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ABSTRACT

The aim of the present paper is to investigate the behavior
of a single-input single-unit system, learning through the
maximume-entropy principle, in order to understand some
formal property of Bell-Sejnowski’s PDF-matching neuron.
The general learning equations are presented and two case-
study are discussed with details.

1. INTRODUCTION

The analysis of the behavior of adaptive activation function
non-linear neurons is a challenging research field in the neu-
ral network theory, which may require analyzing non-linear
differential equations of neuron’s parameters. Especially in
signal processing applications, the external excitations are
not deterministic but stochastic, and the aim is to find a sta-
tistical description of the neural system’s response and of
system features. The formal techniques known in the scien-
tific literature for studying such systems benefit from cross-
fertilization among artificial neural networks, information
theory and signal processing and neurobiology.

Recently, several researchers have focused their atten-
tion on this class of stochastic learning theories, with ap-
plications to blind separation of sources by the independent
component analysis [1, 2, 3, 4, 5, 6, 16, 20], probability den-
sity estimation [1, 18, 7], self-organizing classification [19],
and blind system deconvolution [2, 8, 9]. Also, some studies
on neurobiological mechanisms have suggested interesting
non-linear models and information-theoretic based learning
theories [10, 11, 13, 14, 15].

Following the pioneering work of Linsker, Plumbley,
Bell and Sejnowski [2, 12, 17], in recent papers, we pre-
sented some results related to the use of flexible non-linear
units, termed FANS, trained in an stochastic way by means
of an entropy-based criterion: In [7] we proposed some gen-
eral structures and adapting frameworks for FAN non-linear
unit, while papers [4, 5, 6] have been devoted to the applica-
tion of these neurons to blind signal processing tasks, such
as blind source separation by the independent component
analysis and blind signal flattening; in these works we also
compared the proposed structures to other flexible topolo-
gies known in the scientific literature, as e.g. the mixture-
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of-kernel, showing that the new approach may exhibit bet-
ter estimation/approximation ability at a lower complexity
burden.

The aim of our preceding work was to introduce the new
adaptive-activation-function structures and adapting theo-
ries and to assess their features through numerical experi-
ments on real-world data; however, due to the strong non-
linearity of the involved equations we did not present any
theoretical considerations about the mathematical structure
and properties of the adapting equations. In the present pa-
per we recall the basic adapting formulas and present the
closed-form expressions of them for some special cases;
our main goal is to discuss their features in an analytical
way, in order to gain a deeper insight into the behavior of
the non-linear differential equations governing information-
theoretic FAN non-linear unit adapting, and to better explain
the previous numerical results. In particular, the aim is to
discuss some properties of Bell-Sejnowski probability den-
sity function matching neuron.

2. NEURON MODEL AND PDF-MATCHING
LEARNING EQUATIONS

In the present paper we consider the simple neuron model
depicted in the Figure 1, which may be formally described
by the input-output equation:

y=s(wz+b), 1)
where z(t) € R and y(t) € R denote the neuron’s in-
put stimulus and the neuron’s response signal, respectively,
w € R denotes the neuron’s connection strengthand b € R
stands for the bias; the non-linear function s(-) represents
a bounded (saturating) squashing activation function, which
meets the monotonicity condition s’(-) > 0.

Both the input and output signals are treated as station-
ary stochastic signals, described by the probability density
functions (pdfs) p,(z) and py(y). We do not make any
particular hypothesis about the stimulus’ statistical distribu-
tion, but for requiring a sufficient regularity, namely p,.(z)
should be a smooth function endowed with sufficiently-high-
order moments.



An interesting observation about maximum-entropy neu-

1 ron learning is that the neuron tries to align its transfer func-

V‘ tion to the stimulus’ pdf [2]. This may be proven formally in

x(t) @ @ y(t) the following way. We postulate that the first-order deriva-
w 2/ tive of neuron’s transfer function, namely D(z) in (2) tends

to match the stimulus pdf p,(x): To show this it is neces-
sary to define a mismatch measure and to show that it gets
minimized. A pseudo-distance among pdfs is the Kullback-

Fig. 1. Structure of single-input neuron. . . ) . PN -
g g P Leibler informational divergence, which in this case writes:

The statistical distribution of the neuron’s response de- 4 et log P (&) d
e . . Pz (g) og i3

pends upon the distribution of the stimulus through the neu- (&)

ron’s non-linear transfer function; formally, the relationship _

among the two statistics write: = —He- /Rpx(@ log D(¢)d .

Z—i‘ = |w|s'(wx +b). (2)

From equation (3) it is easily recognized that A(w,b) =
—Hy(w,b), therefore as H, gets maximized, also A gets

_ minimized, and this proves that the neuron-dependent func-
Bell-Sejnowski’s neuron should learn to respond a maximum- tion D(z) tends to approach p, ().

