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ABSTRACT

The convex divergence is used as a surrogate func-
tion for obtaining independence of random variables
described by the joint probability density. If the ker-
nel convex function is twice continuously differentiable,
this case reveals a class of generalized logarithm. This
class of logarithms gives generalizations of the score
function and the Fisher information matrix which are
related to the Cramér-Rao bound. Guided by these
properties, independent component analysis (ICA) us-
ing the convex divergence is presented. Obtained algo-
rithms use the past and/or future data. Software im-
plementation is easy and beats the minimum mutual
information ICA in the speed. Real world experiments
on brain fMRI are also performed.

1. INTRODUCTION

The convex divergence [7] measures difference of two
probabilities by using a class of convex functions. By
choosing the convex function appropriately, this mea-
sure is non-negative, and is zero if and only if two prob-
ability measures are equal almost everywhere.

Consider the case that one probability measure is
a joint probability density and the other is a product
probability density. Then, the convex divergence re-
flects a degree of independence inherent in the ran-
dom variables described by the joint probability den-
sity. Thus, an iterated minimization of the convex di-
vergence on the structural parameters of the joint prob-
ability density can be interpreted as a learning process
towards source signal separation into independent com-
ponents. Such an issue using the mutual information
was addressed in [3], [5], [8], [15] and many others. In
[9] and [12], a super class of the mutual information,
i.e., the α-divergence, was used from an interest as a
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generalization. In this paper, we start with the afore-
mentioned convex divergence from theoretical interests.
It is found that the derived algorithms have a merit of
speedup. The algorithms are simple and easily appli-
cable to real world data. Early versions can be found
in [10], [11].

Organization of this paper is as follows. Section
2 reviews fundamental properties of the convex diver-
gence. It is newly found that the case of twice con-
tinuously differentiable convex functions brings about
a class of generalized logarithms. Discussions therein
also give generalizations of the score function and the
Fisher information matrix. A relationship to Cramér-
Rao inequality is also revealed. There, a scale factor
is introduced. Section 3 gives gradient descent for the
convex divergence and ICA. Section 4 shows methods
of software implementations. Use of the past and/or
future is considered. Speed evaluations by simulations
are given. Applications to real world data such as brain
fMRI are also addressed. Section 5 gives concluding
remarks such that the α-divergence essentially “spans”
the methods of the f-divergence if the convex function
is twice continuous differentiable.

2. CONVEX DIVERGENCE AND ITS
PROPERTIES

2.1. Definitions and Basic Properties

The convex divergence between two probability densi-
ties p and q is defined by the following equations [7].

Df(p‖q) =
∫
Y

q(y)f(p(y)/q(y))dy (1)

=
∫
Y

p(y)g(q(y)/p(y))dy (2)

= Dg(q‖p) ≥ g(1) = f(1). (3)

Here, Y is chosen to be a K-dimensional Euclidian
space. The function f(r), r ∈ (0,∞), is convex. The
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dual function g(r) satisfies

g(r) = rf(1/r) (4)

so that it is also convex. The inequality (3) is the
equality if and only if p(y) = q(y), y-a.e. Since the
normalization of f(1) is arbitrary, we can choose

f(1) = g(1) = 0. (5)

Then, the convex divergence can be regarded as a di-
rected distance between p and q.

2.2. Convex Functions with Twice Continuous
Differentiability

In the definitions of the convex divergences Df and
Dg, differentiability of f(r) and g(r) is not necessarily
required. But, we are interested in the case that these
functions are twice continuously differentiable. This is
because we will derive learning algorithms based upon
gradients. Then, for

C
def= f ′′(1)

f ′(1) = − g′′(1)
g′(1) ∈ (−∞,∞), (6)

we have the following equalities around r = 1.

f(r)
f ′′(1) = 1

C(1−C)(r − rC) + o(1) (7)

g(r)
g′′(1) = −1

C(1−C)(r
1−C − 1) + o(1) (8)

Here, o(1) is a higher order term. It is important to
note that

1
C(1−C)(r − rC) =

{
1
C rC

} {
1

1−C (r1−C − 1)
}

(9)

def= U (C)(r)L(C)(r) (10)

In the above expression,

L(C)(r) = 1
1−C (r1−C − 1) (11)

is a compelling function. This is a parameterized class
of monotone functions whose convexity is controlled
by the parameter C from the ultimate concavity to the
ultimate convexity. It is important to note that

L(1)(r) = log r. (12)

Thus, L(C)(r) can be regarded as a wide-sense loga-
rithm. We can call this function the C-logarithm. If
the argument r is replaced by a probability density p,
L(C)(p) can be interpreted as a generalized score func-
tion.

