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ABSTRACT

For speech segregation, a blind separation model (BSS) is
tested together with a CASA model which is based on the
localisation cue and the evaluation of the time delay of arrival
(TDOA). The test database is composed of 332 binary mixture
sentences recorded in stereo with a static set-up. These are
truncated at 1 second for the simulations. For applying the two
models, we cut the frequency domain in a variable number of
subbands, which are processed independently. Then, we
evaluate the gain, using reference signals recorded in isolation.
Without using this reference, a coherence index is aso
established for the BSS model, which measures the degree of
convergence. After a careful analysis, we find gains of about 1-
3dB for the two methods, which are smaller than those
published for the same task. The variation of the number of
subbands allows an optimisation, and we obtain a significant
peak at 4 subbands for the CASA model, and a smaller
maximum at 2 subbands for the BSS model.

1. INTRODUCTION

The aim of Blind Source Separation (BSS) is to be data driven
and to adapt thanks to a criterion of independence of the
different emission processes. This is a reasonable assumption
for auditory scene analysis when the different sound sources are
not physically coupled, i.e., when each sound is produced by an
independent excitation+resonance process. The aim of the
computational auditory scene analysis (CASA) is to integrate
more abstract levels of description, and hence, to perform an
unblind decomposition of the scene. But, the idea is to proceed
by steps and to describe intermediate levels of organisation of
the scene, without jumping directly to upper levels. In this
sense, the speech signal has low-level properties which are fine
(harmonicity) and coarse (onset, offset, formant trajectories)
spectro-temporal structures, as well as acoustical properties
(echos, spatial localisation).

The classical cocktail party paradigm is based on the
assumption of independence of emission of different speech
signals. Hence, this is not the case if we consider a normal
conversation between people because this involves a lot of
cognitive aspects and high level representations. But, in the
general case, this remains a reasonable assumption, at the signal
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level, for describing the interference between several speeches.
Then, the speech separation task has been adopted early for the
application of BSS algorithms [6]. For CASA modelling, the
localisation cue is the most simple to exploit for source
segregation and cocktail party processing, within the above
series of low level speech properties. This is psycho-
acoustically relevant for increasing speech intelligibility [4],
and CASA assumes, as BSS, that it is involved in a separation
process occurring before speech identification. The main
difference is the use, in CASA models, of an explicit
identification of the spatial location of each source. This can be
achieved in short-term frames (tens of ms), whereas the BSS
algorithm requires long time frames of about one second to
adapt.

We propose a comparison between two algorithms we have
previously developed and tested as front-end for robust speech
recognition [5][8] on the same database (ST-Numbers95). A
novelty is we make a comparable application in subbands. This
is in line with the recent development of subband speech
recognition for improving robustness [3]. This comparison is
significant about similarities and differences between the two
approaches. For this evaluation, we take into account and we
extent the methodology described in the literature [6][7].
Because we work with only two sources, a static set-up and
loudspeakers in a soundproof room, we also bear in mind the
limitation of the current solutions in regarding the whole
complexity of the speech separation problem [10].

2. THE ST-NB95 DATABASE

The original database Numbers9d5 is composed of sentences of
several words (numbers within a small vocabulary of 32
words). These are pronounced by different speakers and
transmitted by telephone. This is dedicated to the devel opment
of robust speech recognition algorithms because the speech is
somewhat noisy and distorted.

A motivation for making a new recording was to set the
background for a close comparison between cocktail-party
techniques in which two sources are targets for recognition.
The stereo database ST-NB95 was built at ICP from the
monophonic NB95 in order (1) to spatialise the signal of NB95
in azimuth and (2) to mix the signals of NB95 with a relative
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level controlled well. A minimal distortion of the original signal
isintroduced during the new recording and recognition tests are
feasible without a grea spedfic development. The baseline
given by a normal reagnition system applied on mixtures is
low (about 72% Word Error Rate [5]), and this allows a
sensitive measure of any improvement.

