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ABSTRACT

The aim of this paper is to present an electromagnetic source
localization technique based on independent componentanal-
ysis (ICA). Two ICA algorithms known from the literature,
allowing to process complex-valued signals, are used to es-
timate the mixing operator from electromagnetic data; as
the mixing operator contains important information about
the source complex structure and about the electromagnetic
field propagation phenomena, by properly interpreting the
results given by the ICA algorithm it is possible to develop
a blind source localization procedure. Performing such pro-
cedure is the first step in electromagnetic environmental pol-
lution monitoring.

1. INTRODUCTION

The continual growth of the telecommunication industry,
with special emphasis to cellular phone systems and radio-
TV broadcasting systems, has caused the alerting of the
public opinion and of the governments about the electro-
magnetic pollution phenomena. In fact, the increasing num-
ber of electromagnetic emitters and the need of covering
wider territorial areas have caused the spatial density of ra-
diated fields to constantly increase, so that many countries
have cautionary fixed by law the limits of allowed local
high-frequency electrical and magnetic fields intensity.

The existence of such limits imposes the development of
suitable procedures, allowing to measure the intensity of the
fields in a given location, in order to verify if the constraints
are fulfilled. In case of violation, however, the global in-
formation about the total measured field does not suffice to
react in the proper way: It is in fact necessary to individuate
the set of emission-stations insisting on the volume under
observation, in order to plan a reduction of emitted field in-
tensity for each station.

The first step consists in the electromagnetic sources
localization. The scenario that the operations may be en-
visaged in, is that the sources may be far away from the
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area where the measures are taken, or may be hidden to
the view: In both cases their locations are unknown; also,
the spectra of the emitted signals might not necessarily be
narrow-band, thus standard harmonic analysis does not nec-
essarily help; moreover, the measurement station employed
in the check might not be endowed with an antenna-array,
but a low-cost single antenna might be available, which can
be easily moved in many locations, thus standard localiza-
tion techniques relying on spatial coherence of wavefronts
would not be useful.

In this scenario, and under mild hypotheses about the
kind of propagation and on the mid-term stationarity of the
sources, a blind separation technique based on the indepen-
dent component analysis (ICA) may be envisaged in order
to blindly recover the source signals and, as an useful by-
product, to locate the sources themselves.

In fact, the classical ICA techniques aimed at recover-
ing the source signals from their mixtures [4, 5, 9], while
only recently the attention has been turned to the physical
meaning of the mixing operators, which may reveal impor-
tant information about the geometry of the sources and the
signal propagation models. Two pervasive contributions in
this field have been given by Knuth [10] and Rowe [12],
who designed specific algorithms for estimating the model
parameters, which appear buried in the observed data, based
on Bayesian and MAP inference algorithms.

These studies are also related to neurological electro-
magnetic source localization by EEG and fMRI data pro-
cessing. Some contributions in this field have been given
for instance in [8, 11, 13].

The aim of this paper is to present an application of the
ICA technique to blind separation of signals emitted by an-
tennas, and to interpret the geometrical information hidden
in the mixing model in order to retrieve the source locations.
It is worth noting that the signals involved are complex-
valued, therefore the ICA algorithms should be able to train
complex-weighted neural networks [4, 7].



2. BLIND SOURCE SEPARATION AND
LOCALIZATION

In complex-valued blind source separation problem, a mix-
ture of independent source signals is supposed to be ob-
served:

x(t) = Ps(t) +n(t) @)
where x(¢) is the observed R-dimensional random vector-
signal, P is a constant complex-valued full-rank R x E mix-
ing matrix, s(t) is the vector-stream containing the E source
signals to be separated, and n(¢) denotes the additive dis-
turbance; the superscript ‘H’ denotes Hermitian transpose.
Usually the number of observations exced the number of
true sources, thus R > F. The only hypotheses made on the
unknown sources are: (a) each s;(¢) is an independent iden-
tically distributed stationary random process; (b) the s; ()
are statistically independent at any time; (c) at most one
among the source signals is allowed to be Gaussian.

For separating out the linearly mixed independent sources,

we use a neural network trained in order to make each neu-
ron respond with signals as mutually independent as possi-
ble. Prior to be fed to the network, the observed signals are
pre-processed in order to remove as much noise as possible
and to reduce the redundancy in the observations, namely,
to shrink the R-dimensional observation vector-stream x(¢)
into a reduced-size £-dimensional vector-stream x(t).

The separating network may thus be supposed to have £

inputs and £ outputs, and is described by the relationship:

y(t) = WH(t)x(1), )]
where x is the network input vector, y denotes the output
vector and W is the complex-valued weight-matrix. As the
mixing model is linear, a linear separating structure is effec-
tive, thus the output y(¢) in (2) is taken as a noisy estimate
of the true source stream s(¢).

