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ABSTRACT

We consider the problem of blind source separation of MIMO
convolutive mixtures for the general case where the num-
ber of sensors are greater than or equal to the number of
sources. We assume that sources are non-stationary sig-
nals. The separation is performed in the frequency domain
by joint minimization of the off–diagonal elements of ob-
served signal’s cross-spectral density matrices over different
epochs. We propose an efficient Newton– based algorithm
over the complex Stiefel manifold to minimize an appro-
priate cost function. We resolve the permutation problem
using a novel tree structured diadic detection scheme. We
find and correct wrong permutations at each frequency bin
based on cross frequency correlation between diagonal el-
ements of the output cross spectral matrices. We demon-
strate the performance of the new algorithm using synthetic
mixtures and real word recordings. The method has the ad-
ditional advantage of fast convergence.

1. INTRODUCTION

Blind source separation deals with the case where statisti-
cally independent sources are mixed through an unknown
channel where only the channel outputs (observed signals)
are measurable. The objective is: based on the information
contained in observed signals design a separation network
to extract the original sources. In this paper we consider
only the FIR convolutive mixture case. There have been
several algorithms in the literature which discuss this prob-
lem: [1], [2], [3]. The main approaches taken so far can
be divided in two groups. Higher order statistics methods
are discussed in [1], [3], [4] while [2] and [5] propose second–
order statistics algorithms. We can also divide the proposed
methods into time domain [2], [3] and frequency domain [4]
[5] approaches. In this paper we propose an algorithm in
the frequency domain using a second–order statistics ap-
proach. The key assumption used in this paper is that the
sources are non-stationary. We consider the general case
when the number of observed signals can be equal to or
greater than the number of the sources. We estimate the
separating matrix at each frequency bin by minimizing the
off–diagonal elements of the cross spectral density matri-
ces of the observed signals over a range of epochs. Using
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the information contained in diagonal elements of the diag-
onalized output covariance matrices we then align the per-
mutations of the columns of the separating matrices across
frequency. Similar work is done in [6] based on cross correla-
tion between temporal trajectories of the separated output
signals. The differences are: here we don’t need to estimate
these temporal trajectories; also, we propose a diadic sort-
ing scheme for adjusting the permutations. In this way we
can prevent catastrophic errors (as will be explained later
in this paper) that can happen as a result of a missed or
wrongly adjusted permutation. To support our arguments
and to demonstrate the performance of the algorithm we
present numerical simulations using synthetic sources and
real speech data.

2. PROBLEM STATEMENT

We consider the following N -source J-sensor MIMO linear
model for the received signal for the convolutive mixing
problem:

x(k) =

∞
∑

l=−∞

H(l)s(k − l) + n(k) k ∈ Z (1)

where x(k) = (x1(k), · · · , xJ(k))
T is the vector of observed

signals, s(k) = (s1(k), · · · , sN (k))
T is the vector of sources,

H(k) is the J×N channel matrix and n(k) = (n1(k), · · · , nJ(k))
T

is the additive noise vector. We make the following assump-
tions on the model:

A0: J ≥ N ; i.e, we can have more sensors than sources.

A1: The sources s(k) are real, zero mean, non-stationary
random signals and the cross–spectral density matri-
ces of the sources, Ds(ω,m) are diagonal for all ω and
m, where ω denotes frequency and m denotes epoch.

A2: H(k) is real, causal and has finite length Lh with Lh
being unknown. We also assume that H(ω) has full
column rank for all ω ∈ [0, 2π).

A3: The noise n(k) is zero mean, iid across sensors, with
unknown power and is independent of the sources.