The record was caried out in a soundproof an-echoic room by
playing and recording the files of NB95 simultaneously with
the same mmputer. The geometry of the set-up is iown Fig.1.
The 40cm distance between the microphones has been chosen
in order to have alarge time difference of arrival (TDOA).
Arbitrarily, the source s=1 is the left loudspesker and has a
positive TDOA. This geometry is datic for all the records of
the database.
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Figure 1. Geometricd set-up for the recording of ST-
Numbers95.

The ST-NB95 dhtabase is composed of sentences sleded from
NB95: (1) 2*613 sentences are played left or right in isolation
in order to have in hands a reference signal (2) 613 bnary
mixtures of the same sentences are aranged for having the
highest speed overlap as posshle. The signal is resampled at
8kHz. The global relative level between left and right sourcesis
tuned at 0dB separately for ead pair of sentences. The isolated
records are predsely synchronised with the mixture. This
alows estimating the segregation gain by close @mparison
between the segregated signal and the reference signal recorded
in isolation. In the present simulations, 332 mixture sentences
have been taken out of the 613 aes. The mean duration of the
files is 2 semonds, but the duration hes been truncated at 1
seoond in the present study. Only 52 files have lessthan one-
seoond duration.

In this paper, we propose aquantification of the gain of the two
front-end methods using the reference signals. The front-end
principle wnsists in fealing the recognition system with
segregated signals. So, the performance will depend on the
degreeof crosstalk suppresson as well as on the distortion of
the processed signal. The different stereo signals used in the

simulations and the evaluation will be noted X for the mixture,
R for the reference and Y after processng.

3. THE CASA MODEL

The @m of the CASA model is to perform the segregation
acording to a primitive feaure analysis. Hypatheticdly, the
human auditory system streams the different sound sources
thanks to amusticd properties of the signal as harmonicity,
locdisation, tempora continuity and amplitude c-modulation
in different frequency bands. For modelli ng, these fedures are
extraded by simple signal analysis methods (as the aoss
correlation) and the signa is segmented acwrding this
estimation. In this vein, we have developed and tested a model
similar to the Bodden& Blauert's [2] cocktal party processor
and we have incorporated some interesting simplifications on
the signal processng point of view. The principle is to weight
the spedrogram differently for ead source One dharaderistic
of the CASA mode is to exploit the bias of the TDOA
estimation relatively to the known TDOA (here, the
geometricd set-up is fixed for al the simulations) for the
weight estimation. A more detailed description of this model
can befound in [8],[9].

3.1 Description of the model

Another charaderistic of the CASA model isto operatein large
time frequency regions adjusted by two parameters. the number
of subbands (nbsb) and the time-frame duration (256 o 512
bins). The filterbank, which produces this decomposition is
designed in order to have aunit gain, and to vary the number
(and then the size) of subbands in which the processis applied
independently. The filters are Bark-scded and quasi-
redanguar (Fig. 2).
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Figure 2. Filterbank design for nbsb=4. The four quasi-
rectangular filters F i=1..4 are built by grouping and
summation of 16 initial hanning and Barkscaled filters.
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At first, the spedrogram is computed frame by frame. Here, we
vary the time-frame duration. For ead time frame of the
spedrogram, the spedrum is decomposed into nbsb subbands i:

|Xi (a))| =F (00)|X|eft (w)|

We have cosen the c="left" input microphone cannel for
applying the weights. These weights are etimated using the
locd TDOA observed for ead subband and ead time-frame.
Then, this requires a synchronous decompasition of the "right"”
input channel. For the TDOA estimation, the subband waves
arising from the nbsb filters after inverse FFT are demodulated
by haf-wave redificaion and band-passfiltering in the pitch
domain. A crosscorrelation is computed between left and right
signals and the etimated TDOA is the position of the
maximum within an observation window [-10, 10]bin. Then, we
use two weighting functions, one for ead source to evaluate
the weights.

