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ABSTRACT
In blind source separation, two different separation tech-
niques are mainly used: Minimal Mutual Information (MMI),
where minimization of the mutual output information yields
an independent random vector, and Maximum Entropy (ME),
where the output entropy is maximized. However, it is yet
unclear why ME should solve the separation problem, ie.
result in an independent vector.

Amari has given a partial confirmation for ME in the
linear case in [1], where he proves that under the assumption
of vanishing expectancy of the sources ME does not change
the solutions of MMI up to scaling and permutation.

In this paper, we generalize Amari’s approach to nonlin-
ear ICA problems, where random vectors have been mixed
by output functions of layered neural networks. We show
that certain solution points of MMI are kept fixed by ME if
no scaling of the weight vectors is allowed. In general, ME
however might leave those MMI solutions using diagonal
weights in the first network layer. Therefore, we conclude
this paper by suggesting that in nonlinear ME algorithms
diagonal weights should be fixed in later epochs.

1. INTRODUCTION

Independent component analysis (ICA) describes methods
to extract statistically independent components from a given
random vector. One main application of ICA is to solve
the blind source separation (BSS) problem which is, given
only the mixtures of some underlying independent sources,
to separate the mixed signals thus recovering the original
sources. Here neither the sources nor the mixing process
is known, hence the term blind source separation. In con-
trast to correlation-based transformations such as principal
component analysis, ICA renders the output signals as sta-
tistically independent as possible by evaluating higher-order
statistics. The idea of ICA was first expressed by Jutten and
Herault [2] while the term ICA was first coined by Comon
in [3]. However the field became popular only with the sem-
inal paper by Bell and Sejnowski [4] who elaborated upon
the Infomax-principle first advocated by Linsker [5] [6].

Classically, linear BSS has been treated most thoroughly
[7] [8], where the mixing function of the source signals cor-
responds to a linear function (matrix). Two principles be-
came popular: Minimal Mutual Information (MMI), where
minimization of the mutual output information yields an
independent random vector, and Maximum Entropy (ME),
where the output entropy is maximized. Concerning MMI
and ME, Comon proposed to use the mutual information
of the output as a contrast function because minimizing the
mutual information (MMI) induces statistical independence
of the output. This has to be compared with Bell and Se-
jnowski’s suggestion to maximize the entropy (ME) of the
output. But ME does not always induce MMI ([4], sec-
tion 4 and [9]) and therefore statistical independence. ME
performs best when the non-linear demixing function in the
ME algorithm matches with the cumulative distribution of
the given source.

However, nowadays many algorithms are based on the
ME contrast function. This raises the question how this
large branch of ICA research compares to the MMI meth-
ods. For the linear case, Amari [1] provides a partial answer
confirming the equivalence of MMI and ME under certain
conditions. He shows that at solution points of ICA deter-
mined by MMI, ME algorithms will only change the demix-
ing matrices in diagonal directions thus describing the same
solution. This can be interpreted as a local justification for
ME, showing that demixing matrices are stable fixpoints (up
to scaling) of ME algorithms.

With the growing popularity of ICA, more and more
nonlinear algorithms have been proposed (for example [10]
[11], [12], [13] ) and theoretic approaches have been taken
[14]. Most of them are based on the ME contrast function.
Yet, to the knowledge of the authors, in the more general
nonlinear setting no justification for ME based algorithms
has been given. In this paper, we want to discuss a nonlin-
ear model described by the activation function of a multilay-
ered neural network. We will show that at certain solution
points of MMI, ME will have a local extremum thus only
changing the solution in a well specified way (scaling in all
weight matrices).
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2. THE MODEL

In the quadratic case of blind source separation, a random
vector

���������	�
called mixed vector is given, where

�
is a fixed probability space; it comes from an independent
random vector 
 �����
���

, which will be called source
vector, by mixing with an invertible mixing function � ��	�������	�

