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ABSTRACT

A general method to construct contrast functions for blind
source separation is presented. It is based on a super-
additive functional of class II applied to the distributions
of the reconstructed sources. Examples of such function-
als are given. Our approach permits exploiting the tempo-
ral dependence of the sources by using a functional on the
joint distribution of the source process over a time interval.
This yields many new examples and frees us from the con-
straint that the sources be non Gaussian. Contrasts functions
based on cumulants requiring the orthogonality constraint
is also covered. Finally, the case of convolutive mixtures is
considered in relation with the problem of blind separation-
deconvolution.

1. INTRODUCTION

The goal of blind source separation is to recover the sources
from their unknown observed mixtures, typically of the
form

����� ���	��
���� �
, where


���
��
and

����
��
represents the

source and the observation vectors at time


, and

�
is a

linear transformation, which can be either instantaneous or
convolutive. We assume that there are a same number � of
sources and of sensors and that an inverse transformation of�

exists.
In the blind context, no particular knowledge on the

source distribution is assumed, instead one will rely mainly
on the assumption of independence between the sources
to achieve their separation. Specifically, one tries to find
a transformation � such that the components of � ��� ���
� ����� � , which represent the reconstructed sources, are as
independent as it is possible. A more general approach is
to minimize a contrast function. Following Comon [1], we
define a contrast function as a functional of the distribution
of � ��� � (and possibly also of � ) which attains its minimum
when separation is achieved. Note that by relying solely on
the independence of the sources, one can only achieve sep-
aration up to a permutation and a non mixing transforma-
tions on each source sequence: a scaling (and a translation)
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in the case of instantaneous mixtures or a convolution in the
case of convolutive mixtures. Thus, separation is always un-
derstood with the above indeterminacy attached, not in the
sense of having extracted exactly the sources. Following
Comon [1], we call a contrast function discriminating if it
attains its minimum only when separation is achieved.

This work provides a general method for constructing
discriminating contrast functions. It is based on the con-
cept of superadditive functionals introduced by Huber [2].
Subadditive functionals can also be used but they require
orthogonal constraint. They yield cumulant based con-
trasts, which have been well studied and hence will be dis-
cussed only briefly. The main novelty of our work is that
we consider also functionals of the joint distribution of the
reconstructed sources at different time points and not only
of their marginal distribution at a single time point (as in
earlier works). Further, convolutive mixtures are treated as
well. For such mixtures, the separation is much easier if one
makes the assumption that the sources can be represented as
the output of some filter applied to temporally independent
processes. It is then actually easier to both separate and
deconvolve the sources to obtain the underlying temporally
independent processes. We call this the blind separation-
deconvolution problem. It contains as a special case the
classical deconvolution problem.

It should be noted that the construction of a contrast
functions is only a first step toward a separation procedure.
The contrasts introduced here are of theoretical nature be-
cause they depend on the distribution of the reconstructed
sources, which is unknown. To obtain a usable contrast, this
distribution or in fact certain functionals of it must be esti-
mated from the data. This problem will be investigated in
future works in specific settings since our general approach
can have different implementations, adapted to the problem
considered.

2. CONTRASTS FOR INSTANTANEOUS
MIXTURES

Here the mixture model writes
����
�������
���
��

where
�

is
an unknown ����� mixing matrix and

����
��
and


���
��
are as
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before. The separation is performed by making an inverse
transformation � ��
���� � ����
�� where � is a � � � separat-
ing matrix. In this setup, a contrast function is a functional
of the distribution of � ��� � , which is minimized when � �
equals the product of a permutation and a diagonal matrix.

2.1. Contrasts based on the marginal distribution

As the sources are reconstructed through an instantaneous
transformation, one can expect to obtain contrast functions
based only on the marginal distribution of the reconstructed
source vector � ��
�� . By stationarity, this distribution does
not depend on



, therefore we will drop this time index.