2.3. Information Matrix and Cramér-Rao Bound

By using the C-logarithm, we have the following equal-
ity.

M (C)(ϕ) def= Ep

[
Cp−2(1−C)

(
∂LC

∂ϕ

)(
∂LC

∂ϕT

)]
(13)

= −Ep

[
p−(1−C)

(
∂2LC

∂ϕ∂ϕT

)]
(14)

This equality can be regarded as a generalization of the
Fisher information matrix. In fact, it holds that

M (C)(ϕ) = CM (1)(ϕ) = CF (ϕ). (15)

Here, F (ϕ) is the Fisher information matrix. The con-
stant C can be regarded as a scale factor.

The information matrix M (C)(ϕ) is related to the
Cramér-Rao bound. Let h(ϕ) be an unknown vector
function of a vector variable ϕ for a statistical model
pY |ϕ(y|ϕ). Let ĥ(Y ) be an unbiased estimate for h(ϕ).
Let

V (ĥ(Y )) def=
[
Cov

(
ĥi(Y ), ĥj(Y )

)]
(16)

and
Ω(ϕ) def= ∂h(ϕ)

∂ϕT . (17)

Then, the following inequality holds.

V (ĥ(Y )) ≥ CΩ(ϕ){M (C)(ϕ)}−1Ω(ϕ)T

= Ω(ϕ){M (1)(ϕ)}−1Ω(ϕ)T (18)

This corresponds to the Cramér-Rao inequality. Thus,
the bound is not degraded by the choice of C.

3. CONVEX DIVERGENCE ICA

3.1. Gradient of the Convex Divergence

In the problem of ICA, we are given a set of N vector
random variables.

x(n) = col[x1(n), · · · , xK(n)], (n = 1, · · · , N). (19)

Each x(n) is a mixture by an unknown matrix A such
that

As(n) = x(n). (20)

Here, the vector

s(n) = col[s1(n), · · · , sK(n)] (21)

is also unknown except that its components are inde-
pendent each other. Then, we want to find a demixing
matrix W = ΛΠA−1 so that the components of

Wx(n) def= y(n) = col[y1(n), · · · , yK(n)] (22)
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are independent each other for every n. Here, Λ is a
nonsingular diagonal matrix and Π is a permutation
matrix. Both matrices are also unknown.

Let
p(y) = p(y1, · · · , yK) (23)

be a joint probability density and

q(y) =
∏K

i=1 qi(yi) (24)

be a product probability density. Then, we have

If (
∧K

i=1Yi)
def= Df

(
p(y1, · · · , yK)‖∏K

i=1qi(yi)
)

def= Df(p(y)‖q(y))
= Dg(q(y)‖p(y))

= Ig(
∧K

i=1Yi)

=
∫
X p(x)g

(
|W |q(y)

p(x)

)
dx. (25)

Here, we used
dy = |W |dx (26)

as well as
p(y)dy = p(x)dx. (27)

The symbol “
∧

” is used instead of “ ; ” which appears
in standard references [6]. It is important to observe
that the determinant |W | appears at only one place in
the last expression of (25).

The negative gradient is obtained as follows.

−∇Ig(
∧K

i=1Yi)
def= −∂Ig(

∧K
i=1Yi)

∂W

=
∫
X
|W |q(y)g′

(
|W |q(y)

p(x)

){
W−T − ϕ(y)xT

}
dx

= −∇If (
∧K

i=1Yi) (28)

Here,
g′(r) = d

drg(r). (29)

and
−ϕ(y) = col

[
q′
1(y1)

q1(y1)
, . . . ,

q′
K(yK)

qK(yK)

]
. (30)

Then, a simple update equation is

W (t + 1) = W (t) + ∆fW (t) (31)

with

∆fW (t) = ρt

{
−∇If (

∧K
i=1Yi)

}
W=W (t)

= ρt

{
−∇Ig(

∧K
i=1Yi)

}
W=W (t)

= ∆gW (t). (32)

Here, t is the index for iteration and ρt is a learning
rate.

