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ABSTRACT

For speech segregation, a blind separation model (BSS) is
tested together with a CASA model which is based on the
localisation cue and the evaluation of the time delay of arrival
(TDOA). The test database is composed of 332 binary mixture
sentences recorded in stereo with a static set-up. These are
truncated at 1 second for the simulations. For applying the two
models, we cut the frequency domain in a variable number of
subbands, which are processed independently. Then, we
evaluate the gain, using reference signals recorded in isolation.
Without using this reference, a coherence index is also
established for the BSS model, which measures the degree of
convergence. After a careful analysis, we find gains of about 1-
3dB for the two methods, which are smaller than those
published for the same task. The variation of the number of
subbands allows an optimisation, and we obtain a significant
peak at 4 subbands for the CASA model, and a smaller
maximum at 2 subbands for the BSS model.

1.  INTRODUCTION

The aim of Blind Source Separation (BSS) is to be data driven
and to adapt thanks to a criterion of independence of the
different emission processes. This is a reasonable assumption
for auditory scene analysis when the different sound sources are
not physically coupled, i.e., when each sound is produced by an
independent excitation+resonance process. The aim of the
computational auditory scene analysis (CASA) is to integrate
more abstract levels of description, and hence, to perform an
unblind decomposition of the scene. But, the idea is to proceed
by steps and to describe intermediate levels of organisation of
the scene, without jumping directly to upper levels. In this
sense, the speech signal has low-level properties which are fine
(harmonicity) and coarse (onset, offset, formant trajectories)
spectro-temporal structures, as well as acoustical properties
(echos, spatial localisation).

The classical cocktail party paradigm is based on the
assumption of independence of emission of different speech
signals. Hence, this is not the case if we consider a normal
conversation between people because this involves a lot of
cognitive aspects and high level representations. But, in the
general case, this remains a reasonable assumption, at the signal

level, for describing the interference between several speeches.
Then, the speech separation task has been adopted early for the
application of BSS algorithms [6]. For CASA modelling, the
localisation cue is the most simple to exploit for source
segregation and cocktail party processing, within the above
series of low level speech properties. This is psycho-
acoustically relevant for increasing speech intelligibility [4],
and CASA assumes, as BSS, that it is involved in a separation
process occurring before speech identification. The main
difference is the use, in CASA models, of an explicit
identification of the spatial location of each source. This can be
achieved in short-term frames (tens of ms), whereas the BSS
algorithm requires long time frames of about one second to
adapt.

We propose a comparison between two algorithms we have
previously developed and tested as front-end for robust speech
recognition [5][8] on the same database (ST-Numbers95). A
novelty is we make a comparable application in subbands. This
is in line with the recent development of subband speech
recognition for improving robustness [3]. This comparison is
significant about similarities and differences between the two
approaches. For this evaluation, we take into account and we
extent the methodology described in the literature [6][7].
Because we work with only two sources, a static set-up and
loudspeakers in a soundproof room, we also bear in mind the
limitation of the current solutions in regarding the whole
complexity of the speech separation problem [10].

2. THE ST-NB95 DATABASE

The original database Numbers95 is composed of sentences of
several words (numbers within a small vocabulary of 32
words). These are pronounced by different speakers and
transmitted by telephone. This is dedicated to the development
of robust speech recognition algorithms because the speech is
somewhat noisy and distorted.

A motivation for making a new recording was to set the
background for a close comparison between cocktail-party
techniques in which two sources are targets for recognition.
The stereo database ST-NB95 was built at ICP from the
monophonic NB95 in order (1) to spatialise the signal of NB95
in azimuth and (2) to mix the signals of NB95 with a relative
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level controlled well . A minimal distortion of the original signal
is introduced during the new recording and recognition tests are
feasible without a great specific development. The baseline
given by a normal recognition system applied on mixtures is
low (about 72% Word Error Rate [5]), and this allows a
sensitive measure of any improvement.

