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ABSTRACT

If two independent observations or processes are measured

with the same apparatus, the inherent nature of the mea-

suring device will in many cases introduce a dependency

between the two recorded processes object to inspection.

In this paper a suggestion of how Independent Component

Analysis (ICA) can be used to identify such device depen-

dencies and in turn give an estimated reconstruction of the

observations without the correlation between signals intro-

duced by the apparatus. The procedure is illustrated with

the use of an "electronic nose" used to sample odours from

mixtures of alcohol solutions. It is shown that ICA as a

novel tool in the analysis of odour signals can extract the

independent odour sources and give acceptable estimates of

the ratio with which the alcohol solutions were mixed with

two different approaches.

1. INTRODUCTION

Independent Component Analysis (ICA) has successfully

been applied as a solution to the so called cocktail party

problem and blind source separation problems in general.

A necessary assumption for robust estimation of source sig-

nals is that the sensors used to record the signals do not

introduce any new, signi�cant dependencies between the

sources that were not present before the signal reached the

recording device. By the use of sensors with varying char-

acteristics, a satisfactory reconstruction of the source sig-

nals can not be guaranteed by the conventional use of ICA.

A general sampling system will in principle never be able

to exactly record a random process with no in�uence intro-

duced by the sensors or the nature of the measuring device

used in the recording process.

If it is assumed that sensors dependencies can be mod-

eled as mixtures governed by the nature of the recording

process, it will in this paper be shown that estimates of the

source signals, sensor dependencies and the unmixing sys-

tem is possible.
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The next section presents the two ICA-models that are used

in this work. Section 3 illuminates the problem with corre-

lated signals by the use of a generated set of signals where

the correlation is known. Thereafter, in Section 4, the pro-

posed methods are applied on a real world example with

signals sampled by an electronic nose. In the last section, a

conclusion and some further guidelines are given.

2. ICA-MODELS

Several introductions to ICA exist. Among others, the ref-

erences [1, 2] are recommended for the reader not familiar

to ICA. Here, only a brief review of the conventional ICA-

model, followed by a proposal of an extended ICA-model,

will be given.

2.1. ICA-model of independent sources

The following ICA model is based on the work reported by

Comon [3] and Hyvärinen & Oja [4].

Suppose thatN observationsx1; x2; :::; xn; :::; xN ofM

independent sources s1; s2; :::; sm; :::; sM have been linearly

mixed together as

xn = an1s1 + :::+ anmsm + :::+ anMsM ; (1)

for n = 1; 2; :::; N . The mixing system is then charac-

terized by the set of coef�cients anm, under the assump-

tion that both the mixtures xn and the sources sm are ran-

dom variables. It is convenient to use matrix notation for

x = [x1; x2; :::; xN ]
T and s = [s1; s2; :::; sM ]T , so that the

mixing system in Eq. (1) can be rewritten

x = As; (2)

where A is a full rank N � M scalar matrix containing

the coef�cients anm of the mixing system. This statistical

model is called an ICAmodel [5], and the goal is to estimate

an inverse ofA giving a systemW such that

s =Wx; (3)

thus recovering the original sources sm before the mixing

took place.
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2.2. ICA-model of dependent sources

The standard ICAmodel assumes independent sources, which

is not always the case. An alternative ICA-algorithm that

deals with dependent sources called dependent component

analysis (DCA) has been proposed [6]. Here, a simpler ap-

proach is proposed.

Suppose thatN observationsx1; x2; :::; xn; :::; xN ofM

dependent sources d1; d2; :::; dm; :::; dM have been linearly

mixed together as

x = Ad; (4)

whereA is a full rankN �M scalar matrix containing the

coef�cients anm of the mixing system. The M dependent

sources d1; :::; dM of K are again assumed to consist of K

independent sources s1; s2; :::; sk; :::; sK that have been lin-

early mixed together by the sampling system as

d = Bs; (5)

whereB is a full rankM �K scalar matrix containing the

coef�cients bmk of the mixing system governed by the na-

ture of the measuring device. The observed signals are thus

generated by a double mixture of independent sources,

x = A(Bs); (6)

whereA is a mixture of signals, andB is the mixture intro-

duced by the sampling system. The goal is to estimate an

inverse ofB giving a systemV such that

d = Vs; (7)

thus recovering the original sources sk before the mixing by

the sampling system took place.

