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ABSTRACT

In this paper we introduce a new method for filling in gaps in a time
series belonging to a set of simultaneously recorded, statistically
dependent signals. By combining the properties of the independent
component analysis (ICA) transform with those of the dynamical-
functional artificial neural network (D-FANN), we have developed
a predictor that effectively exploits the mutual dependency be-
tween the component signals. This is done by performing the pre-
dictions in the ICA-domain, whereas the prediction errors, which
are used to update the model parameters, are calculated in the ob-
servation domain.
We have shown that the ICA D-FANN predictor is capable of ac-
curately filling in gaps in both synthetic and real time series. Our
tests show that the new approach outperforms a predictor based on
a standard multilayer perceptron (MLP) network, and a predictor
based on the finite impulse response (FIR) network.

1. INTRODUCTION

In time series prediction we are given a set of measurements of
some observables, and the goal is to be able to learn the evo-
lution in time. A popular approach to this problem is to recon-
struct the dynamics of the underlying attractor of the phase space
in an embedding space. This method is mainly based on Tak-
ens theorem [1], which assures that future dynamics of a system
can be captured by embedding vectors composed of a number
of past values. Hence, given a dynamic system ���������
	�������
 ,
we define the measurement � � ������� � 
 . Takens theorem then
states that for an embedding dimension � of the reconstruction vec-
tors � � ��� � ��� � ��������������� � ����� 
 , there exists a mapping � ����� �� � � � 
 which has the same dynamical characteristics as the orig-
inal system � �"!�
 . The dimension � should be at least twice the
dimension of the strange attractor.
The problem in time series prediction then is to learn the mapping�

from the observations. In recent years this has been proposed
done using various neural network models [2, 3, 4].
In this paper we consider a specific problem that may occur in
some applications of multivariate time series analysis. Given a set
of correlated signals, e.g. time series of geophysical observations
or economical indexes, we find that in one series (or a few) some
parts are missing. We assume that the missing sections extend
over some tens of samples. The problem of recovering the missing
parts may be defined as a prediction and interpolation task, where
we want to use past samples to predict future values, but we also
want to take advantage of having observations of the other signals

in the set during the time of the missing section. We address this
problem by combining the properties of independent component
analysis (ICA) [5] with those of the dynamical-functional artificial
neural network (D-FANN) [4, 6]. Our approach assumes that the
observed signals are generated from independent sources through
a linear mixing. Let # �"!�
 and $ �"!�
 be the observed signals and the
original source signals, respectively, and let % denote the mixing
matrix. Then the model assumes that # is related to $ as:

# �"!�
�� %&$ �"!�
(' (1)

Let ) �"!�
 be an estimate of the source signals $ �+*,
 , obtained by
first estimating a demixing matrix - using some ICA technique
[7, 8], and then calculating ) �"!�
 as:

) �"!�
�� -.# �"!�
�� -/%0# �"!�
(' (2)

The idea is that the signals ) �+*,
 generally have a much simpler
structure than the observed signals # �+*,
 that makes them easier to
predict [9].

We use the DCT-based D-FANN predictor developed by Eltoft
and deFigueiredo [4, 6] to perform nonlinear one-step predictions
on each of the individual component signals. By doing the predic-
tions in the ICA domain, i.e. on ) �"!�
 , while calculating prediction
errors for updating the model in the observation domain, i.e. us-
ing # �"!�
 , we are effectively utilizing the dependencies between the
observed signals in the prediction process.
The method is tested in experiments using both synthetic and real
time series data, and the preliminary results are very promising.
We compare the performance of our method with the performances
of a predictor using a standard multilayer perceptron (MLP) net-
work [10] and a predictor based on the finite impulse response
(FIR) network, which uses FIR filters in the synapses [2].