The objective is to design a causal, stable MIMO separation
network B(l) of length LB with outputs given as:

y(k) =

LB
∑

l=0

B(l)x(k − l), (2)

242



such that for each output yi(k) we have:

yi(k) = λii(k) ∗ sπ(i)(k) + ζ(k) i = 1, · · · , N, (3)

where π(i) ∈ {1, · · · , N}, is a permutation function, ∗ is
the convolution operator, λii(k) is the impulse response of
the filtering operation done on sπ(i)(k), and ζ(k) represents
the residual noise. In the frequency domain, the separation
network must satisfy

B(ω)H(ω) = Λ(ω)Π(ω) (4)

where Λ(ω) is a diagonal matrix with diagonal elements
λii(ω) and Π(ω) is a permutation matrix. Notice that
equation (4) although a necessary condition, is not a suf-
ficient condition for separation unless we have Π(ω) = Πc

where Πc is a constant permutation matrix. In next sec-
tions we propose a frequency domain separation criteria and
a method for obtaining uniform permutations across all fre-
quency bins.

3. PREWHITENING AND JOINT

DIAGONALIZATION CRITERIA

The separation criteria is based on minimizing the off–diagonal
elements of cross–spectral density matrices of the observed
signals overM epochs. The signal is assumed to be station-
ary over each epoch. The cross–spectral density matrix of
the observed signals x(k) at epoch m is given by

P̃x(ω,m) = H(ω)Ds(ω,m)H
†(ω) + σ2nI, (5)

where † represents the Hermitian transpose operation,
Ds(ω,m) is the cross–spectral density matrix of the sources,
which by assumption is diagonal for all ω ∈ [0, 2π), m ∈
{0, · · · ,M − 1} and σ2n is the power of the noise n(t). For
J > N and under high signal to noise ratios, σ2n can be
estimated from the J −N smallest eigenvalues of Px(ω,m)
and we can set:

Px(ω,m) = P̃x(ω,m)− σ̂2nI. (6)

We can estimate B(ω) up to a paraunitary filter by whiten-
ing the observed signals. That is, we can write

B(ω) = Φ(ω)W̃(ω) (7)

where Φ(ω) is a N×N paraunitary matrix and W̃(ω) is the
N × J polynomial whitening filter, which can be estimated
from:

W̃(ω) = Σ(ω)−
1

2V
†(ω) (8)

where Σ(ω) is an N×N diagonal matrix whose N diagonal
values correspond to the N largest eigenvalues of

R(ω) =

M−1
∑

m=0

Px(ω,m), (9)

and V(ω) is an J × N matrix with orthonormal columns
consisting of the N corresponding eigenvectors. Notice that
W̃(ω) given by (8) spatially and temporarily whitens the
observed signals. To prevent temporal whitening of the
outputs when the sources are colored we use the following

ad-hoc but convenient method for normalizing the W̃(ω)
given by (8) as follows:

W(ω) =
W̃(ω)

||W̃(ω)||F
. (10)

ApplyingW(ω) to Px(ω,m) we can write:

Pw(ω,m)
∆
=W(ω)Px(ω,m)W

†(ω). (11)

The paraunitary matrix Φ(ω) can be estimated from the
orthogonal joint diagonalization of Pw(ω,m) over all m ∈
{0, · · · ,M − 1}. Since in practice we have only an es-
timate of Pw(ω,m) this diagonalization will be approxi-
mate and can be achieved by jointly minimizing the off-
diagonal elements of Pw(ω,m) over the range of epochs
m = 0, · · · ,M − 1.
A batch algorithm for approximate joint diagonaliza-

tion has been discussed in [7]. In this paper, we present
an an alternative algorithm which uses optimization over
the complex Stiefel manifold for this purpose, that has the
advantage of being adaptive. Since the Frobineous norm
of Pw(ω,m) is invariant to the orthogonal transformation
Φ(ω), minimizing the sum of squares of off-diagonal ele-
ments is equivalent to maximizing the sum of squares of
the diagonal elements. The joint diagonalization procedure
can therefore be reformatted and written as following opti-
mization problem for each ωk ∈ [0, π) [8]:

min
Φ(ωk)

−
1

2

M−1
∑

m=0

N
∑

i6=j=1

(aii(ωk,m)− ajj(ωk,m))
2

Subject to Φ(ωk)Φ
†(ωk) = I k = 0, · · · ,K,

(12)

where aii(ωk,m) represents the ith diagonal value of
Φ(ωk)Pw(ωk,m)Φ(ωk)

† and K is the number of frequency
points of interest.
In [8] a method was proposed for solving a problem

similar to (12), for the case of real orthogonal matrices. As
indicated in that paper, the orthogonality constraint can be
represented over the Stiefel manifold and an optimization
problem with orthogonality constraints can be solved using
unconstrained optimization methods over this manifold. In
this paper we extend the method in [8] to complex matrices.
A rigorous treatment of the complex Stiefel manifold is done
in [9]. In this paper we use a Newton method over the
complex Stiefel manifold to optimize (12).