A natural contrast is obtained by considering the mutual
information between the components

���
, . . . ,

���
of � [3]:

� �����
	������
	
��� ���������
�������
� � � � � �
� ������	������
	
��� �
����� ����� � � � � ���
� ����� �

where E is the expectation operator and �����
� � � � � �
� and ���
�
denote the joint and marginal densities of

���
, . . . ,

���
. This

is a contrast since it is well known that it is non negative and
vanishes if the random variables are independent. Note that

� ������	������ 	
��� � �
�!
"�# ��$ ��� " ��% $ ������	������ 	
�����

(1)

where for any random vector � with density ��& , $ � � ���%������
� ��& � � � denotes its entropy and $ ���'��	������
	
��� �
is the

same as $ �
( ��� � � �)����*�+ �
(
+

denoting the transpose) and
denotes the joint entropy of

�'�
, . . . ,

���
. Further, it can

be shown that $ � � ��� $ � ���-,.���
��/10�243 � /
and thus the

contrast (1) equals, up to an additive constant,

5 � � ���
�!
"�# ��$ ��� " ��%6���
�7/10�243 � / �

(2)

The advantage of (2) over (1) is that it involves only the dis-
tribution of a random variable, not the joint distribution of
several random variables. This would avoid the problem of
not having enough data to estimate the density distribution
in high dimensional spaces (the “curse of dimensionality”).

We now provide a systematic method to construct con-
trast functions, through the use of superadditive function-
als of class II (of a distribution) introduced by Huber [2].
A functional Q of the distribution of a random variable

�
,

denoted by 8 ����� , is said to be of class II if it is (i) trans-
lation invariant, in the sense 8 ���9,.: � � 8 ��� � for any
real number

:
, and (ii) scale equi-variant, in the sense that

8 �;:
� ���</ :=/ 8 ��� � for any real number
:
. Note that this

definition, as appears in [2], doesn’t require that 8 be non
negative, but is is clear that if 8 satisfies it then so does

/ 8 /
,

hence we can without loss of generality assume 8.>�? . The
functional 8 is said to be superadditive if [2]:

8A@ ��BC,D� � >�8A@ ��B���, 8A@ ����� (3)

for any two independent random variables
B

and
�

.

Proposition 2.1 Let 8 is a superadditive functional of class
II, then �!

"�# � ���
� 8 ��� " ��%6���
�7/10�243 � /
(4)

is a contrast function for separating an instantaneous mix-
ture of sources. This contrast is discriminating if 8 �;E " ��F
? for every sources

E " and if the inequality (3) is strict (i.e
not an equality) for any pair of non zero multiples of two
distinct sources.

Examples

G 1: Let 8 ��� � �IH�J�K �-L , the square root of the en-
tropy power. Then 8 is of class II and by a result of
Blachman [4] (see also [3]), it is superadditive with
inequality (3) being strict unless

B
and

�
are Gaus-

sian. Therefore, under the condition that there can be
no more than one Gaussian source, the above func-
tional yields a discriminating contrast, which can be
easily seen to be the same as (2). Thus we get a proof
that the mutual information contrast is discriminating
(an earlier proof based on the Darmois Theorem has
been given in Comon [1]).

G 2: Let 8 ��� ���NM���� � O �
P
@ where

M������ �C�RQ @� �����
(
Q � denoting minus the logarithmic derivative of the

density of
�

) is the Fisher information in the location
estimation problem. Then 8 is a functional of class
II and, as proved in [2] and [4], is superadditive. The
proof in [4] also shows that the inequality (3) is strict
unless

B
and

�
are Gaussian. Thus, the above func-

tional also yields a discriminating contrast if there are
no more than one Gaussian source.

G 3: For bounded random variables, the functional 8
defined by 8 �������CS�T

, the range of
B

, is of class
II and superadditive, since

SUTWV � �.S�TX,XS � if
B

and
�

are independent. The last equality also implies
that the inequality (3) is strict unless

SUT
or

S � equal
0. Thus Y

�"�# � ���
�-S �
� %����
��/10�243 � /
is a discriminat-

ing contrast, in the case of bounded non deterministic
sources. It has in fact been introduced and proved to
be so in [5].

G 4: Suppose that the sources are sub-Gaussian, that
is they admit non positive fourth order cumulants.
Clearly the same is true for any linear mixture of
them. On the set of sub-Gaussian random vari-
ables, the class II functional 8 defined by: 8 ��� ���( � ���9%������1Z * �
P Z

can be shown to be superadditive
with inequality (3) being strict unless both

B
and

�
have zero fourth order cumulant. This functional thus
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yields a discriminating contrast under the restriction
that all sources are sub Gaussian with at most one can
have zero fourth order cumulant.