3.2. Removal of the Inverse Matrix

In Equation (28), a matrix inverse and transpose W−T

appears. The matrix inversion and transposition can
be removed by using a natural or relative gradient [1],
[4]. By considering (15), we multiply CWT W . Then,
we have

−∇̃Ig(
∧K

i=1Yi)
def= −∂Ig(

∧K

i=1
Yi)

∂W (CWT W )

= −C

∫
X

q(y)g′
(

|W |q(y)
p(x)

){
I − ϕ(y)xT WT

} |W |dx W

= −C

∫
Y

q(y)g′
(

q(y)
p(y)

){
I − ϕ(y)yT

}
dy W. (33)

An important next step is how to evaluate the core of
the integrand of (33). It is a key to observe

qg′(q/p) = −g′′(1)p + {g′(1) + g′′(1)}q + o(1) (34)

around p ≈ q. Then, by virtue of (6), we have

q(y)g′( q(y)
p(y) ) = −g′′(1)p(y)

[
1 +

1+
g′′(1)
g′(1)

− g′′(1)
g′(1)

q(y)
p(y)

]
+ o(1)

= −g′′(1)p(y)
[
1 + 1−C

C
q(y)
p(y)

]
+ o(1).(35)

Therefore, we have the following equation.

− ∂If

∂W

(
CWT W

)
= − ∂Ig

∂W

(
CWT W

)
= f ′′(1)

[
C

{
I − Ep(y)[ϕ(y)yT ]

}
W

+(1 − C)
{
I − Eq(y)[ϕ(y)yT ]

}
W

]
+ o(1). (36)

Therefore,
0 < C ≤ 1 (37)

is a region of faster convergence with the ratio of
1 + (1−C

C ) q
p . Note that C = 1 is the case of the mini-

mum mutual information ICA because of (12).

3.3. Special Classes of the f-ICA

A useful class of convex functions satisfies the following
equality.

f(xy) = kf(x)f(y) (38)

The following function satisfies this equality.

f(r) = rβ

k(β) (39)

Here, β and k(β) should have a relationship so that f(r)
be a convex function. If we choose f(1) = g(1) = 0 and
f ′′(1) = g′′(1) = 1, then

f (α)(r) = 4
1−α2 (r − r

1−α
2 ), (40)
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and
g(α)(r) = 4

1−α2 (1 − r
1+α

2 ) (41)
are such convex functions for α ∈ (−∞,∞). In this
case,

C = f ′′(1)
f ′(1) = − g′′(1)

g′(1) = 1−α
2 (42)

and
1 − C = 1 − f ′′(1)

f ′(1) = 1 + g′′(1)
g′(1) = 1+α

2 . (43)

Note that (37) corresponds to

−1 ≤ α < 1. (44)

Thus, the α-divergence which uses f (α)(r) and g(α)(r)
inherits the convexity control ability of the f-divergence
through the parameter α instead of the parameter C.

4. IMPLEMENTATION OF THE CONVEX
DIVERGENCE ICA

4.1. Non-Anticipatory Realization as the Mo-
mentum f-ICA

First, we observe that q(y) is the target function of p(y)
such that

q(y) = lim
t→∞ p(t)(y) (45)

under an appropriate convergence criterion. Here, t
is the index for the iteration. Then, there is a non-
anticipatory approximation at the t-th iteration such
that

q(y) ⇐ p(t)(y) and p(y) ⇐ p(t−τ)(y). (46)

By this approximation, we have the following sample-
based learning algorithm.
[Momentum f-ICA]

If we use q(y) as p(t)(y) and p(y) as p(t−τ)(y) at
the t-th iteration, then the sample-based learning is as
follows.

∆̃fW (t) = ∆̃W (t) + µf ∆̃W (t − τ)

= ρt

[
{I − ϕ(y(t))y(t)T }W (t)

+µf{I − ϕ(y(t − τ))y(t − τ)T }W (t − τ)
]

(47)

Here,
µf = C

1−C (48)

Thus, we added a momentum term ∆̃W (t−τ) weighted
by µf . Figure 1 illustrates a flow of data and updates.
Note that the case of µf = 1−α

1+α corresponds to the α-
ICA [9], [12]. Further special case of α = 1, i.e., µf = 0
is

∆̃fW (t) = ∆̃W (t) (49)

which is the plain minimum mutual information method
of [15].

t-1 t t+1

X(t-1) X(t)

∆W(t-1) ∆W(t)

W(t-1) W(t) W(t+1)

Y(t)

0

0

0

1 2

3

3

3

~ ~

Figure 1: Diagram of the Momentum f-ICA.