, ie.
��� ����
 � ����
�� . Only the mixed

vector is known, and the task is to recover � and therefore
 � �	����� � .
Suppose, we are given a transformation space  "!#%$ �&�	�'�(���	�*) $

measurable + and a contrast function, �  �(���.-
We want to study the space of all transformed

random vectors /0� � where /212 is a transformation as
above. To be more precise, the goal of an ICA algorithm is
to minimize , . The reason for this is that if we take for ex-
ample the canonical contrast function , �3/4� � �65 �3/7� � � ,/818 , where

5 �:9;� denotes the mutual information of the
random vector 9 , minimizing , means minimizing the mu-
tual information, so at a minimum /=< , the demixed random
vector /><?� � is as independent as possible. This method
is then called minimal mutual information (MMI). An-
other often used contrast function is the negative entropy, �3/4� � �"�A@ �CBD/E� � � (here B is a fixed vector of one-
dimensional bounded functions in order to make the entropy
finite). The induced minimization method, denoted by max-
imum entropy (ME), is usually easier to implement; we
will show that it can lead to independence of components
under mild assumptions, nonetheless.

If we furthermore assume that the inverse of the mixing
function lies already in the transformation space ( � ��� 1 ), then we know that the global minimum of the canonical
contrast function has value F , so indeed a global minimum
will give us an independent random vector. Of course we
cannot hope that � ��� will be found because uniqueness in
this general setting cannot be achieved, see for example [15]
— in contrast to the linear case (  G!IHKJL�:MN� ) as shown in
[3]. This will give us a further restriction of our method.

Obviously the setting above is far too general to give
any computational results, because it is not possible to do
minimization if it is not clear how to describe elements of . Therefore we need a means of describing  by a finite
set of real-valued parameters. For this, we consider out-
put functions of neural networks, see [16] and [17] . This
has the advantage that in neural networks, being adaptive
systems, we know for a given energy function how to al-
gorithmically minimize this function for example using the
standard accelerated gradient descent method. Moreover,
more general functions can then be approximately learned
using the fact that sufficiently complex neural networks are
so called universal approximators, see for example [18].

Fixing notation, for any neural net O with M inputs andM outputs , P7�:OQ� �&� � �(��� �
denotes its output function.

For fixed O , OR�3SK� is the net O , where the weights have been
replaced with the new weights ST1 �	U . Here V denotes the
total number of weights of the neural network. So we have W! # P7�:OR�3SK�X� ) SY1 �QU + and , �3SK� � � , �:P7�:OR�3SK�X� is to
be minimized.

3. THE MAIN THEOREM

First note that MMI is obviously better suited than ME in
terms of finding solutions; ME may terminate at points that
do not represent demixing functions. Therefore even in the
linear case ([1]) it can only be shown that solutions of MMI
are also solutions of ME. For this, a uniqueness result by
Comon ([3]) has to be used, where under the assumption
that at most one source 
�Z is gaussian, it is shown that in the
linear case all solutions of MMI are of the form [�\RP7��� ,
where P is the mixing matrix, [ a permutation matrix and\ a non-degenerate scaling matrix. Since no such unique-
ness results have been found in the more general nonlinear
setting, we will only be able to show that special demixing
functions are solutions of ME. More precisely, let the mix-
ing function satisfy (locally)

� � P�] ^`_��bac] ^`_c� -=-=- �.P�] � _��bac] � _ed
where P ]gf>_ 1EhEi%jk�:M ]gf>l � _.m M ]gf>_en � � are matrices of full
rank and a ]gf>_ are cartesian products of differentiable in-
vertible functions (typically activation functions) for o �p d -=-=- dXq . Hence, the mixing function is the output function
of a layered neural network O with q layers.

Definition 3.1. Let the network O be fully quadratic, ie.
each layer has the same size. Then all activation func-
tions a ]gf>_ and weight matrices P ]gf>_ are invertible for o �p d -=-=- dXq , and we call functions of the type

ac] � _ ��� �.\r] � _L[;] � _LP�] � _ ��� � -=-=- �bac] ^`_ ��� �.\r] ^`_s[;] ^`_LP�] ^`_ ���
scaled solutions of the BSS problem if \ ] Z _ and [ ] Z _ are
non-degenerate scaling and permutation matrices.