2.2. Contrasts under orthogonality constraint

Many earlier works on blind source separation are based on
higher (than 2) order cumulants. But cumulants are not su-
peradditive but subadditive and the above method is not ap-
plicable. However, one can still construct cumulant based
contrast functions if the transformation matrix � is con-
strained to be orthogonal. (In fact all cumulant based con-
trasts which we know of require this constraint.) The or-
thogonality constraint is justified by the fact that the data
has been pre-whitened so that the observed vector

�
has

covariance matrix the identity matrix. Therefore in order to
preserve this property for the reconstructed source vector � ,
the matrix � must be orthogonal. Further, by absorbing the
scales of the sources into

�
so that they have unit variance,

their non correlation implies that
�

is also orthogonal.
A functional 8 is called subadditive if [2]

8A@ ��BC,D� ��� 8A@ ��B���, 8A@ �����
for any pair of independent random variable

B
and

�
. For

generality we shall extend the above definition and call this
functional � -subadditive ( �6>�? ) if one has instead

8�� ��BC,)� ��� 8�� ��B���, 8�� �����4�
It can be shown that � -subadditivity implies � -subadditivity
for all � � � , in particular it implies subadditivity if �6>�� .
Proposition 2.2 Let 8 is a � -subadditive functional of
class II for some �9>�� and assume that the mixing ma-
trix

�
is orthogonal. Then both

% Y
�"�# � 8 � ��� " � and% Y

�"�# � 8 @	� ��� " � are contrast functions for separating an
instantaneous mixture of sources under the restriction that
the separating matrix � is orthogonal. These contrasts are
discriminating if � F � and the 8 �;E " � (

E " denoting the
sources) can be zero for at most one index 
 .

The above result shows that
% Y

�"�# � 8�� ��� " � is a con-
trast function for all � in the set

( � 	 � *�
.( ��	 ��� * , which
reduces to

( � 	 ��� * if � > �
. On the other hand, the

functional 8 defined by 8 ��� � � / ������� ������/ �
P��
, where������� �����

is the � -th cumulant of
�

, can be shown to be
� -subadditive. One can then deduce the results of Comon
[1] and of Moreau and Macchi [6]. More general forms of
cumulant based contrasts can also be found in [7, 8, 9].

2.3. Contrasts based on the joint distribution

When the sources possess temporal dependence (which is
often the case), it is of interest to exploit this dependence

by considering contrast functions depending on joint dis-
tribution of several consecutive values of the reconstructed
sources. By stationarity, one only need to consider the dis-
tribution of the random vectors

( � " ��� � � � �)� " ��� �;*�+ , de-
noted by

� " ������� �
for short, where

�
is a given inte-

ger. (In the sequel, this kind of notation will be used for
any sequence). Note that one can also consider the vector( � " �� � � " � �  � � � ��� " ���! �;*�+ instead of

� " ������� � , where 
is an integer greater than 1. This can be useful when the

observed process comes from the sampling of a continuous
time process with a too fine sampling interval.

The results of section 2.1 can be easily generalized to
functionals of the distribution of random vectors instead of
random variables. As before, such a functional 8 of is said
to be of class II if for any random vector

�
one has (i)

8 ��� ��� 8 ���9,.: �
for any real vector

:
(translation in-

variance) and (ii) 8 �;:
��� �</ :=/ 8 ��� � for any real number:
(scale invariance). Again it is called superadditive if the

inequality (3) holds for any pair of independent random vec-
tors

B
and

�
.

Proposition 2.3 Let 8 is a class II superadditive functional
on
�

-dimensional distributions, then�!
"�# � ���
� 8 ( � " ������� �;*�%D���
��/10�243 � /

(5)

is a contrast function for separating an instantaneous mix-
ture of sources. This contrast is discriminating if 8 ( E " ������ �;* F ? for all 
 (

E " denoting the 
 -th source) and the
inequality (3) is strict for any pair of non zero multiples ofE#" ������� �

and
E " ������� � with distinct index $ , 
 .

Examples
G 1: Let 8 ��� � �NH�J�K �-L P�% , the square root of the en-

tropy power of the distribution of the
�

-vector
�

.
Then 8 is a functional of class II and by the result of
Blachman [4] (see also [3]), it is superadditive with
inequality (3) being strict unless

B
and

�
are Gaus-

sian with proportional covariance matrices. Thus

�
�

�!
"�# ��$ ( � " ������� �;*�%D���
��/10�243 � /

(6)

is a discriminating contrast function under the condi-
tion that there can be no pair of Gaussian sources with
proportional auto-covariances up to lag

�C%��
. This

contrast can be easily seen to be equivalent to the mu-
tual information between

�'� ������� �
, . . . ,

����������� �;*
.