Standard ICA-algorithms estimate the sources are under

the assumption of a single mixture procedure as described in

the standard ICA-model in Eq. (2). In the case of dependent

sources, as in Eq. (6), standard ICA-algorithmswill produce

an unmixing systemW given by

W = (AB)�1; (8)

thus incorporating the sensor dependencies introduced byB

to the unmixing ofA. As a result, the unmixing systemW

will not be an accurate estimate of A�1. This is because

the standard ICA-model assumes B = I, thus no sensor

dependencies present. If the choice A = I is used, the

unmixing system in Eq. (8) becomes

W = (AB)�1 = (IB)�1 = B�1 = V; (9)

and may thus be stored for further reference of the sensor

dependencies. When the system again is to measure a pro-

cess where a mixture of signals is present, that is A 6= I,

an unmixing systemW following Eq. (8) is estimated. The

true signal mixtureA can then be calculated using the sen-

sor dependent reference matrixB by

A =W�1B�1: (10)

3. DEPENDENCE AND INDEPENDENCE

The extended ICA-model just described and its proposed

solution, is only tractable when sensor dependencies are

�xed, and do not vary with different input signals. In this

section, a set of test signals with known dependencies is in-

troduced and explored. These test signals lead to an alterna-

tive way to estimate sensor dependencies when the extended

ICA-model does not hold.

3.1. Test signals

Sinusoidal signals are traditionally used as basis functions

in frequency analysis. Such a set of basis functions are easy

to construct and modify. Due to their property of being

mutually orthogonal at speci�c frequencies only, sinusoidal

signals are well suited as test signals since the degree of

correlation can be controlled. We de�ne the following,

x = sin(2�!1t); t 2 T

y = sin(2�!2t); t 2 T
(11)

where !1 and !2 denotes the angular frequencies of each of

the signals. The correlation coef�cient, c, between the two

signals x and y is given by their normalized inner product,

c = h
x

jjxjj
;
y

jjyjj
i; (12)

where jj � jj denotes the vector norm.

3.2. Correlation between the test signals

From the test signals chosen in Eq. (11), we chose !1 to

be constant !1 = 0:4. The time interval T is set to be

equal to two full periods for the sinusoidal signal x, so that

T = [0; 5]. For the other test signal, y, we let !2 vary in

an interval 
 de�ned as the range 
 = [!1; 2!1]. The cor-
relation between the two signals x and y will thus depend

on the chosen value for !2. The coef�cient of correlation

will have its maximum value, c = 1, when !2 has its lowest
value in the interval 
, namely !2 = !1. Thus, the signals

are equal, x = y. With increasing values for !2, the corre-

lation, c, between the two signals will decrease as the two

signals become more independent of each other.

Fig. 1 shows in the top box the correlation coef�cient c

between x and y as a function of the angular frequency !2
of the signal y. It can be seen that the correlation between

x and y are zero at regularly values for !2, namely

!2 = k!1=4; k = 4; 5; ::: (13)

At these points, the signals x and y are uncorrelated and

thus mutually orthogonal to each other. It can be shown that

the correlation coef�cient, c, as a function of !2 follows

c(!2) /
sin (!2 � !1)

(!2 � !1)
�

sin (!2 + !1)

(!2 + !1)
: (14)
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Fig. 1. Upper: The correlation coef�cient c between the

two x and y de�ned in Eq. (11) as a function of the angular

frequency !2 of the signal y. Middle: The total contribu-

tion from the "common" part, ccommon Lower: The total

contribution from the "differ" part, cdi�er.

3.3. ICA applied to the test signals

As the correlation between the two test signals x and y has

been established, we now turn our focus on what to expect

when ICA is applied to the test signals1. It should be evident

that when !2 = k!1=4; k = 4; 5; :::, x and y are orthogonal

and does not share any common source signal. According to

the ICA-model, this implies the special case where the ob-

servation signals equals the source signals, thusA = I. The

particular situation where !2 = 2!1 is indicated in Fig. 2.

If the value of !2 is chosen from the lower region of 
,
thus close to the value of !1, high correlation between x and

y will result. According to the ICA-model, x and y are con-

sidered to be mixtures of some unknown source signals, s1
and s2, andA 6= I. By the application of an ICA-transform

to the highly correlated signals x and y, the resulting source

signals s1 and s2 will be mutually independent and uncor-

related, and not necessarily mimic the behaviour of any of

the input signals x and y.

An example of an ICA-transform of x and y using !2 =
(101=100)!1 is shown in Fig. 3. As seen from the upper

plot in the �gure, the two signals are visually similar near

t = 0, and differs increasingly with increasing t. The mid-

dle plot in Fig. 3 shows the �rst independent component,

s1 extracted from x and y. It is seen that the shape of this

component is approximately sinusoidal with a constant am-

plitude andwith an oscillation frequencydifferent from both

!1 and !2. The second independent component, s2 plotted

in the lower box of Fig. 3, shows us that the increasing dif-

ference between the input signals x and y is to a certain

1All ICA carried out in this text is performed with the FastICA Matlab

package provided by Hyvärinen [7, 8]. FastICA was used with the de�ation

approach and g(u) = u
3with no dimensionality reduction.
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Fig. 2. Upper: The two input signals to the ICA-model,

x and y, where !2 = 2!1, thus indicating that the signals

are orthogonal. Middle: The �rst estimated independent

component which is approximately equal to a scaled version

of x. Lower: The second estimated independent component

which is approximately equal to a scaled version of y.

degree re�ected with the increasing amplitude of s1.