_ px($) . def
i =L e

entropy signal, which gives rise to a learning theory based The aim of the present paper is to elucidate some prop-
on entropy maximization. The entropy of the excitation and erties of the pdf-matching neuron, which descend form the
of the response define, respectively, as: mathematical properties of the above learning equations. In
order to carry out our analytical considerations, it is neces-
H, def —/ Pz (&) log py (€)dE | sary to choose a neuron’s structure, namely, to define the

R shape of the squashing function s(-).
H, def _/ py(n) log py(n)dn . The following expression, which may be regarded as
R a kind of sigmoidal function, proves to generate tractable

Clearly these entropies are not independent, as they may mathematics:

be related though the statistics transformation formula (2), u -
which gives the relationship: s(u) = C+ B/O exp(=v" " )dv, neN;  (6)

Hy(w,b) = H, +/ P (&) log[|w]s'(wé + b)]dé . (3) in the above formula C' € R and B > 0 are arbitrary con-
R stants, and » is an odd integer. The Figure 2 shows three

examples of the shape of function s(u) for different values
of the integer n (the constants C' and B have been chosen
so that the function always ranges in [0, 1]).

It is worth noting that the learning equations (4) and (5)
do not depend explicitly on the sigmoidal function, but on
the ratio s” (u)/s’(u). From equation (6) we find:

The neuron’s parameters w and b may be learnt through
an optimization principle which has the target to maximize
neuron’s response entropy, namely, through an entropy-gradient
learning rule. In order to derive such learning equations
the partial derivatives of the response entropy are necessary.
Straightforward calculations give:

6 . Sll(u) — _(n + l)un )
2. /R Po(€) logfus'(w€ + b)]dg = (0)
1 5”(w€—|—b) . S| . . d:
—+ | po(6)=—ede 4) Ultimately, neuron’s learning equations read:
w o Jr s'(wé +b)
o , dw 1 n
5 [ pe@toglluls wg + b = oo L) [ @+ breds . ()
b J» dt w R
8//(w€ + b) db / n
P St S A/ — = —(n+1 - + b)*dE . 8
/Rpx(g) Tt 1) (5) 5 (n 1) | po(€)(we+b)"de 8)
Note that the entropy of the stimulus does not depend on As anticipated, the selected squashing function gives
neuron parameters’ values, thus its derivatives are not re- rise to tractable mathematics, in fact, the required integrals
quired. may be computed as follows. To start with, let us define the
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Fig. 2. Sigmoidal function s(u) for three different values
of the integer n: Dotted line: n = 1; Solid line: n = 3;
Dot-dashed line: n = 5.

stimulus moments:

o L (6)€de
o /Rp(€)€€

- def
Hm

<[ @) - e m> 0.
R

Note that, by the hypotheses made on the stimulus, the mo-
ments exist at least for some value of m; it is important to
remark that ,; # 75 and, in particular, g = 1 and 4y = 0,
always.

By replacing the term (wé 4 6)™ in the integrals with the
equivalent term [w(& — 1) 4+ b+ wpq]™, and by making use
of the binomial expansion formula, we have:

/R Pe(€) (et + b)Ede =

Z Tn@(ﬂm+1 + ﬂmﬂl)wm(b + wﬂl)n_m )

m=0

and:
[ o€+ 87 = S T4 )
m=0

n!

where 7, denotes the binomial coefficient P

The binomial expansion may be used again in the above
formulas, which allows writing the neuron’s learning equa-
tions in the friendly form:

dw 1 U
dt w (n+ )mZ::OZ;,L L—m ~m
X (fim1 + fimp) gy~ "W (9)
db - - 71— 7
E = _(n + 1)77;)[2: TZ—m Tm
X fp pts ™Mb L (10)
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It is also interesting to write explicitly the neuron’s entropy

gap, the learning criterion defined as T'p, (w, b) def Hy(w,b)—
H, — log B, that reads:

n+1 n4+1
Th(w,b) =log([w]) = > > T+t
m=04=m

S tem, fpn—i+1
X fip s T O T

(11)

The presence of the term L in the learning equation for
the connection strength has the meaning of creating a barrier
line in the phase-plane w — b of the differential learning
system, which precludes the change of the sign of w: If the
dynamics starts with «(0) > 0 then the connection weight
remains excitatory, while w(0) < 0 makes the weight being
always inhibitory. Of course, the barrier also makes the line
w = 0 unstable for the system.

3. ANALYSISFOR A GAUSSIAN EXCITATION

The signal z(¢) might be conceived as the ‘net” input to the
neuron, namely as the linear combination of many input sig-
nals, or as the only input to the neuron. In both cases it
makes sense to study the learning equations when x(¢) has
a Gaussian distribution, namely when:

[l

2
2mo 20?2 ] '

In this case we have p; = p, i, = 0 for m odd, and
flom =13+ (2m — 1)o?™.