G 2: Let 8 ��� � � ( 0�243�&���� �;*1O �
P K @
% L where

�
is the

dimension of
�

and
&���� ��� �W( Q � ��� �
Q�+� �����;* is the

Fisher information matrix in the (vector) location es-
timation problem,

Q � here denoting minus the gradi-
ent of the logarithm of the density of

�
. Then 8 is a
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functional of class II and one can generalize the proof
of Blachman [4] to show that it is superadditive with
inequality (3) being strict unless

B
and

�
are Gaus-

sian random vector with proportional covariance ma-
trices. Hence this functional yields a discriminating
contrast under the same conditions as in example 1.

G 3: Let 8 be the functional defined over bounded
�

-
dimensional distributions by 8 �������.S � where

S �
is the

�
-th root of the volume of the support set of�

. By the Brunn-Minkowskiinequality ([3], equation
(16.98)),

SUTWV ��> S�T7,7S � for independent random
vectors

B
and

�
. Thus the functional 8 is superad-

ditive of class II with the inequality (3) being strict
unless

S�T
or

S � equal 0 and hence the functional
Y

�"�# � S �
� %X���
�R0�243 � is a discriminating contrast,
in the case of bounded non deterministic sources.

The above examples are the analogues of examples 1 –
3 in section 2.1. But in the vector case, there are many other
possibilities for constructing contrast functions.

Other examples

G 4: Let 8 be the functional defined by

8 ( ��������� �;* � H J�� � K % L�� � K ��� % O � L �
where $ ( � ��� ��/ � ��� ���N% � �

is the conditional en-
tropy of

� ��� �
given

����� �
, . . . ,

� ��� % � �
. Then,

one can prove (using a result of Blachman [4]) the
inequality (3) with

B
and

�
replaced by

B ��� � � �
,� ��� � � �

, which is strict unless the above vectors
are Gaussian with covariance matrix such that their
inverses having last column proportional. Thus, by
stationarity,�!

"�# ��$ ( � " ��� ��/ � " �������9%�� �;*�%D���
� � (7)

is a discriminating contrast under the same conditions
as in example 1.

G 5: Let 8 be the functional defined by 8 ��� � �( &���� � %�%7*1O �
P
@ where

&���� �
is the Fisher information

matrix as defined in example 2 above and
&���� ��%�%

its lower-right element. One can prove that 8 is su-
peradditive with inequality (3) being strict under the
same condition as in example 4 above. Thus (7) with�
@
( &���� " � %�%�*1O �
P

@ in place of $ ( � " ��� ��/ � " �������)% � �;*
is a discriminating contrast under the same condition
as in example 1.

It is of interest to note that the contrasts in the above ex-
amples do not require the sources to be non Gaussian to be
discriminating, unlike the contrasts based on the marginal

distribution. This points to the possibility of second or-
der based procedures through the use of Gaussian func-
tional. For any functional 8 , we may defined a correspond-
ing Gaussian functional 8�� by 8	� ��� ��� 8 ��
��� where


�
is

a Gaussian vector with the same covariance matrix as that of�
. Clearly if 8 is a class II superadditive functional then so

is 8	� , albeit strict inequality in (3) may not hold. In fact this
is the case where

�
is a scalar so that 8�� is of no interest.

But in the vector case, one does get interesting functionals.

Examples of “Gausian” contrasts

G �
�
: let 8 ����� �C( 0�243��4��� �����;* �
P K @

% L where cov
��� �

de-
notes the covariance matrix. This is the Gaussian ana-
logue of the functionals in examples 1 and 2. The
corresponding contrast is thus discriminating if there
is no pair of sources which have proportional auto-
covariances up to lag

� %��
.

G ��� : Let 8 ��� � � ( 0�243��4��� ��������0�243��4��� ��� � O * �
P @
where cov

��� �
denotes the covariance matrix and

cov
����� O is the matrix obtained by deleting the last

row and column of cov
�����

. This is the Gaussian ana-
logue of the functionals in examples 4 and 5. The
corresponding contrast is thus discriminating under
the same condition as in example

� �
.