4.2. Anticipatory Realization as the Turbo f-
ICA

There is an anticipatory approximation at the t-th it-
eration such that

q(y) ⇐ p(t+τ)(y) and p(y) ⇐ p(t)(y). (50)

This is more natural than the momentum f-ICA since
p(y) has the present iteration index. Then, we have the
following sample-based learning algorithm.
[Turbo (Look-ahead) f-ICA]

∆̃fW (t) = ∆̃W (t) + νf ∆̃W (t + τ)

= ρt

[
{I − ϕ(y(t))y(t)T }W (t)

+νf{I − ϕ(ŷ(t + τ))ŷ(t + τ)T }Ŵ (t + τ)
]

(51)

Here,
νf = 1

µf
= 1−C

C (52)

The look-ahead terms Ŵ (t + τ) and ŷ(t + τ) are
estimations of W (t+τ) and y(t+τ) using the usual log-
version. Thus, we added a predicted term ∆̃Ŵ (t + τ)
weighted by νf . Figure 2 illustrates the flow of data
and update terms. We comment here that there is a
duality between Equations (47) and (51). We also note
in advance that τ = 1 works effectively enough for both
causal and non-causal methods

4.3. Orthogonal f-ICA

Amari et al. [2] introduced an orthogonal ICA which
is expected to suppress zero-power fake signals. The
idea is to find an update term, say ∆̃+W , which is
orthogonal to ∆̃W so that

< ∆̃W, ∆̃+W >W = 0. (53)
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Figure 2: Diagram of the Momentum f-ICA.

Such an update term ∆̃+W is obtained as follows. Let

Λ = diag [λi]Ki=1 (54)

be a non-singular diagonal matrix. Let

W + ∆̃W = (I + dΛ)W. (55)

Then, it holds that

∆̃+W = ρ{Λ − ϕ(y)yT }W, (56)

where
Λ = diag [ϕi(yi)yi]Ki=1. (57)

We can obtain four types of orthogonal f-ICA algo-
rithms as is given in [10].

4.4. Combination of Momentum and Turbo f-
ICA’s

It is possible to use both momentum and turbo effects.

∆̃fW (t) = ∆̃W (t) + µt∆̃W (t − τ) + νt∆̃Ŵ (t + τ)
(58)

We can give reasoning to use this update equation from
the definitions of the convex divergence. Definition (1)
means that the current environment is considered to be
q(y). On the other hand, definition (2) takes p(y) as
the current environment. Thus,

D(p‖q) = Df1(p‖q) + Df2(q‖p)
= Df1(p‖q) + Dg2(p‖q) (59)

gives the joint momentum and turbo f-ICA.

4.5. Experiments

4.5.1. Experimental Evaluation

Since we are given {x(n)}N
n=1 as a set of mixture source

vectors, the expectation E[·] is approximated by 1
T

∑T
i=1[·]

where T is the number of samples in a selected window.
The case of T = N is the full batch mode. If we use
T < N as a window, it becomes a semi-batch mode. If
T = 1, the case is an incremental learning. It is pos-
sible to choose a window size smaller than N for the
look-ahead part so that computation is alleviated.

We chose mixtures of five time series as benchmark-
ing problems. The non-linearity of ϕ(y) = y3 [8] was
used. The convergence speed was measured by the
cross-talking error [15] which checks the closeness of
the matrix WA to ΛΠ .

Our first experiment is, (i) to obtain a limit large ρ
for the plain MMI. ρ = 0.50 was found to be the limit
after many trial runs. Following to this step, (ii) the
f-ICA was applied by using this ρ. Table I shows the
speed of convergence.

Table I Iteration counts for ICA’s with ρ = 0.50.
plain MMI momentum turbo m+t

23 18 9 7

Thus, the f-ICA strategies are effective.
Next, we try experiments from a different angle. We

have a rule-of-thumb; say, ρ = 0.1. Table II compares
this case.

Table II Iteration counts for ICA’s with ρ = 0.1.
plain MMI momentum turbo m+t

115 39 16 14

Recommended figures are C = 0.7 for the momentum
f-ICA, and 1 − C = 0.85 for the turbo f-ICA .

4.5.2. Applications

After [14], we have tried processing of brain fMRI data.
We applied the f-ICA to find active areas when a tested
person watches moving images. Figure 3 shows an ac-
tive area at the rear of the right hemisphere (male). Be-
cause of the f-ICA, a conventional personal computer
was enough.

5. CONCLUDING REMARKS

The convex divergence, or the f-divergence, is an in-
triguing quantity which measures a directed distance
of two probability densities. If the kernel function is
convex with twice continuous differentiability, we can
find an accompanied function which can be regarded
as a generalized logarithm In this context, there are
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Figure 3: Activation pattern for “ssmmssmm” and its
associated map.

generalizations of the score function and the informa-
tion matrix. The Cramér-Rao bound remains non-
deteriorated.

In this paper, we focused on the derivation of ICA
algorithms using the f-divergence as a surrogate func-
tion for independence. It is worth noting that the
EM algorithm was also extended by using a divergence
measure [13]. The present paper revealed that the α-
divergence used in [13] essentially “spans” the methods
of the f-divergence.
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