For n = 1, the sigmoidal function of the neuron co-
incides to the lifted error-function (’erf’), which has been
investigated in a theoretical way in [7] and whose powerful
in blind source separation by the independent component
analysis has been numerically proven in the papers [5, 6].

The case n = 3 has not been considered before and is
interesting to study. By particularizing the learning equa-
tions (9)+(10), we obtain the differential system governing
the neuron’s learning phase:

Pe(2) (12)

il—itu = i — 4[pbp + 3(p” + o”)wb® + 3pu(p® +
30’2)w2b + (N4 +60%u® + 30’4)w3] . (13)
% = —4[[)3 + 3pwb? + (uz + Uz)wzb +
(g + 30%)w?] . (14)

One of the purposes of the present analysis is to find,
in closed form, the equilibrium points of the above learning
equations; this may be achieved by solving the system of
two equations that arises by vanishing the right-hand side of
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Fig. 3. Case p = 0: Learning curves for the parameters w
(dashed-line) and & (solid-line).

the above learning equations to zero. In this way we obtain:

1 = Afpwb®u + 3(p* + 0?)w’b® + 3u(p® +
309w + (p* + 60 + 30w, (15)
0 = b4 3pwb? + (p* 4+ oH)w?b +
W + 3020 (16)

where it is understood that w # 0 and that w > 0.
We have been able to identify two special cases when
the above equilibrium equations may be exactly solved.

31 Casepu=0

When the mean value of the input Gaussian excitation is
zero, the equilibrium system noticeably simplifies into:

4(30%w?b* + 30tw?) |
0 b(b2 + 30’2w2) .

Clearly the second equation has & = 0 as only feasible so-
lution, because the sub-equation 6% + 3¢2w? = 0 would
lead to complex-valued solutions; by vanishing b in the first
equation we also find w = ﬁ

As a numerical example, let us consider the case that
o = /2 and the learning equations have been discretized in
time with sampling-step A¢ = 0.001. The Figure 3 shows
the course of the slope w and bias b of the neuron’s activa-
tion during the learning phase; it may be readily verified that
b—0andw — #ﬁ Also, Figure 4 shows the true cdf
of the input signal and the non-linear transference function
of the neuron: They look nearly superimposed and, mainly,
the neuron’s activation is just aligned to the true cdf.

It would also be interesting to investigate the shape of
the entropy-gap as a function of the learnable parameters.
The entropy-gap surface and contour plot for the present
case are depicted in the Figures 5. The symmetry of the
gap 'y (w, b) about the line b = 0, as well as the fact that
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Fig. 4. Case u = 0: Alignment of the input stimulus cdf
(dashed-line) and the neuron’s activation function (solid-
line).

Fig. 5. Entropy-gap surface (top) and contour-plot (bottom)
for the case ¢ = 0.
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Fig. 6. Case p = 1: Learning curves for the parameters w
(dashed-line) and & (solid-line).
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Fig. 7. Case u = 1: Alignment of the input stimulus cdf
(dashed-line) and the neuron’s activation function (solid-
line).

the minima lie on this line, is quite apparent, confirming the
conclusions of the theoretical analysis. The entropy-barrier
in correspondence of w = 0 is also clearly visible.

32 Casep=1

The result pertaining to an unitary mean value is really non-
trivial and interesting. In fact, when p = 1 the equation
(16) becomes an identity over the line w 4+ & = 0, and the
equation (15) then gives w = —b = ﬁ

As a numerical example, let us consider again the case
that o = /2. The Figure 6 shows the course of w and
b during the learning phase; it may be readily verified that
this time b — — w——= while w — 7575 Figure 7 shows
the cdf of the input signal and the neuron’s activation func-
tion, which look again nearly superimposed, as predicted by
the theory.  The shape of the entropy-gap as a function of
the learnable parameters, shown in the Figures 8, again con-
firms that the learning algorithm has found the right neural
configuration. The black diagonal line in the figure repre-
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Fig. 8. Entropy-gap surface (top) and contour-plot (bottom)
for the case 4 = 1.

sents the line of equation w + b = 0, and the fact that the
minima of the entropy-gap lies on such line clearly emerges.

4. CONCLUSIONS

The aim of the present paper was to discuss with some de-
tail the behavior of a single-weight, single-bias non-linear
neuron in presence of a stochastic excitation of known dis-
tribution, in order to analytically show that the maximum-
entropy learning principle causes the neuron’s transference
to align to the input cdf as predicted by Bell and Sejnowski.
It has been shown by chosen an activation function whose
shape is very close to the standard sigmoids but which leads
to tractable mathematics, and by considering a Gaussian
excitation: In this case the closed-form expression of the
learning equations can be analytically computed and their
features can be investigated. Also, we illustrated the analyt-
ical results through numerical simulations.
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