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ABSTRACT

Many source separation methods are restricted to non-Gaus-
sian, stationary and independent sources. This yields some
problems in real applications where the sources often do
not match these hypotheses. Moreover, in some cases we
are dealing with more sources than available observations
which is critical for most classical source separation ap-
proaches.
In this paper, we propose a new simple source separation
method which uses time-frequency information to cancel
one source signal from two observations in linear instan-
taneous mixtures. This efficient method is directly designed
for non-stationary sources and applies to various dependent
or Gaussian signals which have different time-frequency rep-
resentations. Its other attractive feature is that it performs
source cancellation when the two considered mixtures con-
tain more than two sources.
Detailed results concerning mixtures of speech and music
signals are presented in this paper.

1. INTRODUCTION

We first consider the following mixture model:���������
	���������������
	���������������
	�������
	���������������
	���������������
	 (1)

where the coefficients
�� �

are real and constant.
Our goal is to find a method for separating two source sig-
nals

���
and

���
from the two observations

� �
and

���
without

knowing the mixing coefficients
�� �

nor the sources
�!�

.
This problem is called Blind Source Separation (BSS) and
is well known in the signal processing community.
Writing Equ. (1) in matrix notation " �$#&%

, this prob-
lem is equivalent to finding an inverse matrix ' such that

' �)(+*,#,- �
where

*
is a permutation matrix and

(
is a

diagonal matrix [1].
One can find a review of many methods for achieving this
separation in [1]. Most of them are statistic-based meth-
ods including an adaptive part and can only be applied to
specific signals like stationary and non-Gaussian signals.
Moreover, these methods need the source signals to be in-
dependent and often fail when more sources than sensors
are present in the observations. Especially, we recently pro-
posed an approach based on .0/21 -order normalized cumu-
lants (i.e. kurtosis) [2] allowing one to solve the problem
when the number of sources is equal to the number of ob-
servations. This method consists in finding a linear combi-
nation of the two observations3 ���
	4�5�������
	7698�: ���0���
	

(2)

which achieves the extraction of one source up to a scale
factor. The proper separating coefficients

8��
for extracting���;���
	

or
�������
	

by means of Equ. (2) are respectively:8��<�>=@?�A=�ABA 8��C�>=@?B?=�AD? (3)

We also proposed a related solution for the underdetermined
case by cancelling the influence of the stationary sources
during the adaptation step in order to achieve a partial source
separation [3], [4], [5]. These methods are efficient but the
sources must be non-Gaussian, independent with a special
stationarity.
We show in this paper that these restrictions can be reduced
if we use the time and frequency information of the sig-
nals. A few authors [6], [7] proposed solutions using time-
frequency information but their approaches are complex and
require high-computational load. With the same separation
structure as in Equ. (2), we propose here a new simple time-
frequency method for cancelling one source with less re-
strictions than with classical methods.
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2. PRELIMINARY IDEA: TEMPORAL
ANALYSIS

If we can find sections in the time domain where
���;���
	

and���0���
	
contain only the contribution of one source, we can

easily find the separating coefficient values
8��

that we intro-
duced in Equ. (3). For example if we can find a time

���
such that

���������+	4���
, then (1) yields:�����������+	4����������������+	���������+	4����������������+	 (4)

By computing the ratio���������+	���������+	 � �������� (5)

we directly obtain the value
8@�

of
8

which extracts the source�������
	
. This means that we theoretically only need a source

to disappear at time
���

to find a separating coefficient.
This is a really simple source separation method but,

unfortunately, it is usually hard to find an instant or time
interval where only one source occurs. To overcome this
problem we propose a new approach exploiting the time-
frequency domain.

3. TIME-FREQUENCY ANALYSIS

In the previous section, we presented a technique for finding
the separating coefficient if one source ”disappears” over
a known short time interval. But we need to find a more
general method allowing one to solve this problem if both
sources are simultaneously present or if one does not know
when these sources disappear.
To this end, we use and request the following assumptions:

1. The time-frequency transform of each source must be
different for time-adjacent time-frequency windows1.

2. There must exist some time-frequency windows where
only one source is present2.

Many powerful time-frequency methods have been devel-
oped during the last fifty years with different application
fields. One can find most of them with detailed references
in [8], [9], [10], [11].
To avoid the interference areas present in the � ��� and higher
order existing methods, the most relevant starting point to
solve our problem is to use the simple short time Fourier
transform of the observations as defined in [10]. We first

1Due to statistical fluctuations, even white noise signals with theoret-
ically constant power spectrum densities satisfy this assumption for short
time windows in practice.