In the present paper we suppose the sources to be an-
tennas, and the receivers to be electromagnetic sensors. We
further suppose the propagation to be cylindrical and both
the sources and sensors radiation diagram to be hysotropic
with good faith. In this case, each source £; is described
by a pair of coordinates (¢7,n), i = 1,..., E, and each
receiver R; is described by (¢, nf), i =1, ..., R.

In the present case the mixing matrix P has the physical
meaning of a propagator, namely it describes the electro-
magnetic propagation in the air. For this reason, the (r, ¢)th
entry of the propagation matrix P is described by the pha-
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Fig. 1. Electrical field of a long dipolar antenna (far-field).
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where + denotes the constant of propagation. Each pha-
sor accounts for the loss of the wave-energy and of phase-
rotation during propagation. This representation may be
validated by computing the amplitude of the far-field electrical-
field emitted by a dipolar antenna, an example of which is
shown in the Figure 1: It confirms the goodness of the sup-
posed propagation law.

The central topic in ICA is to design an algorithm for
training the neural network (i.e. to learn the connection ma-
trix W) in order to make the output signal of the network
as independent as possible, and several algorithms are at
present available.

In the present context we need an algorithm that ex-
hibits good estimation precision regardless of the computa-
tional burden (in fact, the signal processing operations may
be performed off-line), and that allows complex-valued sig-
nals handling. For these reasons, we chose to employ the
complex fixed-point algorithm (CFP) [1] and the JADE al-
gorithm [2], in order to compare their performances in this
problem.

Drc

3. INTERPRETATION OF THE ESTIMATED

PROPAGATION MODEL

Let us suppose the observed data pre-processing has been
performed by a linear neural network decsribed by x(t)
VHx(t) with V fixed on the basis of available data second-



order statistics decomposition, namely the reduction matrix
has form V# = D~'U# (the meaning of the matrices D
and U, and the algorithm for computing them, are explained
in [2]). After training, the mixing operator may be estimated
on the basis of the learnt quantities by the relationship:

PY — UDW . (5)

In the hypothesis that the effect of additive noise has been
made sufficiently small by the pre-processing operations,
the relationship between the estimated mixing operator and
the true propagator is P = QP, where the new matrix Q is
quasi-diagonal, in the sense that is has (approximately) only
one entry per row different from zero [3]. In practice, this
means that the propagator may be recovered up to arbitrary
row permutation and scaling.

Let us restrict only to the module of the propagator en-
tries, and let us evaluate the effect of the introduced distor-
tion. By properly renumbering (re-labeling) the sources and
sensors, it can be written:

ki/Di1 ki/Dis  ki/Dss

|P| = kofDor ko/Das  kofDog - ’

where the constants &, take into account both the unknown
signals powers and the unknown scaling factors in Q, and
the distances D, are also unknown.

The dependence on the unknown &; may now be eas-
ily eliminated by normalizing each row about its first ele-
ment, which makes available the ratios p,. = Dy1/Dye.
If R > 3, we can approximately locate each source by tri-
angularization. Moreover, the redundancy provided by the
measures when R > E allows adding robustness to the es-
timate of the position of the emitters; in practice, for each
emitters we have 2 unknowns and R — 1 equations, which
form an overdeterminate set of non-linear equations in the
two unknown; the solutions may thus be determined by a
(robust) least-square-error (LSE) procedure.

As we may arbitrarily choose the locations of the mea-
surement points, in order to simplify the following mathe-
matical analysis we suppose the measures are taken along
a straight line (the 7 axis of the reference system), at a dis-
tance of Y meters one from another; by convention we thus
take ¢/* = 0; the origin of the reference system coincides
to the 1st receiver position; the Figure 2 further clarifies the
notation used.

The equations describing the geometrical relationships
among the emitters and the receivers are:

D2 =8 +nl+ (=1 =20r—1)Yne;
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Fig. 2. Graphical description of the problem geometry and
of the notation used.

in particular, for » = 1 we have D61 = ¢24n2. On the other
hand, we know that D%, = p2, D2, thus we ultimately ar-
rive at the set of non-linear equations:

(1= p2 ) (& +m2) = p2, l(r = 1)°Y? = 2(r = 1)Yn.] ,
forr = 2, 3, ... R. As mentioned, such system cannot
be exactly solved because of the noise and estimation inac-
curacies, in fact a pair (¢, n.) that satisfy all the equations
likely does not exist. We should thus resort to a LSE-like
procedure: It requires first to define the target functions:

R
e e) — 1 - 2
Ue(&e.ne) R Z; e ) (€2 +n2)—
P l(r = 1?7V =2(r = )Y ne]|" (6)
fore =1, 2, E. In the pure LSE case the coefficient

a = 2, while choosing a different value allows adding ro-
bustness to the estimation. The minimal value of U, may be
found by a numerical procedure.