2. MULTIVARIATE SIGNAL MODEL AND THE ICA
TRANSFORM

We assume in our model that the observed signal
# �"!�
��21 � � �"!�
 � '�'�' � �43 �"!�
�5 6 at time ! is given by,

# �"!�
�� %&$ �"!�
(' (3)

This model is generative, meaning that it describes how the ob-
served data are generated by a process of mixing a set of indepen-
dent source signals $ �"!�
��21 7 � �"!�
 � '�'8' � 7:9;�"!�
�5 6 , where the mixing
is assumed to be instantaneous. $ �"!�
 is applied to a linear system
whose input-output characterization is defined by a nonsingular
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�����
mixing matrix % , with elements ��� � . With both $ �"!�
 and %

being unknown, we formulate the objective of the ICA transform:
Based on the mixture vector # �"!�
 , the goal of ICA is finding a lin-
ear transformation - of the dependent signals # �"!�
 , that makes
the output as independent as possible,

) �"!�
�� -.# �"!�
�� -/%&$ �"!�
(' (4)

The matrix - is often referred to as the separation matrix, with
elements 	
� � , while ) �"!�
��21 � � �"!�
 � '�'�' � �49;�"!�
�5 6 is an estimate of
the sources. We note that the sources are exactly recovered when
- is the inverse of % except for a possible permutation and scaling
difference, i.e.

� ��
�� � -/% � (5)

where in (5) 
 is a permutation matrix and � is a scaling matrix.
These two matrices define the performance matrix

�
. If
�

is nor-
malized and reordered, a perfect separation leads to the identity
matrix.

For the linear mixing and unmixing model, the following four
assumptions are adopted [5, 11]:

1. The sources $ �"!�
 are, at each time instant, mutually inde-
pendent. This is expressed by the condition:

� � $ �"!�
 
�� � ��7 � �"!�
 � '�'�' � 7:9;�"!�
 
��
9�
� � �
� � ��7 � �"!�
 
(' (6)

2. The number of mixtures is greater than, or equal to the num-
ber of sources,

�����
. This is a necessity to make % a

full rank matrix. But even in the case when
�����

, the
mixing matrix % may be identified; but the realizations of
the independent components can not, because the % -matrix
is not invertible. However, most of the existing theory for
ICA is not valid in this latter case.

3. At most one of the sources is allowed to be normally dis-
tributed. This is because the unmixing of two Gaussian
sources is ill posed when the sources are white random pro-
cesses. Nevertheless, non-white Gaussian processes may
be recovered with time -decorrelation methods if they have
different spectra.

4. No sensor noise, or only low additive noise signals are per-
mitted. This is necessary to satisfy the infomax condition,
in which the mutual information between outputs is mini-
mized. However, noise can be considered as an independent
source itself, and segregated from the mixtures.

In the approach to solve the ICA problem problem, the tempo-
ral structure of the time series is omitted, and # �"!�
 and $ �"!�
 of (3)
are regarded as realizations of random vectors # and $ , i.e.

) � -.# (7)

In [12] a review of various information theoretic contrast functions
for solving - is given, including mutual information, negentropy,
maximum entropy, and infomax. We have chosen to use the Fas-
tICA algorithm to solve for - . This algorithm is based on maxi-
mizing the negentropy, and obtains convergence in a small number
of iterations as a result of the its cubic convergence rate [7].
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Fig. 1. D-FANN model for time series prediction.

3. TIME SERIES PREDICTION USING A DCT BASED
D-FANN

Time series prediction is defined as: Given a finite sequence of a
discrete time series � �"!�
 , i.e. � �"!�
 � � �"!����:
 � �8����� � �"!�� � 
 , find the
continuation � �"!����:
 � � �"!��! 
 � ���8� . This involves finding a scalar
� and a function " such that � �"!#���:
 can be estimated by

$� �"!%�&�:
 �'� " � � �"!�
 � � �"!(�)�:
 �8������� � �"!*� � 
 
 ' (8)

This is equivalent to modeling the time series as:

� �"!#���:
#� " � � �"!�
 � � �"!*�+�:
 �8������� � �"!*� � 
 

�-,��"!%�&�:
 � (9)

with ,��"!��.�:
 being a white noise process (see Fig.1). If the statis-
tics of the time series � �"!�
 are non-Gaussian or the time series is
the result of some nonlinear operation, the function " is nonlinear.
The model in (8) then defines a generic nonlinear AR model. Let
the vector #

� �0/ � �"!�
 � � �"!1�-�:
 ���8�4� � �"!1� � 
3254&6
�(���

(where6 �(��� is a � �-� -dimensional real Euclidean Space) represent our
time segment of length � �&� . In our formulation of this modeling
problem, we consider the function "�7 6

