K

3.1. Nonparametric approach

Here the matrix D has general element

b [ FIw (0], 1<i#j<K
E 0, else



Asfor hj, 1 < k < K, there are two possibilities according
to the adopted metric:

- with the normal metric (of the Hilbert space of square
summable functions with respect to the Lebesgue measure):

W2 = B0 (2 - )Y dv (i) Bi| — p, ().

i=1

- with the probabilistic metric (of the Hilbert space of
square summable functions with respect to the probability
measure):

K

B0y (Zk = 2) Y v, (Vi) Bar | - 1.

i=1

1
PZy (Z)

WY (z) =

3.2. Semi-parametric approach

The matrix D is given by the same formula as above while
hy, is given by

M-1
hi(2) = Z e Vi, icre,man1(2)

=1

where dy p,, m =1,... , M — 1,k =1,... K, aregiven
in two different ways according to the adopted metric:
- with the Lebesgue metric (associated to the scalar prod-

uct <dk,.a d;¢7> = de,md;c,m(Ck,m+1 - Ck,m)):

1
diim = m{f’@’w < 2k < Chim)
¢ 5

k

Ck,m+1
_ / B
¢

kym

K
14 (2 — 2) Z Yy, (Yi)Big
i=1

dz} .
- with the probabilistic metric (associated to the scalar

product (d.,., d ) =3 di mdj,

1
diym=1— X
h P(Chym < Zi < Creymt1)

Chym+1 K
/ E|14(Z — Z)Zl/)Y,(Yi)Bik
¢ i=1

kym

dz.

4. SCORE FUNCTION ESTIMATION

In all our algorithms, only the score functions of the recon-
structed sources Y7, ..., Yk are involved. Different meth-
ods for score function estimation thus provide different al-
gorithms. Note that unlike the linear mixture case where the
score functions need not to be accurately estimated, since
the estimation equations are still satisfied even with a wrong
score function, in the present case, the accuracy of the score
function estimation is crucial, since the estimating equations
are not satisfied when the score functions are wrong. Several
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mP(Cem < Zi < Comt)):

score function estimation methods are available: the kernel
method (used by Taleb and Jutten [6]), the spline method
[7, 8]. We present here a new method derived from an en-
tropy estimator. It is suggested by the following expansion
of the entropy

H(T + A) = H(T) = BE[A¢2(T)] +
terms of higher orderin A (3)

where 7" is a random variable, A is a small random incre-
mentand «p denotes the score functionof 7. Letty, ... ,tx
beasample fromT and # (¢4, ... ,¢x) an estimator of H(T')
based on this sample. The relation (3) suggests estimating
¢ at the sampling points ¢,, by

OH(t1, ... IN)

oty ’
It is desirable that # be invariant with respect to transla-
tion and equi-variant with respect to scaling, that is #(¢; +
cy... i+ C) = /H(tl, R ,tN) and /H(Ctl, R ,CtN) =
H(t1,...,tn)+log|e| for any real number ¢, since the en-
tropy functional satisfies these properties. By differentiating
the above equalities with respect to ¢ then putting ¢ = 0 and
¢ =1, one gets

ﬁT(tn):N 1<n<N.

1L .
¥ D dr(ti) =0 4)
i=1
and
1L
Nztﬂ/)T(ti) =1 (5)
i=1

The above interesting properties of ¢»» mimic that of the
true score function: E[¢7r(T)] = 0 and E[Tyr(T)] = 1,
which can be easily obtained by integration by part.

As an estimator of the entropy, one may take a dis-
cretization of its defining integral:

Jtn) ==Y [logpr(ir + lbér)] x
!

pr(fir +bor)bor + logor

H(t, ...

where pp is an estimate of the density of 7', i and o are
the sample mean and standard deviation of 7", and b repre-
sents the discretization step. Taking pr to be a kernel es-
timator of the density of 7" with the smoothing parameter
proportional to its sample standard deviation, one can show
that the estimator # possesses the desired translation invari-
ance and scale equi-variance properties.