2This situation is really common in speech or music for example. The
formants of a same or different speaker/instrument are located in different
time-frequency areas depending on the produced sound.

multiply each mixed signal
�!���
	+	

by a shifted Hanning win-
dow function � �
	 6 �
	

, centered at time
�
, to produce the

modified signal: ���������	+	��5�����
	+	 � �
	 6 �
	
(6)

This new function is now a function of two times, the fixed
time we are interested in,

�
, and the running time

	
.

We then compute the short time Fourier transform of each��� �����	+	
, i.e:

" �
������ 	�� �� ���
��� - ����� �����
	+	 � �
	 6 �
	���	

(7)

Our goal is now to find some time-frequency domains where
only one source occurs. To this end we introduce the com-
plex ratio: � ������ 	4� " �������� 	" �������� 	 (8)

This ratio is computed for each time and angular frequency
window. With Equ. (1), this leads to:� ������ 	�� �����%��������� 	 ������ %��������� 	�����%��������� 	 ������ %��������� 	 (9)

One can easily see that if one source does not have any
component at

������ 	
, i.e on the Hanning time window and

frequency window respectively centered on
�

and
�

, then
� ������ 	

is real and equal to the value of the separating coef-
ficient

8
for extracting this source. For example if

%��������� 	
is missing then

� ������ 	
becomes:� ������ 	�� �������� (10)

which is the correct coefficient to extract
� �����
	

with Equ.
(2). This situation, when sources have slightly different
time-frequency representations is more frequent than the
case when one source disappears during a time period. For
example the time-frequency properties of two people speak-
ing at the same time are different.
We denote

�������<	 �! �#" �����$���%��	�&
only one source oc-

curs at
�����'���%��	)(

.
Now the remaining question is how can we find these�����'���%��	

domains ?
Our idea is that each value

� �����$���%��	
is ideally equal to

8 �
or
8��

as
�����$���%��	+* �������<	

, whereas it takes different values
in all the other regions

������ 	,&*5�������<	
. Especially, if only

source
�������
	

is present in several successive
�����$���%��	

then
� �����'���%��	

is constant and equal to
8@�

over these successive
windows, whereas it successively takes different values if
both sources are present AND if their time-frequency rep-
resentations are not constant. To exploit this, we compute
the statistical variance of

� ������ 	
on a limited series -). of/

short half-overlapping time windows corresponding to
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���
, and this for each frequency window

� �
. We resp. define

the mean and variance of

� ������ 	
over these windows by:� � - . ��� ��	 � �/ �� � � ��� � ��������� ��	�� (11)

� 
	 � � ������ ��	���� 
��� ����� � �/ �� � � ��� � � ��������� � 	 6 � � - . ��� ��	
	 � �
(12)

If e.g.
%������������ � 	 � �

for these
/

windows, then Equ. (9)
shows that

� ��������� � 	
is constant over them so that its vari-

ance is equal to zero. Conversely, if both
%7����������� ��	

and%������������ � 	
are different from zero AND non constant values

over
� - . ��� � 	 , then � 
	 � � ������ ��	���� 
��� ����� is significantly dif-

ferent from zero.
So by searching for the lowest value of expression (12) vs
all the available series of windows

� -%. ��� � 	 , we directly find
a time-frequency domain

� -%. ��� ��	 where only one source is
present. The corresponding value of

8
to cancel this source

is then given by the mean computed in Equ. (11).
To find the second separating coefficient, we just have to
check the next lowest value of expression (12) vs

� -). ��� ��	
which gives a significantly different

8
. A difference of � �+- �

is a good practical value, allowing hard mixtures, where
both separating coefficients

8 �
and

8��
are of similar range.

We now have the two best estimated values of the correct
separating coefficients given in Equ. (3).

4. EXTENSION TO THE UNDERDETERMINED
CASE

The previous criterion allows one to cancel one source in the
observations if there exists a time-frequency window where
only this source occurs. This criterion may be extended to
the case when we have 2 observations of � sources.
In this case, the observed signals become:� ���;���
	4������ � � �� � � � ���
	���0���
	4� � ���� � ������ �����
	 (13)

The complex ratio

� ������ 	
of Equ. (8) here reads:� ������ 	4� ���� � � �� � % � ������ 	������ � �����%'�������� 	 (14)

One can see in Equ. (14) that if only source � exists in a
time-frequency window

���
����� ��	
we have exactly the same

expression as in Equ. (10), i.e:� ��������� ��	�� �� .�� . (15)