4. NEWTON METHOD OVER COMPLEX

STIEFEL MANIFOLD

In this section we derive gradient descent and Newton meth-
ods over the complex Stiefel manifold to solve the con-
strained optimization problem given in (12). The Newton
method has the advantage of fast convergence when close to
optimal solution while gradient descent has the advantage
of lower complexity and tracking ability. In and [9] [10] the
authors discuss general forms for unconstrained optimiza-
tion methods over Stiefel manifold. Following the ideas in
[8], we derive adaptive algorithms for the complex version of
the orthogonal joint diagonalization problem. For brevity
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we limit ourselves to the necessary derivations and final re-
sults. For more information we refer interested readers to
the above references.
The update rule for minimizing the function given in

(12) over the complex Stiefel manifold is given by:

Φt(ωk) = Φt−1(ωk)exp

[

αΦ†
t−1(ωk)Γt−1(ωk)

]

(13)

where α is the step size and Γt−1(ωk) is the search direction
at the iteration t − 1 and at the frequency bin ωk. For
gradient descent the search direction is Γ(ωk) = −G(ωk)
whereG(ωk) is the gradient of the cost function in (12) over
the complex Stiefel manifold given by following equation:

G(ωk) = FΦ(ωk)−Φ(ωk)F
†
Φ(ωk)Φ(ωk) (14)

where FΦ(ωk) is matrix of partial derivatives of the cost
function in (12) with respect to ϕij(ωk) which is the ijth
element of Φ(ωk).

FΦ(ωk) = −

M−1
∑

m=0

∂aii(ωk,m)

∂ϕij(ωk)

∑

i6=j

(

aii(ωk,m)−ajj(ωk,m)
)

,

(15)
which can be calculated as:

FΦ(ωk) = −2

J−1
∑

m=0

Λ(ωk,m)Φ(ωk) bPw(ωk,m) (16)

where
Λ(ωk,m) = NDy(ωk,m)− c(ωk,m)I, (17)

Dy(ωk,m) = diag(Φ(ωk)Pw(ωk,m)Φ
†(ωk)) (18)

and c(ωk,m) is the trace of Pw(ωk,m) for each ωk and m.
For the Newton method over the complex Stiefel man-

ifold we use the method suggested in [9], which requires
calculating the first and second derivative (Hessian) of the
cost function given in (12). To calculate the Hessian we
first rewrite (12) as:

min
Φ(ωk)

−
1

2

M−1
∑

m=0

N
∑

i6=j=1

(

vec{Φ(ωk)}
†
A
ij(ωk,m)vec{Φ(ωk)}

)2

Subject to Φ(ωk)Φ
†(ωk) = I k = 0, · · · ,K

(19)

where
A
ij(ωk,m) = P

∗
w(ωk,m)⊗E

ij , (20)

the symbol ∗ represents the complex conjugate operation,
and Eij is an N × N diagonal matrix whose ith diagonal
element is equal to 1, whose jth diagonal element is equal to
−1, and all other elements are equal to zero. The Hessian
of (19) is easily found to be:

HΦ(ωk,m) = −

M−1
∑

m=0

N
∑

i6=j=1

{

4Aij(ωk,m)vec{Φ(ωk)}vec{Φ(ωk)}
†
A
ij(ωk,m)

+ 2vec{Φ(ωk)}
†
A
ij(ωk,m)vec{Φ(ωk)}A

ij(ωk,m)

}

(21)

Using the first and second order derivatives FΦ(ωk) and
HΦ(ωk), we calculate the Newton step over the complex
Stiefel manifold using the algorithm given in [9]. We can
then use the obtained Newton step to update the Φ(ωk)
using (13) with α = 1.
A procedure which has been found to work well empir-

ically, from the viewpoint of computational efficiency and
fast convergence, is to first, use a few gradient descent steps
to get close to the solution, and then apply the Newton al-
gorithm to quickly converge to the optimum.