The weighting functions of the sources are charaderised by a
symmetric slope (Fig. 3), and their sum is one:

Wi (TDOA;) = (1- W, (TDOA,))
These ae alapted to the aurrent geometricd set-up, and to the
current number of sources. The maximum (one) is assgned to

the TDOA of the target source ad the minimum (zero) to the
TDOA of the other source (Fig. 3).
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Figure 3: Weighting functions of the two sources s=1 and s=2
adapted to the arrent geometrica set-up.

The etimation of the locd spedrum of ead source s is a
product between the weight and the locd (left) module
spedrum of the mixture data:

|Ys,i (0-’)| = W,;(TDOA, )|X; ()

Then, the remnstructed spedrum Y is, for ead source s, the
sum of the subband contributions. For ead time-frame of the

spedrogram, we have:
nbsb

|Ys (w)| = z |Ys,i (w)|
1=1

Finadly, the FFT resolution and the fine details of the
spedrogram are preserved because just the amplitude of the
signal is modified in large time-frequency regions in order to
suppress the cmpeting source by segmentation. The re-
synthesis of the temporal signal Y isdone by inverse FFT.

3.2 Estimation of the gain

The recording of isolated sentences allows a reference to
estimate the acaracy of the reconstruction of ead source s.
Following [11], we define a distance the Rewnstruction
Acauracy (RA) measure. We fix the time frame duration
anaysis at 1024 bns. We make for ead frame a omparison
between the full-band spedra of the reference R and o the
product of segregation Y. All these spedra ae pre-normalised
for avoiding dobal amplitude diff erences:

2
1|Rs ot (@)

RA(R Y,)=10log

sleft J (Rg et @) -]¥s@)?
Q

whereQ/2rr =[100,400{Hz

A statistic of RA is established for al 1024 bins time frames
(silenceincluded) of the 332 sentence pairstruncated at 1s.

The dfed of the two fadors: (1) the number of subbands nbsb,
varied from 1 to 5, and (2) the length of the processng window,
256 and 512 bins, is down in Figure 4. We observe a
significant maximum at nbsb=4 and 256 hns. Each source is
reconstructed acording to an estimation of the TDOA having
an acasracy that also depends on these two parameters. Then,
the maximum observed for nbsb=4 is due to the trade-off
between the acaragy of the TDOA estimation (which deaeases
when the bandwidth deaesses) and the acaracgy of the
spedrogram segmentation which increases when the bandwidth
deaeases.

For taking into acourt the initidl RA of the mixture X, we
subtrad it from the RA of Y to oltain the dfedive gain for
ead source

Gain, =RA(R Y)-RA(R

sJeft’ s left' Xleft)

A statistic of the gain for all time frames of the same sentences
shows a high correlation between the gain values obtained for
the two sources (Fig. 5).
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Figure 4: Effed of the number of subbands (nbsb) for the CASA mode on the RA (in dB). From left to right: averaged left
source RA, averaged right source RA, averaged left+right RA over al frames. The number of subbands varies from 1 to 5 and
the two curves correspond to duration= 256 and 512 hins. The RA of the mixture, which is subtraded for gain evauation is

labelled (*).
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Figure 5: Gain in dB of the CASA method (CASA 4) for the
left (s=1) and the right (s=2) sources (nbsb=4,

duration=256kins). Each point is for aframe of 1024 hins.
4. THE BSSMODEL

The BSSmodel we use is gandard and it is based on the main
asamption that the sources are independent. A dua
asamption, which motivated the extension with delay lines of
the initial Hérault& Jutten's model, is that ead source is
temporally correlated [1]. Thisis the cae for the speed signal,
mainly becaise the glottal sourceis regular and periodic. This
led to areaurrent implementation of the BSS in which the goal
is to adapt vedors of weights W having several hurdreds of
taps. Moreover, the use of delay lines alows the implicit
procesdng of the TDOA when the sources are located in space

and finaly, this model is powerful to tacle the aurrent cocktall
party task.