4. EXPERIMENTAL RESULTS

In the first experiment we considered a problem counting
R = 8 receivers/sensors and £ = 4 emitters/sources. The
Figure 3 shows the result of localization when the source
separation is performed through the JADE algorithm; as
a particular result pertaining to this experiment, Figure 4
shows the shape of the cost function (6) for one of the emit-
ters, which shows that the function is rather sharp in cor-



Geometry: x = Sensor, o = Emitter, * = Estimated emitter position
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Fig. 3. Geometry of the problem and estimated source po-
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Fig. 4. Exemplary shape of the cost function (6) for an emit-
ter.

respondence to the minimum, thus the estimation is quite
reliable.

It is important to remark that by the ICA algorithm it
is impossible to give any ordering to the recovered signals,
thus it is important to extract some further information from
the separated source signals. To this aim, an important set
of parameters that can be estimated from the emitted signals
is the set of carrier frequencies. Figure 5 shows the spectra
of the network output signals, from which it is very easy to
locate the centers of each spectrum that corresponds to the
carrier.

As a final comment, another important parameter which
needs to be extracted from the mixed signals is the power of
the emitted field from each antenna. Having the mixture and
the set of recovered source signals (whose power gets often
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Fig. 5. Spectra of the 4 network output signals, used in order
to recover the carriers frequencies, which help labeling the
emitters.

automatically normalized to one) it is possible to estimate
such powers; once again, however, standard Fourier analy-
sis is practicable only for narrow-band signals, while in gen-
eral a more general correlation procedure is to be employed:
The correlation among the mixtures and each of their com-
ponents give the mixing coefficient, that can be multiplied
by the proper distance to give the amplitude of the emitted
field. (If necessary, such power may be later subject to an
inverse-weighting by the antenna’s spectral function in or-
der to retrieve the power truly supplied to each antenna.)

The core of the estimation procedure is the ICA algo-
rithm: As mentioned, in this paper we wish to compare
the properties of JADE and CFP algorithms run on the de-
scribed data. As objective measures of the algorithms’ per-
formances we took the following two indices: 1) the source
location estimation error (SLE), defined as:

E
SLE = | SIEE — 62 + (nF — 0]

n=1

(")

note that in our experiments (¢, 7) € [0,50] x [0,50]; 2)
the number of floating point operations (flops) required by
each algorithm to run. In order to make the resulting num-
bers as independent as possible from statistical fluctuations,
we present the results averaged over 20 independent trials
on 15,000 observed samples. Note that the JADE algorithm
requires to set a statistical threshold for stopping the joint
diagonalization, which was fixed at (1/+/N')/10000, where
N denotes the number of input samples; also, the FPC re-
quires setting the number of iterations of the fixed point
search algorithm, which was set to 5, in these experiments.



ALGORITHM | Ave. SLE | Ave. Flops (x107) |

JADE 4.65 6.85
CFP 4.76 6.12

Table 1. SLE and flops for the JADE and CFP algorithms,
averaged over 20 independent trials. (Geometry: F = 4,
R=28)

| ALGORITHM | Ave. SLE | Ave. Flops (x 107) |

JADE 3.09 2.62
CFP 2.17 2.84

Table 2. SLE and flops for the JADE and CFP algorithms,
averaged over 20 independent trials. (Geometry: £ = 2,
R=28)

The obtained results are summarized in the Table 1 for
the case £ = 4 and R = 8, while Table 2 refers to the
case £ = 2 and R = 8. The two algorithms do not exhibit
noticeable differences in the performances and in the com-
plexity, while their performance betters when the number of
emitters decreases.

To conclude these experiments, we used the results given
by ICA algorithms in order to estimate the powers of the
emitted fields from each antenna. The Table 3 shows the
results of such estimation using the JADE algorithm to sep-
arate out the contributions of each emitter, while Table 4
refers to the CFP algorithm; both pertain to the case £ = 4,
R = 8, a« = 2. Once again, the results are rather accu-
rate and the two algorithms do not differ in performance;
as mentioned, this is an important issue in order to plan the
emission reduction scheme for the stations.

5. CONCLUSIONS

The aim of this paper was to propose the application of
complex-valued ICA to blind separation of propagated sig-
nals in order to blindly retrieve the location (and possibly

Emis.pow. W) | By | By, | Es | Ey |
True 19.34 | 18.97 | 30.46 | 68.22
Estimated 19.25 | 19.05 | 30.23 | 68.38

Table 3. True and estimated powers for the four emitters
(Algorithm: JADE).

Emis.pow. W) | E1 | By | Bs | B4 |
True 8757 | 73.73 | 13.65 | 1.15
Estimated 86.99 | 73.78 | 13.50 | 1.17

Table 4. True and estimated powers for the four emitters
(Algorithm: CFP).

the emitted power) of the emission station with electromag-
netic pollution monitoring purposes. Two algorithms, namely
the JADE and CFP have been applied to this kind of data and
their features have been numerically investigated.
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