The record was carried out in a soundproof an-echoic room by
playing and recording the files of NB95 simultaneously with
the same computer. The geometry of the set-up is shown Fig.1.
The 40cm distance between the microphones has been chosen
in order to have a large time difference of arrival (TDOA).
Arbitrarily, the source s=1 is the left loudspeaker and has a
positive TDOA. This geometry is static for all the records of
the database.

Loudspeakers location

40 cm

Microphones location

60 deg

Left 
s=1

Right 
s=2

Left Right

90 cm90 cm

Figure 1: Geometrical set-up for the recording of ST-
Numbers95.

The ST-NB95 database is composed of sentences selected from
NB95: (1) 2*613 sentences are played left or right in isolation
in order to have in hands a reference signal (2) 613 binary
mixtures of the same sentences are arranged for having the
highest speech overlap as possible. The signal is resampled at
8kHz. The global relative level between left and right sources is
tuned at 0dB separately for each pair of sentences. The isolated
records are precisely synchronised with the mixture. This
allows estimating the segregation gain by close comparison
between the segregated signal and the reference signal recorded
in isolation. In the present simulations, 332 mixture sentences
have been taken out of the 613 ones. The mean duration of the
files is 2 seconds, but the duration has been truncated at 1
second in the present study. Only 52 files have less than one-
second duration.

In this paper, we propose a quantification of the gain of the two
front-end methods using the reference signals. The front-end
principle consists in feeding the recognition system with
segregated signals. So, the performance will depend on the
degree of cross-talk suppression as well as on the distortion of
the processed signal. The different stereo signals used in the

simulations and the evaluation will be noted X for the mixture,
R for the reference, and Y after processing.

3. THE CASA MODEL

The aim of the CASA model is to perform the segregation
according to a primitive feature analysis. Hypothetically, the
human auditory system streams the different sound sources
thanks to acoustical properties of the signal as harmonicity,
localisation, temporal continuity and amplitude co-modulation
in different frequency bands. For modelli ng, these features are
extracted by simple signal analysis methods (as the cross-
correlation) and the signal is segmented according this
estimation. In this vein, we have developed and tested a model
similar to the Bodden&Blauert's [2] cocktail party processor
and we have incorporated some interesting simpli fications on
the signal processing point of view. The principle is to weight
the spectrogram differently for each source. One characteristic
of the CASA model is to exploit the bias of the TDOA
estimation relatively to the known TDOA (here, the
geometrical set-up is fixed for all the simulations) for the
weight estimation. A more detailed description of this model
can be found in [8],[9].

3.1 Description of the model

Another characteristic of the CASA model is to operate in large
time frequency regions adjusted by two parameters: the number
of subbands (nbsb) and the time-frame duration (256 or 512
bins). The filterbank, which produces this decomposition is
designed in order to have a unit gain, and to vary the number
(and then the size) of subbands in which the process is applied
independently. The filters are Bark-scaled and quasi-
rectangular (Fig. 2).
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Figure 2: Filterbank design for nbsb=4. The four quasi-
rectangular filters Fi i=1..4 are built by grouping and
summation of  16 initial hanning and Barkscaled filters.
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At first, the spectrogram is computed frame by frame. Here, we
vary the time-frame duration. For each time frame of the
spectrogram, the spectrum is decomposed into nbsb subbands i:

)(X)(F)(X leftii ωωω =

We have chosen the c="left" input microphone channel for
applying the weights. These weights are estimated using the
local TDOA observed for each subband and each time-frame.
Then, this requires a synchronous decomposition of the "right"
input channel. For the TDOA estimation, the subband waves
arising from the nbsb filters after inverse FFT are demodulated
by half-wave rectification and band-pass filtering in the pitch
domain. A cross-correlation is computed between left and right
signals and the estimated TDOA is the position of the
maximum within an observation window [-10, 10]bin. Then, we
use two weighting functions, one for each source, to evaluate
the weights.