Note that if the layers of the network have different sizes,
additional nodes are to be added so that P ] Z _ ��� is well de-
fined. This will be discussed in more detail in section 5.
Since a ] � _ is a vector of activation functions of the network,
it can be written as a ] � _ � a ] � _� m -=-=- m a ] � _^ . Using the
transformation theorem for entropies, we then calculate5 ��a7� � � �ut Z @ �X��a;� � �vZ�� �w@ ��a7� � �� t Z � @ � � Z���x2yAz	{>�3J |&} ) a4~Z ) �X��A@ � � � � yAz;�3J |&} ) �����v� a ) ���5 � � ��x t Z yAz	{>�3J |&} ) a4~Z ) �� yAz;�3J |&} )�� Z a4~Z ) � �65 � � ��d
where

� a � ���c�k� {���=�&� Z � denotes the derivative of a ��� ^ �� ^ . Therefore, scaled solutions with the same matrices
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\ ] Z _ and [ ] Z _ for ��� p
have the same mutual informa-

tion, but with different scaling or permutation matrices, the
information might be different. Hence, not all scaled solu-
tions are solutions of the BSS problem, but only those with\ ] Z _ � [ ] Z _ �W5

for ����� , where
5

denotes the identity
matrix; in the q � p

case those are already all solutions.
However, this it not true for q�� p .

We assume that the used neural networks as well as the
density functions of the appearing random variables are all
twice continously differentiable.

The main goal of the paper is the following theorem:

Theorem 3.2. Assume the expectancy y ��
�� of the sources
vanishes. Then scaled solutions that are solutions of the BSS
problem are local extrema of ME. To be more precise: The
ME algorithm transforms scaled solutions that are solutions
of BSS into scaled solutions.

4. PROOF OF THE MAIN THEOREM

The case of a single layer has been treated already by Amari.
We want to restrict ourselves to the two-layered case. The
case of multiple layers is an easy generalization.

Let O be a two-layered neural network with M inputs
and M outputs, and let S 1 � ^ be a weight vector of O .
For the network OR�3SK� with weights S , we will use the fol-
lowing notations: Let M � be the number of neurons in the
hidden layer. For now, let us assume that M � � M . The
more general case M � � M will be discussed in section 5.� ] � _ 1 hEi%j��:M � m M n � � denotes the linear mapping from
the input layer to the hidden layer,

� ] ��_ 18hEi%jk�:M m M � n � �
is the mapping from the hidden layer to the output layer.B ] � _Z , � � p d -=-=- d�M � denote the activation functions of the

hidden layer, B ] ��_� , 	 � p d -=-=- d�M those of the output layer.
All activation functions are at least 
 � -Diffeomorphisms of� ��� ����d�
>� with ��d�
N1 � fixed. Since we are only in-
terested in a local description, we sometimes also restrict
the domains of the activation functions to some small open
interval. Furthermore, we write B ] � _ respectively B ] ��_ for
the cartesian product of the activation functions. More-
over, define random vectors 9 ] � _ � ��� ] � _ � , � ] � _ � �B ] � _ 9 ] � _ , 9 ] ��_ � ��� ] ��_ � ] � _ , and � ] ��_ � � B ] ��_ 9 ] ��_ . Then� ] ��_ � P7�:OR�3SK�X��� � . Instead of indexing the above map-
pings by the weight vector S�1 � ^ , we will use the pair� � ] � _ d � ] ��_ � of the weight matrices. The transformed ran-
dom vectors 9 ] Z _ and � ] Z _ however will not get indices for
clarity of notation. The random propabilities will be de-
noted by � ]gf>_� and � ]gf>_� for o � p d�� respectively, and we

write for the marginal densities � ]gf>_��� Z � ��� Z�� ]gf>_� and � ]gf>_��� Z � �� Z�� ]gf>_� , where
� Z �&� � �(���

is the projection onto the � -th
coordinate, ie.