This value gives the exact coefficient to cancel the contribu-
tion from source

� . ���
	 in the observations by using (2). The

only restriction is, once again, that there must exist a time-
frequency window where only this source occurs and that
the time-frequency transform of each source is not constant
over

� - . ��� � 	 .
This solution is perfectly suited to noise reduction for exam-
ple. By determining a time-frequency window where only
the noise occurs this method gives an efficient solution to
cancel it, under the assumption that the source signal con-
sidered as noise is the same in both observations, up to a
scale factor.
This method also applies to karaoke-like applications. Us-
ing the stereo observation of a recorded song, we are able
under assumption 1. and 2. to cancel the contribution of a
singer or an instrument. This performs perfect source can-
cellation if no global stereo reverberation is added in the
song, which would transform the instantaneous mixture in
a convolutive mixture3. Moreover, experimental tests show
that even in this latter case we cancel an important part of
one source because the reverberation normally has a lower
level than the instantaneous contribution. The main draw-
back for such applications is that the linear combination be-
tween the observations performed by our method, as shown
in (2), changes the ”balance” between the instruments and
gives a ”mono” output.

5. EXPERIMENTAL RESULTS

5.1. Configuration with two mixtures of two sources

We choose the mixing matrix as:� ���� �������� ���� � � � � ��: !6 ��: " � � (16)

The two theoretical separating coefficients are, according to
Equ. (3):

8�� � ��: !
and

8��C� 6 � : ��# .
This first test has been performed using two different

voice signals recorded from the radio at a sampling rate of
8000 Hz. We compute the short time Fourier Transform
on 128-sample half-overlapping windows, which equates to
16 ms. The time period -%. for variance analysis consists
of
/ � � � of these windows, which means that a source

is only requested to occur alone in one frequency window
during 160 ms to be cancelled. With these settings our
method yields

8 � � ��: "�!�!�!
and

8�� � 6 � : ��# ��" , which is
quite close to the target values. Respective observed vari-
ances are 2.0651e-4 and 5.4819e-4. Figures 1 to 6 show the
temporal representation of the sources, mixtures and output
signals. Figures 7 to 10 show the time-frequency analysis
of these sources and mixtures signals. One can see that the
time-frequency representations of the sources in Figures 7
and 8 are slightly different. These signals can be considered

3Usually, all the instruments are recorded one by one and then artifi-
cially mixed using linear instantaneous mixing devices.
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as a ”difficult configuration” because the formants of both
voices are present in nearly the same time-frequency areas.
The two mixtures in Figures 9 and 10 are very similar and
the plain ratio

� ������ 	
shown in Figure 11 does not allow

one to localize the constant values domains,which shows
the need to compute the variance of this ratio as described
in (12). For better legibility the inverse of the variance is
presented in Figure 12. This representation enhances the do-
mains where the variance is low. One can easily see which
time-frequency domains provide the proper solutions for the
separating coefficients. Figure 5 and 6 show that the sep-
aration is achieved with high resolution. On listening to
these signals the difference between the original and sepa-
rated signals is not perceptible.

5.2. Configuration with two mixtures of three sources

We recorded a stereo song with continuous voice and two
guitars which play nearly the same instrumental part. The
purpose here is to show the ability of the proposed approach
to cancel the voice from the mixtures, although the guitars
are continuously playing. All these sources were recorded
one by one on a 4-track magneto recorder with a SNR around
60 dB. We sampled the signals from the console at 44100
kHz with 16-bit resolution and then artificially mixed them
with the following mixing matrix:� ���� ���� �������� ���� ���� � � ����: � ��: . ��: "��: � ��: " ��: " � (17)

����
and

����
are for the voice whereas the other coefficients

are for the guitars. We chose to put the voice in the mid-
dle of the stereo, like in a regular mix. Thus the theoret-
ical separating coefficient for the voice is

8�� � � . With
Equ. (15) one can also see that the two separating coef-
ficients which allow to separately cancel each guitar are :8�� ����: # and

8�� � � : ��� . The length of the time windows
for Fourier transform is set to 256 samples, which corre-
sponds to 5.8 ms. The variance is then computed on 10 of
these windows, which is equal to 58 ms. We used 4.3 sec-
onds of the song when all three sources are present to com-
pute the separating coefficients. We used the method pro-
posed in the previous subsection and we obtained the two
separating coefficients