One can also use an empirical estimator of the mean,
leading to

N
1 Z R
/H(tl,...,tN):—N long(ti).
i=1



This estimator A again possesses the desired translation in-
variance and scale equi-variance properties, if one takes pr
to be a kernel estimator of the density of 7" with a smooth-
ing parameter proportional to its sample standard deviation.
This second form of the entropy estimator, although appears
simpler than the first, can actually be costlier computation-
ally. The reason is that the first form involves only the es-
timated density at a regular grid points and computation of
the kernel density over such a grid can be efficiently done
through the binning technique. Further, the number of the
grid points can usually be much less than the sample size N
without incurring any appreciable loss of accuracy.

Finally, the probability density function pz, and the prob-
abilities P(Ck,m < Zr < Ck,m+1), Which are needed in
the algorithm, can also be estimated via the estimated score
function. Indeed, noting that the density pr of 7" satisfies

pr(t) = —E[¢p(T)14(T — )], we propose to estimate it
by

1L

= Y b () My (tn — 1)

N n=1

This expression can be seen to be constant in ¢ in each inter-

val Jt(m) ¢+ m =1,... N —1,where t(!) < ... <
#(N) are the order statistics of the sample ¢1,...,ty. By
integration, one obtains the estimator
. t(m) _ y(m+1) 2
PT(t(m) <T< t(n+1)) — Z b (t(n))

5. NUMERICAL IMPLEMENTATION

5.1. Algorithms

Let zx ,, » = 1,..., N, denote the observations recorded
by the k-th sensor and put zj », = gx (% ). The algorithm
developed by Taleb and Jutten [9] changes at each iteration
the matrix B and the z;, ,,. Based on the previous expression
of the relative gradient, the proposed method adapts the ma-
trix B and the differences z,(f) z,il), o ,z,iN) - ,EN_l)
instead, where z,i ™= g (2, (m ) and xk g < xé ) are
the order statistics of X,. The values of the z, ,,, and hence
of the y; ,, can be recovered by centering, for example.

The proposed algorithm, in the nonparametric approach
with probabilistic metric, is described in the boxed text be-
low, in which P, ,,, is an estimation of

Pem = P(al™ < X < 2mFY)
= P(e{™ < 7 < 2{™Y),

{m(n)} is the permutation defined by z,im) = Zk m (m) @Nd
wand A are two ““small” tuning parameters. The algotrihms
with the normal metric and in the semi-parametric approach
are quite similar, so we don’t detail them.
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Initialisations:
B=1
Y=/7=X
loop :
Wy, an estimation of ¢y,,i = 1,... K.
z(m+1) z,im) — [z,imH) — z,gm)]x
SNy -
[ k)me Y on=m1 2imt Vi (Ui m(n) ) Bi
k= S K,n=1,... N

Normalization of Z.

B — B — A\DB.
1 =N o i
> ~ i)Y 1< <K,
Where DZ] = {N Zn:l 1/)Yz(y, )y], = 2 # 7 < 24
0 sinon.

Y =BZ.

Normalization of Y.
until conver gence.

5.2. Normalisations

It should be noted that there is a redundancy in the post
nonlinear mixture model: the nonlinear transformations f;,

, fx can be multiplied by arbitrary constant factors and
the corresponding columns of the matrix A divided by the
same constants, without changing the mixtures. To avoid
this ambiguity, which affects the convergence of the algo-
rithm, one should normalize the functions ¢4, ..., gx (or
equivalently the rows of B). Many different possibilities
exist, the first which may come to mind is to require that the
sample variance of 7, be 1 (k = 1,..., K). But we find
more convenient to require that g4, . . . , gk preserve the en-
tropy, that is [ log |g; (%) |px,(z)de = 0 (k = 1,..., K),
since our algorithm works with the derivatives and hence
the last integral can be easily estimated. This still leaves the
sign of ¢, undetermined. For definiteness, we require that
gy, be positive, which can be easily checked by looking at
A M S0 m=1,.. N1

In blind source separation, it is well known that one can
only recover the sources up to a scaling and a permutation.
However, instead of normalizing Y7y, ..., Yk at each itera-
tion step, we shall modify our algorithm to make it invariant
with respect to scale change, by taking as D

[l?n]: By, (Y;)Y;]/9ar(Y;) B[, (Vi)
Dji By, (V) Vi) Var(Yy) B[, (V)|




The denominators in the above formula are actually the di-
agonal terms of the Hessian of the criterion with respect to
the linear transformations.