� Z���� � d -=-=- d�� � � � ��Z .
Since the activation functions have been chosen to be

bounded, the entropy of � ] ��_ is bounded for all weights:@ ��� ] ��_ � � @ �CB ] ��_ �.9 ] ��_ �� t �Z � � @ �CB ] ��_Z � � Z��.9 ] ��_ �� M J  ��!
 � � �
We have to show that for �#"� 	 ��%$'& (*){,+ � @ ��� ] ��_ � � F holds at

scaled solutions, where
� ]gf>_ � � S ]gf>_Z � � � Z � � .

By definition of the mutual information
5
, we have

@ ���?] ��_v� � �A5 ���?] ��_v��x �-
Z � �
@ ��� ] ��_Z � -

The first summand vanishes at scaled solutions that are min-
ima of MMI; we decompose the second term using the source
densities

� �-
Z � �
@ ��� ] ��_Z � �6� �/.� ] ��_��0 ��1���x32 � � ] � _�d � ] ��_v�

where 2 � � ] � _ d � ] ��_ � � � t Z5476 J |&}�����1%{���8kZs�X�9� ��� Ze��8kZ�� � 8kZ
and .� ] ��_� � � � �Z � � � ] ��_��� Z , and

� �/.� ] ��_� 0 ��1�� � 4 6;: .� ] ��_� J |&}=<> & ?�)@>BA
denotes the Kullback-Leibler divergence of .� ] ��_� and ��1 .
Since the source densities �C1 are independent, the random
densities factorize and the decomposition follows.

At the very special scaled solution P7�:OR�3SK�X� � � ��� , we
have 
 � � ] ��_ , so that the first two summands

5 ��� ] ��_ � and� �/.� � 0 ��1�� in the decomposition of
�A@ ��� ] ��_ � at

� ]gf>_ �P ]gf>_ ��� vanish and are therefore minimal. This is the case
at all scaled solutions that are global minima of the mutual
information. Hence, we only have to show that 2 � � � has a
local extremum at those points.

We restrict ourselves to the point
� ]gf>_ � P ]gf>_ ��� . As

the invertible matrices HKJs�:MN� are open in hEi%jk�:M m M n � � ,
there exists an open neighbourhood D !ThEi%jk�:M m M n � �
of the identity

5
with D ! HKJs�:MN�FE # �Y) 0 � 0HG p + andI ]gf>_ � �J� ]gf>_ P ]gf>_ �K5 1KD for

� ]gf>_ from a neighbourhood
of P ]gf>_ ��� and o � p d�� . Hence locally,

� ]gf>_ can be written
as
� ]gf>_ � � 5 x I ]gf>_ �vP ]gf>_ ��� - Using this decomposition,

we can prove the following lemma:

Lemma 4.1. Assume y ��
�� � F . Then at the point
I ]gf>_ �F , o � p d�� that is at

� ]gf>_ � P ]gf>_ ��� , the partial derivata-
tives of 2 �X� 5 x I ] � _ �vP ] � _ ��� d�� 5 x I ] ��_ �vP ] ��_ ��� � satisfy

L 2L I ] � _Z � � L 2L I ] ��_Z � �T�NM Z �
The proof is given in section 7. The lemma shows that2 � � � is constant in non-diagonal directions; hence ME

does not change solutions up to scaling, that is it maps into
scaled solutions. The claim at other scaled solutions that
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are solutions of the BSS problem is shown similiarily by
parametrizing

� ]gf>_ by

� ]gf>_ � � 5 x I ]gf>_v�v[;]gf>_L\r]gf>_LP�]gf>_ ��� -
This shows the theorem for fully quadratic two-layered net-
works.

5. GENERALIZATIONS

For not fully quadratic neural nets, that is for nets withM � � M (this is the normal case, but M � G M can be
shown similarily), we propose the following strategy to re-
duce this case to the fully quadratic case: Add M � � M in-
and output neurons and introduce uniform independent in-
put signals (enlarge

�
to a random vector on

�����
such that

the M � � M last components are independent). Then scaled
solutions in the normal case induce scaled solutions in the
fully quadratic case; using the above, we deduce that those
are local extrema of ME in the quadratic case and hence ex-
trema in the normal case, because the additional sources are
uniformly distributed.

The generalization to multilayered neural networks can
be done similarily using the above iteratively. This indicates
how to prove the main theorem for those more general cases.