Filtering and combination of contrasts
In Proposition2.3, the functional 8 is applied to a vector

of consecutive observations, but this is not necessary. We
have noted that we can down sample the observed process.
But there are other possibilities as well. In particular, we
may consider a filter banks defined by the sequences � � ��� � ,
. . . , � %���� � of their impulse responses. Then for a stationary
process

� ��� �
, we define

8 ( ����� �;* � 
8 �
(�� � ����� � ��� � � � ��� � %���� � ��� �;* + �
where

�
denotes the convolution, that is

� � " �A� � ��
��
is the

output at time



of the filter with impulse response sequence
� " ��� � applied to the process

����� �
, and


8 is some class II su-
peradditive functional over

�
-dimensional distributions. It

is clear that the functional 8 is of class II and superadditive.
The conditions that the resulting contrast is discriminating
are more complex but can be easily worked out case by case.

In examples 1,
���

, 2, 3 above, 8 ��� � factorizes as(�
8 ����� � � � ��
8 ��� % �;* �
P�% for some functional

8 over uni-

dimensional distributions when the components
���

, . . . ,
� %

of
�

are independent. This suggests considering the last
expresion, which by itself defines a class II functional by
itself and can be shown to be superadditive if


8 is, regard-
less whether the random variables

�'�
, . . . ,

� %
are indepen-

dent or not. More generally, the functional 8 defined by
8 ��� ����
8	� �� ��� � � � ��
8 ���� ��� �

where the

8 " are class II su-

peradditive functionals operating on some subset (depend-
ing on 
 ) of the components of the

�
-vector

�
and � �

, . . . ,
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� � are positive numbers summing to 1, can be shown to be
of class II superadditive.

The above consideration leads to the following contrast
function:�!

"�# �
%!
� # � � � ���
� 
8 (�� � � ��� " � ��� �;*�%D���
�7/10�243 � /

The condition for it to be discriminating can be easily
worked out, on a case by case basis.

If we take the filters to be narrow band-pass filters at dif-
ferent frequency bands, then their outputs tend to be Gaus-
sian, justifying the use of a Gaussian functional for


8 . But
in the uni-dimensional case, such a functional must be a
multiple of the standard deviation. Hence we are led to the
contrast function�!

"�# �
�
�

%!
� # � � � ���
� ������(�� � � ��� " � ��� �;*�%D���
� � (8)

where var
��� �

denotes the variance. It can be shown that this
contrast is discriminating if for each source

E " ,
������(�� � � �E " � ��� �;* , . . . ,

�����4(�� � % �AE " � ��� �;* are all positive and that the
vector having them as components is not proportional to any
similarly defined vector corresponding to another source.

Let
� & ��� � be the matrix with general element the covari-

ance between
� � � ���	� � ��� � and

� � � ���#" � ��� � , which represents
the smoothed spectral density matrix over the frequency
band of the

�
-th filter. As � � � � ,

� & ��� � � � ��
 ��� � � +
where

��

is defined as

� & but with the components of �
replaced by that of

�
. Thus (8) can be rewritten, up to an

additive constant as
�
�

%!
� # � � � ( ���
��0�243�0
����� � & ��� ��%6���
�R0�243 � & ��� �;*
� (9)

The expression inside the above bracket
(�*

can be inter-
preted as a measure of deviation from diagonality the ma-
trix

� & ��� � , since by the Hadamard inequality ([3], p. 233
or 502)

0�243�0
������� � 0�243��
for any positive definite ma-

trix
�

, with equality if and only if this matrix is diagonal.
Thus, the contrast (9) is a joint diagonalization criterion.

The contrast (6) and (7) have been introduced in Pham
[10]. Their Gaussian analogues and the contrast (8) or (9)
have been introduced in Pham [11, 12]. Pham [13] also pro-
vides an efficient algorithm to solve the associated problem
of joint approximate diagonalization of several matrices.

3. CONTRAST FOR CONVOLUTIVE MIXTURES

Consider now the case where the sources are mixed through
a convolution

����
����
�!

� # O�� ����� ��
���
R%�� ����� � � 
 � ��
��

where
����� �

and

���� �

denote the observation and source pro-
cess, respectively,

����� �
is a sequence of mixing matrices

and
�

denotes the convolution. The separation then consists
in applying an inverse convolution: � ��
�� � � � ����� ��
��

to
recover the sources.