�(���98�:
as a bounded

analytic functional belonging to a generalized Fock Space, "(; ,
where the subindex < refers to a specific sequence of positive num-
bers < �=/ <�> � < ��� <�? �8����� 2 defining the functional space [13]. The
solution for " is achieved in two stages. First, a best structural
approximation

$" of " is found using some proper representation@ � �BA �C� �  �8�������3D of the data vector #
�
. From Hilbert Space

theory it follows that the best approximation
$" is the projection of

" in the closed subspace of "*; spanned by the reproducing ker-
nels E � @ �8��� 
 � E � @ ? ��� 
 �8������� E � @GF ��� 
 [13]. The corresponding
approximate nonlinear model for the process � �"!�
 is then:

� F �"!#���:
#�
F
H
� � �
	
� �"!�
 E � @ � � #

� 
 ��,��"!%�&�:
 ' (10)

In the second stage we use a nonlinear predictive coding approach
to calculate the values of 	I� �"!�
 �JA �K� �  �8�������3D , which minimize
the mean square error

L 1 M ? �"!%�&�:
�54� L 1 � � �"!#���:
*� $� F �"!#���:
 
 ? 5
� L 1 � � �"!N���:
%�

F
H
� � �
	
� �"!�
 E � @ � � #

� 
 
 ? 5 � (11)
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where in (11)
L 1 � 5 refers to ensemble averaging.

E � @ � � #
� 
 can be represented by a scalar-valued analytic func-

tion � of the argument � @ � � # � � , thus E � @ � � #
� 
 � � � �@ � � #

� � 
 , where � � ��� �
denotes the inner product in 6

�(���
.

Also, the function � can be chosen to be the hyperbolic tangent
function ! � ,���� � 
 , which appears as the sigmoid function in many

frequently used neural networks. The vectors
@ �
���	�� /
� � �:� � � ? �������� � � � 2 �
A �0� �  �8�������3D may be thought of as the impulse re-

sponses of a bank of FIR filters. Fig.1 shows this filter bank in-
terpretation of the time series model. Note that the model in Fig.1
has also been given adjustable biases � � and gains ��� . With these
modifications the prediction

$� �"!#���:
 is given by:

$� �"!%���:
��'�
F
H
� � �
	
� �"!�
 � � ��� �"!�
 � @ � � # � � � � � �"!�
 
 ' (12)

where the impulse responses
@ � ��A � � �  �8�������3D are fixed. We

call this model a dynamical-functional artificial neural network
(D-FANN) predictor in accordance with the name of the underly-
ing neural network model, as proposed by deFigueiredo in [14].

In the modeling (training) phase the problem of finding the
weights of the first layer reduces to that of finding a best set of
basis vectors by which the signal #

�
can be represented. The opti-

mal weights of the second layer are then adjusted in a supervised
learning process by minimizing the error function

L 1 M ? �"!%���:
�5 of
(11).
From communication theory it is known that the optimal way (in
terms of minimum distortion) of transform coding a signal is by
using the Karhunen-Loéve Transform (KLT). The Discrete Cosine
Transform (DCT) is the approximation to the KLT that empirically
has been found to have the best variance distribution. For our sig-
nal segment #

�
the DCT is defined as:
 � ��� # � � (13)

where the matrix denoted by � has elements defined as:� � � �2�  � 

��� ? 1 * ������� � � A �+�:
 � ,5�

�
? 
��

� ���

�5 �

A � , �'� �  ���8����� � ��� � (14)

where * � �
�� ? if

A ��� , else * � ��� . Each component of

 �

is
given by

� � �"!�
�� * � �
 
� 


��� ? �(���H � � ����� 7 �
� A �+�:
 �	 � �

? 
��
� ���


 � �"!*�! �
 �
A �'� �  �����8�4� � �&� ' (15)

The DCT is equivalent to a bank of narrow-band all-zero filters
operating in parallel, that decomposes the input signal into a set
of frequency components. It has the appealing properties that the
basis vectors are orthogonal, and since the basis set are not sig-
nal dependent it can be predefined. There also exist fast algo-
rithms for its implementation on a computer. In the DCT-based
D-FANN model the impulse response of filter

A
is hence defined as@ � �=/ � � �8� � � ? ������� � � �(��� 2 � A �'� �  �8�������3D .