The weighting functions of the sources are characterised by a
symmetric slope (Fig. 3), and their sum is one:

))(TDOAW(1)(TDOAW i,is'is,i −=
These are adapted to the current geometrical set-up, and to the
current number of sources. The maximum (one) is assigned to
the TDOA of the target source and the minimum (zero) to the
TDOA of the other source (Fig. 3).
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Figure 3: Weighting functions of the two sources s=1 and s'=2
adapted to the current geometrical set-up.

The estimation of the local spectrum of each source s is a
product between the weight and the local (left) module
spectrum of the mixture data:

)(X)(TDOAW)(Y iis,is,i ωω =

Then, the reconstructed spectrum Y is, for each source s, the
sum of the subband contributions. For each time-frame of the
spectrogram, we have:

∑
=

=
nbsb

i 1
s,is )(Y)(Y ωω

Finally, the FFT resolution and the fine details of the
spectrogram are preserved because just the amplitude of the
signal is modified in large time-frequency regions in order to
suppress the competing source by segmentation. The re-
synthesis of the temporal signal Y is done by inverse FFT.

3.2 Estimation of the gain

The recording of isolated sentences allows a reference to
estimate the accuracy of the reconstruction of each source s.
Following [11], we define a distance: the Reconstruction
Accuracy (RA) measure. We fix the time frame duration
analysis at 1024 bins. We make for each frame a comparison
between the full -band spectra of the reference R and of the
product of segregation Y. All these spectra are pre-normalised
for avoiding global amplitude differences:

2))(sY)(lefts,R(

2
)(lefts,R

 log 10  )sY,lefts,RA(R
∫

Ω
−

∫
Ω=

ωω

ω

[ ]Hz100,4000  /2 where =Ω π

A statistic of RA is established for all 1024 bins time frames
(silence included) of the 332 sentence pairs truncated at 1s.

The effect of the two factors: (1) the number of subbands nbsb,
varied from 1 to 5, and (2) the length of the processing window,
256 and 512 bins, is shown in Figure 4. We observe a
significant maximum at nbsb=4 and 256 bins. Each source is
reconstructed according to an estimation of the TDOA having
an accuracy that also depends on these two parameters. Then,
the maximum observed for nbsb=4 is due to the trade-off
between the accuracy of the TDOA estimation (which decreases
when the bandwidth decreases) and the accuracy of the
spectrogram segmentation which increases when the bandwidth
decreases.

For taking into account the initial RA of the mixture X, we
subtract it from the RA of Y to obtain the effective gain for
each source:

)leftX,lefts,RA(R-)sY,lefts,RA(R  sGain =

A statistic of the gain for all ti me frames of the same sentences
shows a high correlation between the gain values obtained for
the two sources (Fig. 5).
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Figure 4: Effect of the number of subbands (nbsb) for the CASA model on the RA (in dB). From left to right: averaged left
source RA, averaged right source RA, averaged left+right RA over all frames. The number of subbands varies from 1 to 5 and
the two curves correspond to duration= 256 and 512 bins. The RA of the mixture, which is subtracted for gain evaluation is
labelled (*).
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Figure 5: Gain in dB of the CASA method (CASA 4) for the
left (s=1) and the right (s=2) sources  (nbsb=4,
duration=256bins). Each point is for a frame of 1024 bins.

4. THE BSS MODEL

The BSS model we use is standard and it is based on the main
assumption that the sources are independent. A dual
assumption, which motivated the extension with delay lines of
the initial Hérault&Jutten's model, is that each source is
temporally correlated [1]. This is the case for the speech signal,
mainly because the glottal source is regular and periodic. This
led to a recurrent implementation of the BSS, in which the goal
is to adapt vectors of weights W having several hundreds of
taps. Moreover, the use of delay lines allows the implicit
processing of the TDOA when the sources are located in space,

and finally, this model is powerful to tackle the current cocktail
party task.