6. CONCLUSION

The ME algorithm has been studied, and we have shown
that special MMI solutions are indeed local extrema of the
maximum entropy method, up to scaling in the weight ma-
trices. Therefore, we suggest ME algorithms which try to
keep constant the diagonal weight entries in later epochs in
order to stay at MMI minima.

We propose two further studies: It would be nice to
know that those extrema are indeed stable fixpoints so it
should be shown that scaled solutions are not only extrema
but also maxima up to scaling and permutation. Further-
more, the theorem should be extended to general solutions
of MMI which would solve the uniqueness problem in the
layered neural network setting.

7. APPENDIX: PROOF OF LEMMA 4.1

Note that for calculating the derivative of a function of one
variable it suffices to expand this function in this variable
and discard terms of order greater than one.

Let
I ]gf>_ 1 D ]gf>_ . Then 0 I ]gf>_ 0#G��NG p , so the matrices5 x I ]gf>_ are invertible and � 5 x I ]gf>_ � ��� �65�� I ]gf>_ x � � � � �

and ���>j%� 5 x I ]gf>_ � ��� � p � j	�=� I ]gf>_ �4x � � � � � holds, where
we write

� � � � � for
� ��

�  	� 0 I ] � _ 0 d 0 I ] ��_ 0 � � � . Expand the

activation function linearly B ]gf>_ ���cx?a�� � B ]gf>_ ���(��x � B ]gf>_ a(x

� � 0 a 0 � � and approximate � ] ��_ :
� ] ��_ � B ] ��_ � � ] ��_ ��B ] � _ �K� 5 x I ] � _ ����B ] � _ ����%P ] ��_ ��B ] ��_ ��� �.
� B ] ��_ � � ] ��_�� B ] � _ �CB ] � _ ��� �.P ] ��_ �x � B ] � _ �CB ] � _ ��� �.P ] ��_ ��B ] ��_ ��� �.
���� I ] � _ ��B ] � _ ����%P ] ��_ x � � � � ���.��B ] ��_ �����b
� B ] ��_ � � � ] ��_ P ] ��_ x � ] ��_ � � ] � _ � I ] � _ ��B ] � _ ����%P ] ��_ x � � � � � � ��B ] ��_ ��� �b


Here,
� ] � _ � �6� B ] � _ �CB ] � _ ��� �4P ] ��_ � B ] ��_ ��� ��
�� is a M m M -

matrix in diagonal form, which does not depend on
� ]gf>_ .

The inverse of
� ] � _ can then be calculated as follows:

� ] � _ ��� �6� B�] � _ ��� �:P�] ��_���B�] ��_ ��� �b
��
Furthermore

� ] ��_ � B ] ��_ � � 5 x I ] ��_ x6� 5 x I ] ��_ ���.P ] ��_ ���� � ] � _ � I ] � _ ��B ] � _ ��� �.P ] ��_ x � � � � � � ��B ] ��_ ��� �b
� B ] ��_ � � 5 x I ] ��_ x2P ] ��_ ��� � � ] � _ � I ] � _ ��B ] � _ ����%P ] ��_ x � � � � ���.��B ] ��_ ��� �b

Hence we are left with the interior term B ] � _ ��� �rP ] ��_ . For
this use

$ ���(� �6� $ ���(�9�7x � ��� � � in a neighbourhood of F .
In our case B ] � _ ��� � P ] ��_ �rB ] ��_ ��� � 
 �Y� ] � _ ��� � P ] ��_ �B ] ��_ ��� �b
 x � � � � � and therefore

� ] ��_ � B ] ��_ � � 5 x I ] ��_ x��I� I ] � _ ��� ���x � � � � ���.��B ] ��_ ��� �b
	d
where � � � ���=Z �k� � � P ] ��_ ��� � � ] � _ 1 HKJs�:MN� . Denote the
components of the inverse of � by ��� ~Z � � � � � �;��� .