The parameters of the second layer of the D-FANN, i.e. the 	 ’s,
the � ’s, and the � ’s, may be obtained by minimizing the instan-
taneous squared prediction error using the back-propagation algo-
rithm, or minimizing the exponentially weighted sum of squared
prediction error using the nonlinear recursive least squares algo-
rithm. In this paper we have used the latter.

4. THE ICA D-FANN PREDICTOR

In this section we describe how we combine the D-FANN pre-
dictor and the ICA transform to recover a missing section in one
of a set of multivariate time series. We assume that

� � �
,

i.e. the number of mixtures is equal to the number of sources,
that up to time !#" E we are given the complete set # �"!�
 �1 � � �"!�
 � �N? �"!�
 � ������� �43 �"!�
�5 , and for ! � E time series � � �"!�
 is
missing samples. We make use of the dependencies between the
different time series in the following way:
Using the FastICA algorithm, we estimate % and $ �"!�
 from the
mixtures # �"!�
 . The estimated source signals are now given by

) �"!�
�� $$ �"!�
�� $-.# �"!�
�� $%
���
# �"!�
 � (16)

where
$- � $%

���
is the estimated separating matrix, and

$% is the
estimated mixing matrix. We will in the following assume that % ,
and consequently - , is stationary, and for the sake of convenience
we will refer to the observation space as the � -space, and the ICA
space (space of separated sources), as the � -space.
The procedure is to use

$- to transform # �"!�
 to � -space, and per-
form predictions in � -space. Then the prediction results are trans-
formed back to the � -space. The prediction error is computed in
� -space, and re-transformed to the � -space. Based on these errors
in � -space, we update the predictor parameters. Specifically, let

$) �"!%���:
��21 $� � �"!%���:
 � $� ? �"!%���:
 ��������� $� 3 �"!%���:
�5 (17)

denote the one-step predictions of ) �"!G�=�:
 . Then we obtain the
predictions of # �"!#���:
 as

$# �"!%���:
�� $% $) �"!#���:
(' (18)

Let $&% �"!#�-�:
 denote the prediction error in � -space. The compo-
nents of $'% �"!%���:
 are then defined as

M %3� �+* ���:
��)( * + �'� � * � E
� � �+* ���:
(� $� � �"!%���:
 otherwise

�
(19)

i.e. for the component where data is missing we set the prediction
error to zero. Next, we calculate:

$&, �"!#���:
 � $--$'% �"!%���:
 � (20)

which is used to adjust the weights of the second layer of the D-
FANN.
Note that because of the assumption of perfect prediction of � � �"! ��:
 for ! � E , we will modify the prediction error when transform-
ing back to � -space. Intuitively, the more mixtures we have avail-
able, the less importance the approximation of M % � �"!(� �:
 � * is
expected to have on the predictions.

5. RESULTS

5.1. Synthetic data

In Fig.2 we have plotted the four synthetic time series, which we
will refer to as source 1, source 2, source 3, and source 4. Source 1
is a multiplication of two random sinusoids. Source 2 results from
filtering standardized white Gaussian noise through a Butterworth
bandpass filter. Source 3 is a solution of the Lorenz equations,
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Fig. 2. Original source signals.

while source 4 is a randomly chosen pure sinusoid.
These signals were mixed using the mixing matrix in (21),

% ����� � '  � ' � � � ' � � ' �* ' � � � ' � * ' � � * ' �� � ' � * ' � � ' � � � ' �
 ' � � * ' 	 �9 ' � * ' 	


 �� � (21)

and the resulting signals are shown in Fig.3. The mixtures in Fig.3
have been scaled between -1 and 1. This scaling is important to
weigh the signal components equally heavy in the prediction pro-
cess.
We now assume these mixtures to be the available data. We have
no information about $ �"!�
 and % , and we assume that the sample
range 401-500 of the first mixture is missing. This is the segment
succeeding the vertical line on mixture 1 in Fig.3. Our objective is
to recover this signal segment using the strategy outlined above.
As a quantitative performance measure of the three predictors we
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Fig. 3. The four resulting mixed signals.