4.1 Algorithm

The separation process is temporal, and we have developed a
subband version of the algorithm presented in [5]. We apply the
same algorithm independently on the nbsb waves obtained after
filtering the signal with the filterbank previously defined (Fig.
2). For each sample t of the input signal (which is truncated at 1
s):

∑
=

−+=
L

0p

(i)
c'

(i)
p,cc'

(i)
c

(i)
c p)(tYW(t)X(t)Y

where c and c' are the two (left and right) channels and (i) the
subband. For multiple nbp passes, t is simply reset at the
beginning of the signal without re-initialisation. The variation
of the weight vectors is given by:

[ ] p)(tY (t))((Y (t)W1�(t)W
� (i)

c'
(i)
c

(i)
,0cc'

(i)
p,cc' −−−= sign

p = 0…L and the length L+1 of W is 200 taps
The learning rate is fixed at η=10-7

The demixing filters W are initialised at 0
These are not re-initialised between each pass

Because the filterbank is unity gain, the output of these nbsb
processes are simply added to obtain Yc and Yc'.

4.2  Evaluation of the BSS segregation

The computation of RA and gain for the BSS method does not
differ from this defined for the CASA method, excepted the use
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of the right input channel reference for the right source s=2. In
our simulations, there is no permutation problem and the left
source arises in the left channel and respectively for the right
source:

)cX,cs,RA(R-)cY,cs,RA(R sGain =

)c'X,c',s'RA(R-)c'Y,c',s'RA(R s'Gain =

with c=left, s=1 and c'=right, s'=2

The effect on the RA of the two factors (1) the number of
subbands nbsb, varied from 1 to 4, and (2) the number of
passes, nbp=2,3,10, is shown in Figure 7 (for the same previous
332 sentence pairs). The frame distribution of the gain is shown
Fig. 6. We add two conditions to this set of simulations: (1) the
"BSS given" is the one pass application without convergence of
the two averaged demixing filters W obtained after simulation
of the nbsb=1, nbp=10 (332 vectors) (2) the "BSS ori"
condition uses the selection of the same data set extracted from
the output data of our previous study [5].

Additionally, a coherence index between signal pairs is
calculated. Interestingly, this does not require the presence of a
reference signal R as for the RA index. A first step consists in
evaluating the coherence values (varying between 0 and 1 for
each frequency bin) for consecutive [n,n+1] windows of 256
bins overlapping by half:

∑∑

∑

++

+=

1nn,1nn,

1nn,

2
)(c'Y

2
)(cY

2
)(*

c'Y)(cY

  n),c'Y,cCoh(Y
ωω

ωω

Then, the coherence spectrogram is averaged over the sentence
duration, and this mean value also varies between 0 and 1. For
the interpretation of the variations of Coh(Yc,Yc') observed
after applying the BSS method, we need two reference values:

(1) CohX the coherence between the mixture channels
Coh(Xc,Xc') which is the initial value.

(2) CohR the coherence between the reference signals
Coh(Rs,c,Rs',c') which is a floor value, at about 0.5 for this
modality of computation.

The result of coherence calculation is shown figure 7 (right). In
all cases, we observe a steep variation after applying the BSS
method (compare to CohX), and the index stays above CohR
after nbp=10 passes. There is a small decrease between nbp=2
and nbp=3 and no difference between nbp=3 and 10. The index
Coh decreases monotonically when nbsb increases. The
correlation with the RA is small and only for nbp. So, we
conclude this index is useful for testing the convergence of the
algorithm, but not for evaluating the quality of the separation.
Remarkably, it varies only for the BSS method. The CASA
method does not modify the fine spectral structure of the signal,
and consequently, the value stays at CohX. The decreasing of
the coherence index depends on the specific criterion of

separation of the BSS method (i.e., the independence of
outputs). Furthermore, in the "given" condition, the
convergence is blocked and the algorithm cannot adapt to the
input signal. The value of Coh is intermediate. This confirms
that the coherent index is significant about the criterion of the
BSS that is partially fulfill ed in this case.