Joint diagonalization Using the Newton method

over the complex Stiefel manifold

1. Initialize Φ(ωk) to some arbitrary value for all k =
1, · · · ,K such that Φ(ωk)Φ(ωk)

† = I

2. Compute FΦ(ωk) and HΦ(ωk), the first and second
order derivatives of cost function (12), as given by
equations (16) and (21).

3. Using the derivative information calculate the search
direction Γ(ωk) using the function tpoint as defined
in Table 1 in [9]

4. Update the values of Φ(ωk) using the (13)

5. Test for convergence. If the test fails, go to step 2.

5. RESOLVING PERMUTATIONS

One potential problem with the cost function in (12) is that
it is insensitive to permutations of columns of Φ(ωk); i.e.,
if Φopt(ωk) is an optimum solution to (12) then
Π(ωk)Φopt(ωk), where Π(ωk) is a permutation matrix, will
also be a optimum solution. Since in general Π(ωk) will
vary with frequency, poor overall separation performance
can result. One solution to this problem, as has been sug-
gested by [5], is to constrain the length of the separation
filters. Adding such a constraint, as has been mentioned in
[11], limits the the overall separation performance, specially
for long mixing filters. In this paper we suggest a novel so-
lution for solving the permutation problem which exploits
the cross-frequency correlation between diagonal values of
Dy(ωk,m) given by (18). Dy(ωk,m) can be considered
an estimate of the sources’ cross-power spectral density at
epochm. We can show that for white non-stationary signals
the temporal trajectories of spectral density are correlated
over frequency. For non-white signals, this correlation still
holds, but for some frequencies it may be zero if the power
spectrum of the sources at those frequencies vanish.
Using this correlation we can adjust the permutations

as shown in the following example. Basically assume that
we have two sources and Dy(ωk,m),m = 0, · · · ,M −1 rep-
resents the estimated cross-spectral density matrix of the
sources at frequency bin ωk. We want to adjust the per-
mutation at frequency ωj such that it has the same permu-
tation as in frequency bin ωi. To do so we first calculate
the cross frequency correlation between all diagonal values
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of Dy(ωj ,m) and Dy(ωi,m) using following measure:

ρqp(ωi, ωj) =

∑M−1
m=0 dq(ωi,m)dp(ωj ,m)

√

∑M−1
m=0 d

2
q(ωi,m)

√

∑M−1
m=0 d

2
p(ωj ,m)

(22)

where ρqp(ωi, ωj) represents the cross frequency correlation
between dq(ωi,m), the qth diagonal element of Dy(ωi,m),
and dp(ωj ,m), the pth diagonal element of Dy(ωj ,m). If
the frequency bins ωi and ωj have the same permutation
then we expect that

ρ11(ωi, ωj) + ρ22(ωi, ωj)

ρ12(ωi, ωj) + ρ21(ωi, ωj)
> 1; (23)

otherwise, we must change the permutation at one of the
frequency bins ωi or ωj such that the above condition is sat-
isfied. We can apply the above ratio test to all frequency
bins to detect and adjust the wrong permutations. In gen-
eral when the number of sources is greater than two, the
ratio test given in (23) can be written as the following dis-
crete optimization problem

max
Πij∈P

trace
(

E
T (ωi)E(ωj)Πij

)

(24)

where P is the set of N×N permutation matrices including
the identity matrix, and E(ωk) is an M ×N matrix whose
lth column is given by

el(ωk) = (dl(ωk, 0), · · · , dl(ωk,M − 1))
T (25)

where el(ωk) has been normalized to have unit norm; i.e,

el(ωk) =
el(ωk)

||el(ωk)||2
. A more computationally efficient but

suboptimal approach to estimate the permutation matrix
between the two frequency bins is given by the following
algorithm.