4.1 Algorithm

The separation processis temporal, and we have developed a

subband version of the dgorithm presented in [5]. We gply the

same dgorithm independently on the nbsb waves obtained after

filtering the signal with the filterbank previoudy defined (Fig.

2). For ead samplet of the input signal (which istruncaed at 1
9):

i i c M @

I 1

YOO=XP M)+ Y W2,

p=0

where ¢ and c' are the two (left and right) channels and (i) the

subband. For multiple nbp passes, t is smply reset at the

beginning of the signal without re-initialisation. The variation
of the weight vedorsis given by:

AWE () = - W ®]sign((Y L @) YO ¢t - p)

(t-p)

p=0...L andthelength L+1 of W is200taps
Theleaningrateisfixed at n=10"

The demixingfilters W areinitialised at 0
These ae not re-initi ali sed between eat pass

Because the filterbank is unity gain, the output of these nbsh
processes are smply added to oltain Yc and YcC'.

4.2 Evaluation of the BSS segregation

The mmputation of RA and gain for the BSS method daes not
differ from this defined for the CASA method, excepted the use
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of the right input channel reference for the right source s=2. In
our simulations, there is no permutation problem and the left
source aises in the left channel and respedively for the right
source

Gams =RA(R YC) - RA(RS,C,XC)

Ye)-RARg X )

s.C’
Galns. = RA(RS.’ o
with c=left, s=1 and c'=right, s=2

The dfed on the RA of the two fadors (1) the number of
subbands nbsh, varied from 1 to 4, and (2) the number of
passes, nbp=2,3,10, is srown in Figure 7 (for the same previous
332sentencepairs). The frame distribution of the gainis srown
Fig. 6. We ad two conditions to this set of simulations:. (1) the
"BSSgiven" is the one passappli caion without convergence of
the two averaged demixing filters W obtained after simulation
of the nbsb=1, nbp=10 (332 vedors) (2) the "BSS ori"
condition uses the seledion of the same data set extraded from
the output data of our previous gudy [5].

Additionally, a mherence index between signa pairs is
cdculated. Interestingly, this does not require the presence of a
reference signal R as for the RA index. A first step consists in
evaluating the wherence values (varying between 0 and 1 for
ead frequency bin) for conseautive [n,n+1] windows of 256
bins overlapping by half:

2
z Y (@)Y ()

n,n+1

ol 3 ool

n+1

Coh(YC, YC., n)=

n,n+1

Then, the wherence spedrogram is averaged over the sentence
duration, and this mean value dso varies between 0 and 1. For
the interpretation of the variations of Coh(Y.Y.) observed
after applying the BSSmethod, we neal two reference values:

(1) CohX the wherence between the mixture channels
Coh(X,X¢) which istheinitia value.

(2) CohR the wmherence between the reference signals
Coh(Rsc,Rs ) which is a floor value, at about 0.5 for this
modality of computation.

The result of coherence céculation is siown figure 7 (right). In
al cases, we observe asteep variation after applying the BSS
method (compare to CohX), and the index stays above CohR
after nbp=10 passes. There is a small deaease between nbp=2
and nbp=3 and no difference between nbp=3 and 10 The index
Coh deaeases monotonicdly when nbsb increases. The
correlation with the RA is snall and only for nbp. So, we
conclude this index is useful for testing the mnvergence of the
agorithm, but not for evaluating the quality of the separation.
Remarkably, it varies only for the BSS method. The CASA
method daes not modify the fine spedral structure of the signal,
and consequently, the value stays at CohX. The deaeasing of
the wherence index depends on the spedfic caiterion of

separation of the BSS method (i.e, the independence of
outputs). Furthermore, in the "given" condition, the
convergence is blocked and the dgorithm cannot adapt to the
input signal. The value of Coh is intermediate. This confirms
that the coherent index is sgnificant about the aiterion of the
BSSthat is partialy fulfill ed in this case.