have used

:�
 ��� 
��'� *�� ��� � >���� ?� ��� 
� ?
 ��� 
�� �
where � ?� ��� 
 is the mean-square value of the true curve over the� samples to be predicted, and � ?
 ��� 
 is the corresponding value
of the prediction error for these samples. The result is presented
in Fig.7, a and b. Fig.7a shows the true and predicted signals over
the actual period. In this case the predictor has an embedding di-
mension of � ��� * . We notice that the predicted signal quite
nicely has captured the overall dynamics of the true signal over
the whole segment of 100 samples. Fig.7b shows the instantaneous
mean squared errors of our predictor compared to the results us-
ing an ordinary multilayer perceptron (MLP) network, and a FIR
MLP network. The

:�

-values in this case are 6.03, .081, -.77 for

the ICA D-FANN, the MLP and the FIR MLP, respectively. Our
method hence outperforms a traditional strategy using single a pre-
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Fig. 4. Prediction result for synthetic data.

dictive neural network.

5.2. Real data

The real data we have used are ground measurements of meteoro-
logical data from the state Minnesota of the United States. These
data are available at National Climatic Data Center (NCDC) [15]
and include sequential ”time biased corrected” monthly average
temperatures, precipitation and Palmer indices. The indices are
the Palmer drought severity index (PDSI), Palmer hydrological
drought index (PHDI), modified Palmer drought index (PMDI) and
the Palmer ”Z” index (ZNDX). The period of recording is from
1895 to 1998. The data have been plotted in Fig.5. (For more in-
formation about the data, we refer to [16, 15].)
From Fig.5 we see that the temperature series, and perhaps also
the precipitation series, has a kind of periodicity, while the Palmer
drought indices seem more or less stochastic. It may look like the
PDSI, PHDI and the PMDI are equivalent, but this is not the case
[15].
For prediction, we will assume that we do not have available the
last ten years of the PHDI, i.e. the years from 1988 to 1998, which
corresponds to 120 samples. The beginning of the prediction pe-
riod is marked by a vertical line in the PHDI series in Fig.5.
Note that we have scaled the data between -1 and 1. This is to ob-
tain equal weighing when calculating the errors in � -space. In this
experiment we used an embedding dimension of 25.
Fig.6 shows the estimated source signals. We note that sources 1
and 2 look like impulse noise series, whereas source 5 has periodic
fluctuations that may be related to seasonal variations. The physi-
cal significance of these time series are however hard to interpret.
Fig.7a shows the results of predicting the missing segment using
the ICA D-FANN, the MLP, and the FIR MLP predictors, respec-
tively. Also plotted is the true signal. Also in this case we ob-
serve that our proposed method is superior to the other two. This
is confirmed by the instantaneous mean squared error plotted in
Fig.7b. The numerical

:�

-values are 5.82, -.092, -.75 for the ICA

D-FANN, the MLP and the FIR MLP, respectively.

6. CONCLUSION

In this paper we have proposed a new prediction tool for filling
in gaps in a time series belonging to a set of mutually statistically
dependent signals. This predictor is a combination of the inde-
pendent component analysis (ICA) transform and the dynamical-
functional artificial neural network (D-FANN). The idea is to use
the DCT based D-FANN predictor to do nonlinear predictions of
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Fig. 5. From a) to f) we have: Palmer hydrological drought index,
Palmer ”Z” index, Palmer drought severity index, precipitation,
modified Palmer severity index, and temperature.

the signals in the ICA domain, where they are assumed to be eas-
ier to predict, and exploiting the dependencies between the signal
components by calculating the available prediction errors in the
observation domain.
This strategy has been tested on a computer generated time series,
and on a real time series (meteorological ground measurements
from the state Minnesota of USA). We found that the ICA D-
FANN predictor was capable of recovering the missing gaps quite
accurately, and it could follow the dynamics of the true curve quite
well. Compared to the MLP and FIR networks, it was occasionally
superior, especially for the real time series. An appealing property
of the ICA D-FANN predictor is that it does not seem to be very
sensitive of the embedding dimension. For the MLP and FIR MLP
networks the choice of embedding dimension was crucial for their
prediction performance.
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Fig. 6. Estimated source signals.
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