Now note that we can assume the activation functions at
the network output to be the identity, because only indepen-
dence of 
 and entropy maximization of � ] ��_ will be used,
which both are invariant under componentwise orientation-
preserving transformations of the B ] ��_Z . So let � ] ��_ � 9 ] ��_ ,
and we have shown � ] ��_ ��� �	
 with

��� �65 x I ] ��_ x�� �I ] � _ ��� ��� x � � � � � - The inverse of
�

is given to first approx-
imation by

� ��� �65A�KI ] ��_ � �2� I ] � _ ��� ��� x � � � � � and
the determinant satisfies ���>j � ��� � p � j	� I ] ��_ � j	� I ] � _ x� � � � � - Applying the transformation theorem for densities to
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� ] ��_� , we calculate at 8 1 ��� as approximation of
I ]gf>_ :

� ] ��_� ��8D� � �����>j � ���>� ��1�� � ���78D�� �����>j � ��� � ��1���8 � I ] ��_ 8 � �I� I ] � _ ��� ��� 8Kx � � � � �X�� �����>j � ���>� � �Z � � ��1 � Z �!8kZ �� t � I ] ��_Z � � 8>�.x t�� � ^ �=Z � � I ] � _� � ^ �%~^ � � 8>� �(� x � � � � �� � p � j	� I ] � _ � j	� I ] ��_ �c����1���8D� �t �Z � � �D~ 1 � Z ��8kZs� � �����Z ��1 � � ��8 � �� t � I ] ��_Z � � 8>�.x t � � ^ �=Z � � I ] � _� � ^ � ~^ � � 8>� �(� x � � � � �� � p � j	� I ] � _ � j	� I ] ��_ � � p � t �Z � � � ZX��8kZs�� t � I ] ��_Z � � 8>�.x t�� � ^ �=Z � � I ] � _� � ^ � ~^ � � 8>� �(� ��1���8D�x � � � � �� ��1���8D� � � j	� I ] � _ xwj	� I ] ��_ x t �Z � �*� � � ZX��8kZ�� I ] ��_Z � � 8>�x t �Z � � � � � ^ � � � Z���8kZ�� �=Z � � I ] � _� � ^ �%~^ � � 8>� � ��1���8D��x � � � � �
Here, we have defined

� ZX��8kZs� � � >�� A + { ] � { _>BA + { ] � { _ . In the second last

line, the 
 � -function ��1 �G� Z ��1 � Z has been expanded lin-
early at 8 using Taylor. We get a formula for 2 � � ] � _ d � ] ��_ �
at
I ]gf>_ � F , which is linear in

I ]gf>_ :
2 � t � � � � 4 6 : � p � j	� I ] � _ � j	� I ] ��_� t �Z � �*� � � ZX��8kZs� I ] ��_Z � � 8>� � t �� � ^ � Z � �*� � � � ��8 � � � � � ZI ] � _Z � � �%~� � ^ 8 ^ � ��1���8D�DJ |&} ��1 � � ��8 � � � 8Kx � � � � �

Using this, we calculate the derivative of 2 at
I ]gf>_ � F :

The case o � � is done similiar to the linear case: Let �N"� 	 .
Then�
	�
� & ?�){ � � � t � � � � 476 : � Z���8kZ�� 8>� ��1���8D�DJ |&} ��1 � � ��8 � � � 8� � t �����Z54 6;: � Z���8kZ�� 8>� ��1���8D�DJ |&} ��1 � � ��8 � � � 8� 4 6;: � ZX��8kZs� 8>� ��1���8D�DJ |&} ��1 � ZX��8kZs� � 8� � t �����Z � 476 �D~ 1 � Z ��8kZ�� � 8kZ � � 476 :
��� 8>�B��1 � �&��8>�k�J |&} ��1 � � ��8 � � � 8 � - - � 8kZ ��� � 8kZ l � - - � 8 � �� � 4 6 8>�B��1 � �&��8>�k� � 8>� � � 4 6 �D~ 1 � Z ��8kZ��DJ |&} ��1 � Zv��8kZs� � 8kZ �� � � 476 8>� ��1 � �&��8>�k� � 8>� � � 476 �D~ 1 � Z ��8kZs�DJ |&} ��1 � ZX��8kZ�� � 8kZ �
The last line follows, because due to 476 ��1 � ZX��8kZ�� � p

the
integral over its derivative 4 6 �D~ 1 � Z ��8kZs� � F vanishes sinceJ � 
 � {���� 4 � {� � �D~ 1 � Z � � � �&� � J � 
 � {����3��1 � ZX��8kZs� � F - For � �	 , we calculate