6. EXPERIMENTAL RESULTS

Figure 1 presents some comparison of the score function
estimation by three different methods. One can see that the
method with the splines and with the entropy discretization
are rather similar. But the method with kernels is rather bad
near the end points of the interval. This may be explained
by the fact that the first two method possess the properties
(4) and (5) while the kernel method does not.

3r

L L L L L ,
-3 -2 -1 [ 1 2 3

Estimation of score function of a gaussian variable.

L L L L L L L \
2 -15 -1 -05 [ 05 1 15 2

Estimation of score function of an uniform variable.

Fig. 1. Score function estimations with different methods:
dotted line: kernel method, dashed line: spline method,
solid line: method with discretization of entropy.

Next, we present in figure 2, the results of a simulation
of the semi-parametric method with:

¢ agrid with 10 points among the observations.
o the probabilistic metric.

o the score function estimation with the method of the
entropy discretization.

o 1=02,A=05.
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o 32 iterations.

10.6
* A= (0.7 1
0.1z

) and fi(z) = fa(x) = tanh(4z) +

Only the result of one simulation is presented here to
save space. Others simulations performed have shown that
the performances of the algorithms depend on the mixture
components and the estimation of the score function. The
two metrics also yield different effects on the convergence
of the algorithms. The coefficients ¢ and A which control
the gradient descent are fixed empirically.

7. DISCUSSION

A first comment regards the values of hj, at the end points

of the interval [zél), z,iN )]. We observ that these values are
often quite large in comparison with the others. This may be
attributed to the fact that there are too few data to achieve
a good estimation of the score function near these points.
To avoid instability of the algorithm caused by an unduly
large value of %}, in usually a quite narrow region, we trans-
form non linearly %}, into tanh(hj,). When hj, is small this
doesn’t have any effect since then tanh(hj,) ~ hj,, butwhen
hy, is large, the hyperbolic tangente function reduces it to
+1. We find that this device can improve drastically the
convergence of the algorithm.

Another comment regards the coefficients A and x which
control the gradient descent. It seems that keeping them
fixed is not a good strategy. When one approaches the so-
lution, these coefficents appear to be far too large, causing
an oscilatory behaviour of the algorithm and may destroy its
convergence. To avoid that, they must be drastically reduced
with the consequence that the algorithm becomes extremely
slow. A good strategy is to adapt A and x such that the crite-
rion is decreased at each iteration. Since the theoretical cri-
terion C' is unknown, an estimator C' of it must be used. But
then, in order to ensure that C' can be decreased, the relative
gradient involved in the algorithm must be the gradient of C
and not an estimated relative gradient of C'. Naturally, one
would estimate C' by the same formula (2) but with H (V})
and H (Zy) replaced by their estimators # (yx 1, - - -, Y&, ~)
and H(zx1,- .., 2k, n). Then it can be shown that the rela-
tive gradient of C' is given by the same formula that for the
relative gradient of C' in section 2.1, except that the score
functions ¢y, and ¢z, are replaced by the score estimators
of Y, and of 7, as defined in section 4 and that the expecta-
tion operator is replaced by a sample average. Simulations
show that with this method, the algorithms are much more
stable.



8. CONCLUSION

Inthis paper, we provide alternative methods for blind source
separation in post nonlinear mixtures. Although we use
the same mutual information as Taleb and Jutten, our al-
gorithms differ in that they work with the derivatives of the
nonlinear transformations and are based on the relative gra-
dient of the criterion with respect to these derivatives. This
approach can be extended easily to a semi-parametric set-
ting in which the nonlinear transformations are represented
by continuous piecewise linear finctions. The method has
the nice property that it involves only certain estimated score
functions and with an adequate choice of the latter, it amounts
to minimizing some empirical criterion. This can be ex-
ploited to better control the convergence of the gradient de-
scent. All the algorithms were implemented and tested in
different situations.
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