The simplest (and most natural) way to construct an con-
trast for this problem is to consider the mutual information
rate between the processes

�'� ��� �
, . . . ,

��� ��� �
:

��( ��� ��� �4	������
	
��� ��� �;* �
�!
"�# ��$ ( � " ��� �;*�% $ ( � ��� �;* (10)

where $ ( � ��� �;*
denotes the entropy rate of the (scalar or vec-

tor) process
� ��� �

, defined as the limit of $ ( � ��� ��� �;*����
as
�����

[3]. This mutual information rate is clearly a
contrast (but we haven’t been able to prove that it is dis-
criminating in all generalities).

There is a nice result relating the entropy rate of a fil-
tered process to that of the original process [10]: if the pro-
cess � ��� � is related to

����� �
by � ��
������ � � ��� ��
��

, then

$ ( � ��� �;* � $ ( ����� �;*�,�� @��� ���
����� 0�243
�!

� # O�� � ��� �
H
� �  ���"!$#��%

(11)
Therefore the contrast (10) is equivalent to

5 ( � ��� �;* �
�!
"�# ��$ ( � " ��� �;*
% � @��� ���
����� 0�243

�!
� # O�� � ��� �
H

� �  ���"!$#��% �
(12)

The advantage of (12) over (10) is that one is dispensed with
the evaluation of the entropy rate of a vector process in (pos-
sibly) high dimension. Nevertheless, (12) is still mostly of
theoretical interest since the entropy rate is defined through
a limiting operation and hence is not easy to estimate.

There are however simple ways to obtain contrast for the
convolutive mixture if one restrict the sources to the (still
general) class of linear processes. Specifically, we will as-
sume that the 
 -th source can be written as

E " ��
����
�!

� # O�� : " ��� �
H " ��
R%�� �
(13)

where
H " ��� � is a sequence of independent identically dis-

tributed random variables and
: " ��� � is a sequence of im-

pulse responses of some (well behaved) filter. Thus, the ob-
served process can be expressed as a convolutive mixtures
of the temporally independent processes

H
� ��� �
, . . . ,

H4� ��� �
.

Then one may try to find an inverse convolution to extract
the last processes. This may be called the blind separation-
deconvolution problem since the sources are not only sep-
arated but also deconvolved as well. Note that in the con-
volutive mixture setup, the blind separation can only yield
the sources up to a filtering, since replacing each of them
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by any filtered version does not affect their independence.
Therefore the blind separation-decovolution problem is the
same as the blind separation problem in which a particu-
lar filtered version, temporally independent, of each source
is extracted. This would eliminate the indeterminacy with
respect to filtering with the exception that one can still ar-
bitrarily shift the time index of the reconstructed sources.
Thus the word contrast in the following proposition should
be understood as a function which is minimized when the
reconstructed sources equal the real sources up to a per-
mutation, a scaling and a time shift. The contrast is called
discriminating if it is minimized only under such conditions.

Proposition 3.1 Let 8 is a superadditive functional of class
II, then�!

"�# � ���
� 8 ( � " ��� �;*�%6���
� ��� 0�243
�!

� # O�� � ��� �
H
� �  ���"!$#��% (14)

is a contrast function for separating (and deconvoluting) a
convolutive mixture of sources, under the assumption that
the sources are linear processes. This contrast is discrim-
inating if 8 �;H " � F ? for all 
 ,

H " ��� � denoting the tempo-
rally independent process in the representation (13) of the
sources, and if the inequality (3) is strict (i.e not an equal-
ity) for any pair of non zero multiples of

H " ��
��
and

H " ��
��
with $��� 
 (the value of



is irrelevant since the processes

are stationary).

The above result is very similar to the Proposition 2.1
for instantaneous mixtures. As in this case, one can also
considers subadditive functionals instead, provided that the
reconstruction sequence of matrices � ��� � satisfied a orthog-
onal constraint: Y �� # O�� � ��� � � ��� �1+ � the identity matrix.
Such constraint can be justified if the observed process
has been pre-whitened so that they are temporally uncor-
related and uncorrelated among themselves. Then a sim-
ilar result as Proposition 2.2 (with

�
replaced by

� �
0
����� �;:���	������ 	 :
� �

and 8 �;E " � replaced by 8 �;H " � ) can be ob-
tained. The proof is also similar to that of this Proposition
and also to that in the papers [14] and [6]. Then one can
construct cumulant based contrasts in the same way as in
section 2.2. Such contrasts have actually appeared in [14]
and some more general forms of cumulant based contrast
can be found in [15].
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