�
	�
� & ?�){ { � �Nt � � � � 4 6;: � p x � Z���8kZ�� 8>�k�9��1���8D�DJ |&} ��1 � � ��8 � � � 8� t �����Z � @ ��
 � ��x 4 6 �D~ 1 � Z ��8kZs� 8kZ � 8kZ @ ��
 � � � x @ ��
cZs�� 4 6 �D~ 1 � Z ��8kZ�� 8kZ`J |&} ��1 � Zv��8kZs� � 8kZ� F x @ ��
cZs��x 4 6 ��1 � Zv��8kZs� � J |&} ��1 � Zv��8kZs��x 8kZ >�� A + { ] � { _>BA + { ] � { _ � � 8kZ�I@ ��
cZs� �w@ ��
cZs��x 476 8kZ��D~ 1 � Z ��8kZ�� � 8kZ�T� 476 ��1 � Zv��8kZs� � 8kZ �T� p -

For
I ] � _ , a little more sophisticated calculation is needed.We

have�
	�
� & � ){ � � M Z � t � @ ��
 � � �2t � �%� � � ^ � � 4 6;: � � ��8 � � � � � Z � ~� � ^8 ^ ��1���8D�DJ |&} ��1 � � ��8 � � � 8� M Z � t � @ ��
 � ��x t � �%� � � ^ � � � �%� � � ^
where we define� �%� � � ^ � � ��� 6 : � � ��8 � � � � � Z�� ~� � ^ 8 ^ ��1���8D�DJ |&} ��1 � � ��8 � � � 8 -
The sum then is decomposed into the following five terms:�
	�
� & � ){ � � t � t�������� t ������� + ���� � � �%� � � ^x t � t ������� � �%� � � � x t � t ������� � �%� � � �x t � t�������� � �%� �%� ^ x t � � �%� �%� �
The first two summands both vanish, because one can factor
out 4 �D~ 1 � � ��8 � � � 8 � , and this term is zero as we have seen
above. The fourth summand has a factor y ��
 ^ � :t � t�������� � �%� �%� ^ � t � t�������� y ��
 ^ � � �%� Z �%~� � ^ @ ��
 � �4 6;:
��� � � ��8 � �9��1���8 � � � 8 �
According to the assumptions y ��
�� � F , so this summand
vanishes as well. Using partial integration, the third sum-
mand of 2 can be simplified as followst � t ������� � �%� � � � �� � t � + ������� 4 6 : � � ��8 � � � � � Z��%~� � � 8 � ��1���8D�DJ |&} ��1 � � ��8 � � � 8� t � + ������� � � � Z��%~� � � � 4 6 8 � �D~ 1 � � ��8 � � � 8 � � @ ��
 � �� � t � � t�������� � � � Z �%~� � � � @ ��
 � �
and for the last summand we calculate with the same inte-
gration as in the o � � case:t � � �%� �%� � � � t � � �%� Z �%~� � � 4 6 �D~ 1 � � ��8 � � 8 � ��1 � � ��8 � � � 8 �� � t � � �%� Z �%~� � � � @ ��
 � ��x p �
Putting together those last two equations, we therefore get
for the derivative of 2 :�
	�
� & � ){ � � M Z � t � @ ��
 � �� t � � t�������� � � � Z��%~� � � � @ ��
 � �� t � � �%� Z �%~� � � � @ ��
 � ��x p �� M Z � t � @ ��
 � � � t � � t�� �%~� � � � � � Z � @ ��
 � �� t � � �%� Z �%~� � �� M Z � t � @ ��
 � � � t � M Z � @ ��
 � � � M Z �
In the last line we used � ��� � �I5 which means for �N"� 	 :- � � � � Z�� ~� � � � - � � ~� � � � � � Z � � � ��� � ��� � Z �65 � � Z � F
This proves the lemma.
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