8 �&� � : ��������� � � . with a variance of
2.0466e-8 and

8@� �!��: # � ��� with a variance of 2.3421e-4.
Thus the voice cancellation is nearly perfect. The obtained
output is a mono signal with the new mixing coefficients,
given by (17) and (2): �
	 � � ��: ��!�!�!�!�� � !�"�� ������ ����� � 	 6��: . ����� ��# "�� � � ������ ����� � 	 6 � : # "�� � � 6 # � ������������	

which
gives an ideal karaoke playback. As we have nearly half
the power of guitar in the output as compared to any input,
an approximate value of the voice attenuation is given by� ����� �� � �"!
� # $�%�& ��' - $# %

	 � 6 � !���� ' . Figures 13, 14 and 15
show the time frequency representations of the first, second

guitar and the voice. One can see that one of the two gui-
tars contains more frequency component than the other one
which is confirmed by listening to their respective sounds.
Thus even if both guitars play the same instrumental part,
there exist some differences in the time-frequency represen-
tations of their signals. We notice in Figure 15 that unlike
guitars, the voice includes high-medium and high frequency
component which are situated between 7 kHz and 15 kHz.
Thus only the voice exists in this frequency band. None of
these three sources contains high frequency above 15 kHz.
So, the remaining signal between 15 kHz and 22 kHz is
some noise. Figures 16 and 17 show the time-frequency
representation of the left and right sides of the stereo in-
put which look very similar. The inverse variance graph in
Figure 18 is interesting. We can see on it that most low-
variance points are in a frequency band, i.e. 7 to 15 kHz,
where only the voice is present. No low-variance point ex-
ists for frequencies higher than 15 kHz because no source
occurs in these regions and the respective noises added to
each source do not produce constant time-frequency values,
i.e. are not short-time stationary. Only few low variance
points exist for frequencies lower than 7 kHz because both
guitars occur, play the same chords and the voice has the
same fundamental tone. So it is hard to find some time-
frequency areas with only one source below 7 kHz. Our
method performs voice cancellation by self-focusing on the
time-frequency frequency domains where only the voice is
present. It also gives a separating coefficient to cancel a gui-
tar, which might be hard to find because of the similarity of
the produced sounds.
We demonstrated here that the time-frequency information
allows to perform a nearly perfect source cancellation. We
obtained similar results on mixtures realised on a ”studio
mixing console”.

6. CONCLUSION

We proposed here an efficient method for solving the linear
instantaneous blind source separation problem with mix-
tures of 2 sources. This method also performs very well
in karaoke-like applications when only two observations of
more than two sources are available.
Unlike classical methods [1], this new approach based on
time-frequency analysis only needs the sources to be non-
stationary and to have some differences in their time-fre-
quency representations. Thus no assumption is made about
the gaussianity, coloration or independence of the sources.
This allows one to separate some signals which are often ex-
cluded from other methods. Moreover this method directly
achieves source cancellation without any convergence is-
sues and is much simpler than the few time-frequency meth-
ods that were previously reported [6], [7]. Many tests have
been performed on speech or music samples and show the
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robustness of this approach.
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in time domain
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738



time

frequ
ency

t/f representation of source x1

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 7. Time Frequency representation of
���

time

frequ
ency

 t/f representation of source x2

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 8. Time Frequency representation of
���

time

frequ
ency

t/f representation of sensor y1

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 9. Time Frequency representation of
���

time

frequ
ency

t/f representation of sensor y2

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 10. Time Frequency representation of
���

time

frequ
ency

t/f representation of Y1(t,f)/Y2(t,f)

0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

3000

3500

4000

Fig. 11. Time Frequency representation of" �������� 	�& " �������� 	

0
10

20
30

40
50

60
70

0

20

40

60

80
0

1000

2000

3000

4000

5000

temporal windowfrequency

1
/v

a
ri
a

n
ce

Fig. 12. Time Frequency representation of�
� =���� �4? � / � � ��� �7A � / � � �	� . Axes units: windows indices

time

frequ
ency

t/f representation of source s1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 10
4

Fig. 13. Time Frequency representation of guitar
���

time

frequ
ency

 t/f representation of source s2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 10
4

Fig. 14. Time Frequency representation of guitar
���

time

frequ
ency

t/f representation of source s3

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 10
4

Fig. 15. Time Frequency representation of voice
� �

time

frequ
ency

t/f representation of sensor x2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 10
4

Fig. 16. Time Frequency representation of
���

time

frequ
ency

t/f representation of sensor x1

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

x 10
4

Fig. 17. Time Frequency representation of
���

0
50

100
150

200
250

300

0

50

100

150
0

1

2

3

4

5

x 10
7

temporal windowfrequency

1/
va

ria
nc

e

Fig. 18. Time Frequency representation of�
� =���� �4? � / � � ��� �7A � / � � �	� . Axes units: windows indices

739