We retrieve the known variation of the gain with the number of
passes nbp (Fig. 7). A good convergence is obtained after
nbp=3. We observe a small effect of the application in
subbands with a maximum at nbsb=2, but this is less
pronounced than for the CASA method. We remarked that the
demixing filters obtained for each subbands are bandpass
filtered versions of the fullband demixing filter (not shown).
The frequency bands of these filters are well related to the
filterbank allowing the decomposition (Fig. 2 for nbsb=4). This
suggests that the convergence is facilit ated in subbands because
the complexity is decreased. But this has not significant effect
on the gain. Another observation is that the de-mixing filters W
have a minimum at 5 bin, corresponding to the absolute value
of the TDOA of the sources. Finally, the gains for left and right
sources are also correlated above 0dB (Fig. 6) as for the CASA
method (Fig. 5), and there is an interesting (not interpreted)
flooring effect of the gain of one source around 0dB.
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Figure 6: Gain of the BSS 2/3 model (nbsb=2, nbp=3). Each
point is for a frame of 1024 bins.

5. DISCUSSION AND CONCLUSION

We have summarised the main results of this study in Table 1.
When we correct the RA to evaluate the effective gain, the
results are less optimistic than those published in the literature
(about 10 dB in the same condition are reported in [6]). A part
of this difference is due to specific factors of our study (e.g.,
our study includes silence). But, we obtained a good
improvement of speech recognition with the same "BSS ori"
output data [5] and this outperformed a CASA method similar
to CASA 4 [8]. A gain of about 2 dB is not negligible for
improving recognition scores.
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Figure 7: Effect of the number of subbands (nbsb) for the BSS model on the RA (in dB). From left to right: averaged left source
RA, averaged right source RA, averaged left+right RA over all frames, coherence. The number of subbands varies from 1 to 4
and the three curves correspond to nbp= 2,3,10. The RA of the mixture, which is subtracted for gain evaluation is labelled (*).
The CohX coherence between the two mixture channels is labelled (*) in the right figure. In each figures, two points are added at
nbsb=1 for the "BSS giv" condition (×) and for "BSS ori" data (∆).

dB RA 1+2 RA 1 RA 2 Gain 1 Gain 2
CASA 4 18.06 8.97 9.09 2.83 2.41
BSS 2/3 15.18 7.60 7.58 1.46 1.25
BSS ori 16.67 8.44 8.22 2.29 2.13
BSS giv 16.34 8.0 8.34 1.86 2.01
Table 1: Summary of the main results expressed in dB. This is
an average over all frames.

Now, the CASA method is found to have a gain higher than the
BSS method. Moreover, in the present simulation, we do not
retrieve the same gain for the BSS method, as observed with
"BSS ori" data (Table 1). This could be due to the truncation at
1 second of the sentences, and also to some differences in the
implementation and in the condition of application of the
algorithm (e.g., L is at 200 instead of 250). Remarkably, the
"given" condition ("BSS giv" in table 1) allows a higher gain
than the adaptive condition BSS 2/3. The two filters W are
specific for the static mixing condition and not for a particular
signal pair. We conclude that when this condition is fixed,
better is to use the average demixing filters for making a simple
cancellation.

These results confirm that the judgement about the quality of a
method is not easy, and that a methodology of comparison has
to incorporate different indexes applied at different levels. This
could include a perceptual study for appreciation of the degree
of distortion because, consistently with our previous
recognition results, the artefacts produced by the segregation
are not the same for the two methods: BSS allows less
distortion, but this is subjective.

We have shown that the two domains CASA and BSS/ICA are
close together because they share common questioning about
the biological modelli ng, the development of useful

applications as well as common paradigms as the cocktail -party
problem. One promising compromise is to consider these are
complementary approaches for modelli ng the functioning of
sensory pathways with a switch between fix (signal processing)
and adaptive (learning) modes.
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