Algorithm I: Unifying the permutations at two

frequency bins ωi and ωj

1. Initialize the N ×N matrix Πij to zero.

2. Setup matrices:

E(ωi) = [e1(ωi), · · · , eN (ωi)] (26)

and likewise E(ωj), where

el(ωi) = (dl(ωi, 0), · · · , dl(ωi,M − 1))
T (27)

has been normalized to unit norm.

3. Form the multiplication

Tij = E
T (ωi)E(ωj). (28)

4. Find the row rmax and column cmax corresponding
to largest (in absolute value) element of T. Delete all
elements corresponding to this row and column and
set

Πij(cmax, rmax) = 1. (29)

5. Repeat step 4 for the remaining elements of matrix
Tij until only one element remains. Set

Πij(cf , rf ) = 1 (30)

where rf and cf are the corresponding row and col-
umn of the remaining element.

The above algorithm calculates the required matrixΠij

such that two frequency bins ωi and ωj will have the same
permutations. Using this we can devise a sorting algorithm
to align permutations over all frequency bins. A simple ap-
proach is a sequential sorting method, where starting from
frequency bin 1, we adjust the permutation of each bin to
that of its previous bin. This approach, although simple,
has a major drawback as follows: consider the situation
where we cannot detect the correct permutation matrix for
frequency bin ωk. In this case all frequency bins succeeding
ωk will receive a different permutation than the ones pre-
ceding ωk. In the worst case, we will have half the frequency
bins having one permutation matrix, and the other half hav-
ing a different permutation matrix, resulting in very poor
or virtually no separation performance. To prevent such a
catastrophe we propose following hierarchical algorithm to
sort the permutations across all frequency bins.

a b c d

e f

ω 0

ω2 ω3 ω4 ω5
ω6 ω7ω0 ω1

Π01 Π23 Π45 Π67

Πab Πcd

Π
ef

Figure 1: Tree diagram of the permutation sorting algo-
rithm

Algorithm II: Sorting algorithm for unifying the

permutations across all frequency bins

1. Divide the frequency bins into groups of two bins each
as is shown in figure 1.

2. Use algorithm I for each group to estimate the per-
mutation matrix Πij . Update the order of diagonal
values of Dy(ωi,m), where ωi is one of the frequency
bins inside the group, and the matrix Φ(ωi) using

Dy(ωi,m) = ΠijDy(ωi,m)Π
T
ij

Φ(ωi) = ΠijΦ(ωi).
(31)
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3. For each group choose a representative by averaging
the diagonal values of D(ωi,m) over the frequency
bins in that group:

Dk(m) = D(ωi,m) +D(ωi+1,m) (32)

4. Move up one level in the hierarchy: Divide the set
of representatives into groups of two elements and
repeat step 2. Notice this time the update given in
(31) is done for all bins corresponding to each repre-
sentative.

5. Repeat this process for each level until only two rep-
resentatives remain at the last level.

Figure 1 shows the tree structure of the algorithm II for the
case that the total number of frequency bins are 8. The suc-
cess of this algorithm is based on the assumption that the
probability of detecting the wrong permutations increases
as the algorithm progresses up the hierarchy. This assump-
tion is justified by the fact that through (32), more informa-
tion is available upon which to detect wrong permutations
at the higher levels.

6. SIMULATION RESULTS

In this section we present two sets of numerical results and
demonstrate the performance of the algorithm using real
world recorded speech signals. In [12] the authors demon-
strate separation of non-stationary Gaussian iid sequences
for instantaneous mixtures. Here we demonstrate the result
for the convolutive case. For this experiment we use three
iid Gaussian signals and we create the nonstationarity by
multiplying them by slowly varying sine, cosine and slowly
decaying exponential waveforms:

s1(k) = sin(−2πk/T1)n1(k)

s2(k) = cos(−2πk/T2)n2(k)

s3(k) = exp(−2πk/T3)n3(k)

(33)

where ni(t) is a Gaussian iid signal. The signals are then
mixed using an 8-tap, 3× 3 FIR polynomial matrix whose
coefficients for each element are chosen randomly from a
Gaussian distribution. To estimate the cross-spectral den-
sity matrices of the observed signal, we first divide the input
sequence into M epochs and we use the following formula
to estimate the cross-spectral density matrix at the mth

epoch:

P̂x(ω,m) =
1

Ns

Ns−1
∑

i=0

xi(ω,m)x
†
i (ω,m) (34)

where

xi(ω,m) =

∞
∑

n=−∞

x(n)w(n− iTs −mTb)e
−jωn (35)

where m is the epoch index, Ns is number of overlapping
windows inside each epoch, Tb is the size of each epoch,
Ts is the time shift between two overlapping windows and
w(n) is the windowing sequence (Hanning window for these

simulations). These estimated cross-spectral density ma-
trices were then used as the input to our algorithm. We
used both the Newton and the gradient descent algorithms
for the joint diagonalization part of the method. We also
used the diadic structure, described in previous section, to
resolve the permutation problem across the frequency bins.
Since in simulations we know the mixing channel, we can
estimate the separation performance by first convolving the
separation matrix B(k) with the channel H(k) to obtain

C(k) = B(k) ∗H(k). (36)

Next we quantify the performance using the formula:

η(i) = 20 log
(

{
∑N

j=1 ||cij ||
2
2

}

−maxj ||cij ||
2
2

maxj ||cij ||22

)

i = 1, .., N

(37)
where η(i) represents the row-wise interference to signal
ratio for ith output, and

cij = (Cij(0), · · · , Cij(Lc − 1))
T (38)

where Cij(k) represents the ijth element of the C(k). Table
1 shows the performance results before and after the permu-
tation algorithm was applied. As can be seen, permutation
error severely degrades the performance of the algorithm.
Also figure 2 shows the separation results for this experi-
ment.
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Figure 2: Results of separation: original sources s1(n),
s2(n) and s3(n), observed signals x1(n), x2(n) and x3(n),
separated outputs y1(n), y2(n) and y3(n).

In the next experiment we imposed a harder, more re-
alistic situation. We used two male speech signals which
were mixed through a 4 × 2 polynomial matrix with order
20 (each element of the mixing matrix is a 20 tap FIR fil-
ter). We also added white Gaussian noise at a controlled
level to the result of this mixture. The output signal to
interference ratios (SIRs) were then calculated for differ-
ent values of noise power using 50 Monte Carlo runs. The
average signal to noise ratio for each source is given by:

SNRj =
¿
∑J

i=1(hij(n) ∗ sj(n))
2 À

J ¿ ni(k)2 À
(39)
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where¿ .À represents the time average operation. Figure
3 shows the resulting curves of output SIR versus average
signal to noise ratio of the sources. The results for this
experiment can be heard from [13].

Output ISR (dB) η(1) η(2) η(3)
Without Resolv. Permut. -0.58dB 2.52dB -0.75dB
With Resolv. Permut. -21.9dB -24.1dB -21.6dB

Table 1: Output SIRs before and after correcting the per-
mutations.
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 d
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Figure 3: Output SIR versus the average signal to noise
ratio (SNR) of the corresponding source

We also applied our method to real world data recorded
from the room experiments contributed by [14]. In this ex-
periment, since we don’t have access to the true room im-
pulse responses nor the true original sources, a quantitative
measurement is not possible. However, the output speech
can be heard from [13].
Further, it was found that the method proposed in this

paper is significantly faster in convergence than that pro-
posed in [5], for problems of similar size.

7. CONCLUSION

In this paper we presented a new method for blind source
separation of MIMO convolutive mixtures using the as-
sumption that the sources are non-stationary. We pre-
sented the method as a three stage algorithm (Whitening,
Orthogonal joint diagonalization, and Adjusting Permuta-
tions) where the first two stages calculate the separation
matrix at each frequency bin and the last stage detects and
removes the wrong permutations. For orthogonal joint di-
agonalization we designed an adaptive algorithm based on
the Newton method over the complex Stiefel manifold. For
aligning permutations we presented a novel diadic algorithm
which exploits cross frequency correlations between diago-
nal values of the output cross–spectral density matrices. We
tested our algorithm using synthetic data and real speech

data in different mixing scenarios. We also applied the al-
gorithm to real world recorded speech samples. In all tests,
excellent performance was achieved.
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