We retrieve the known variation of the gain with the number of
passes nbp (Fig. 7). A good convergence is obtained after
nbp=3. We observe a smal effed of the gplicaion in
subbands with a maximum a nbsb=2, but this is less
pronounced than for the CASA method. We remarked that the
demixing filters obtained for ead subbands are bandpass
filtered versions of the fullband demixing filter (not shown).
The frequency bands of these filters are well related to the
filterbank all owing the decomposition (Fig. 2 for nbsb=4). This
suggests that the anvergenceis fadlit ated in subbands because
the complexity is deaeased. But this has not significant effed
on the gain. Another observation is that the de-mixing filters W
have aminimum at 5 hin, corresponding to the @solute value
of the TDOA of the sources. Finaly, the gains for left and right
sources are dso correlated above 0dB (Fig. 6) as for the CASA
method (Fig. 5), and there is an interesting (not interpreted)
flooring effea of the gain of one source aound OdB.
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Figure 6: Gain of the BSS 2/3 model (nbsb=2, nbp=3). Each
point isfor aframe of 1024 bns.

5. DISCUSSION AND CONCLUSION

We have summarised the main results of this gudy in Table 1.
When we mrred the RA to evaluate the dfedive gain, the
results are lessoptimistic than those published in the literature
(about 10 dB in the same oondition are reported in [6]). A part
of this difference is due to spedfic fadors of our study (e.g.,
our study includes slence). But, we obtained a good
improvement of speed recognition with the same "BSS ori"
output data [5] and this outperformed a CASA method similar
to CASA 4 [8]. A gain of about 2 dB is not negligible for
improving recognition scores.
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Figure 7: Effed of the number of subbands (nbsb) for the BSSmodel on the RA (in dB). From left to right: averaged left source
RA, averaged right source RA, averaged left+right RA over all frames, coherence The number of subbands varies from 1 to 4
and the three arves correspond to nbp= 2,3,10. The RA of the mixture, which is aibtraded for gain evaluation is labelled (*).
The CohX coherence between the two mixture channelsis labelled (*) in the right figure. In ead figures, two pdnts are alded at
nbsb=1 for the "BSSgiv" condition (x) and for "BSSori" data (4).

dB RA1+2 | RA1 RA 2 Gainl | Gain2
CASA 4| 1806 8.97 9.09 2.83 241
BSS2/3 | 1518 7.60 7.58 1.46 1.25
BSSori 16.67 8.44 8.22 2.29 213
BSSgiv | 1634 8.0 8.34 1.86 201

Table 1: Summary of the main results expressed in dB. Thisis
an average over all frames.

Now, the CASA method is found to have again higher than the
BSS method. Moreover, in the present simulation, we do not
retrieve the same gain for the BSS method, as observed with
"BSSori" data (Table 1). This could be due to the truncaion at
1 second of the sentences, and also to some differences in the
implementation and in the ndition of applicaion of the
algorithm (e.g., L is at 200 instead of 250). Remarkably, the
"given" condition ("BSSgiv" in table 1) alows a higher gain
than the aaptive cndition BSS 2/3. The two filters W are
spedfic for the static mixing condition and not for a particular
signad pair. We mnclude that when this condition is fixed,
better is to use the average demixing filters for making a simple
cancdlation.

These results confirm that the judgement about the quality of a
method is not easy, and that a methoddogy of comparison has
to incorporate diff erent indexes applied at different levels. This
could include aperceptua study for appredation of the degree
of distortion becaise, consistently with our previous
recognition results, the atefads produced by the segregation
are not the same for the two methods. BSS alows less
distortion, but thisis sbjedive.

We have shown that the two damains CASA and BSSICA are
close together because they share ommon questioning about
the biologicd modeling, the development of useful

applicaions as well as common paradigms as the cocktail -party
problem. One promising compromise is to consider these ae
complementary approaches for modelling the functioning of
sensory pathways with a switch between fix (signal processng)
and adaptive (leaning) modes.
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