The mixing matrix estimated from the ICA-transform in

this example suggests that s1 contributes to roughly 75% of

both the two input signals x and y, while the rest is con-

tributed by s2. This result suggests that the �rst component,

s1, contains a signal part that is "common" in both input sig-

nals x and y, while s2 represent information regarding the

"differ" between the signals. The suggestion can be veri�ed

by calculating the correlation coef�cients between the input

signals and the source signals. Thus, the correlation be-

tween the source signal s1 and the input x gives the amount

of contribution from the "common" part, while the correla-

tion between s2 and the input x, the "differ" part yield.

The sum of the correlation coef�cients calculated for

both input signals between x and y and the source signal

s1 will thus give the total contribution from the "common"

part. A similar argument applies for the "difference" part,

s2. Due to the scaling and permutation property of the ICA-

transform, normalization and absolute values are required,

so the applied de�nition is

ccommon =
���h x

jjxjj
; s1

jjs1jj
i+ h y

jjyjj
; s1

jjs1jj
i
���

cdi�er =
���h x

jjxjj
; s2

jjs2jj
i+ h y

jjyjj
; s2

jjs2jj
i
��� : (15)

Fig. 1 shows plots of ccommon and cdi�er for varying !2 2

. The upper box shows the correlation coef�cient c be-

tween x and y as a function of the angular frequency !2 of

the signal y. The middle box shows the total contribution

from the "common" part, while the lower plot indicates the

total contribution from the "differ" part. It is clearly seen

that the "common" correlation follows the correlation be-

tween x and y. The contribution from the "differ" increases
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Fig. 3. Upper: The two input signals to the ICA-model, x

and y, where !2 = (101=100)!1, thus indicating that the

signals are highly correlated. Middle: The �rst independent

component, s1 extracted from x and y. It is seen that the

shape of this component is approximately sinusoidal with a

constant amplitude. Lower: The second independent com-

ponent, s2 shows that the increasing difference between the

input signals x and y is to a certain degree re�ected with

the increasing amplitude of s1.

as the correlation between the inputs decreases. It can be

noticed that ccommon = 1 and cdi�er = 1 for orthogonal in-
puts, !2 = k!1=4; k = 4; 5; :::, which is reasonable since
the two source signals then represent each of the inputs, x

and y.

3.4. ICA applied to mixed test signals

It will now be illustrated how a mixture of highly correlated

test signals can be estimated using the procedure described

in section 2.2. The test signals used are x and y where

!2 = (101=100)!1 as illustrated before in Fig. 3. Now, a

mixtureA is introduced between the signals given by

A =

�
1 2
3 4

�
: (16)

The two mixed signals are shown in the top box of Fig. 4.

In the two boxes below are plotted the result of the ICA-

transform. As seen, the estimated source signals are approx-

imately the same as in the case where no mixing took place

(Fig. 3), since the ICA-transform has estimated an unmixing

system incorporating both the applied signal mixtureA and

the correlation between the signals B. The correlation ma-

trix B can be established using the unmixed signals. Thus,

Eq. (10) can be used to estimate the signal mixture, which

in this case was estimated to be

Â =

�
1:00 2:00
2:99 4:01

�
: (17)
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Fig. 4. Upper: The test signals mixed according to the mix-

ing matrix in Eq. (16). Middle: First independent compo-

nent, representing the "common" signal part. Lower: Sec-

ond independent component, representing the "differ" part

of the signals.

4. APPLICATION TO ODOUR SIGNALS

In this section, a suggestion of how the described ICAmodel

can be used to separate odour signals generated from alco-

hol solutions and recorded with an electronic nose is pre-

sented, as well as giving estimates of the mixing applied to

the signals. This process can be viewed as a cocktail party

of odours instead of sound signals.

4.1. Electronic nose

With the term electronic nose is understood an array of chem-

ical gas sensors with a broad and partly overlapping sen-

sitivity for measurements of volatile compounds combined

with multivariate statistical data processing tools. The elec-

tronic nose belong to the category of rapid analysis instru-

ments, allowing non-destructive analysis of vapours at a

high rate with suf�cient reproducibility and accuracy.

Sensor data acquisition is accomplished by dynamic sam-

pling of head-space gas, i.e. gas from the vial, saturated

with volatiles from the sample, pumped over the sensor ar-

ray. While exposed to the analyte gas, the semi-conducting

sensors generate an electronic output signal that is used to

determine the sensor response value for the measured sam-

ple.

In the work presented in this text, a hybrid gas sen-

sor array manufactured by AppliedSensor Technologies in

Linköping, Sweden was used to perform the measurements.

The gas sensor array consisted of 22 gas sensors. Each sen-

sor possessed a unique sensitivity pro�le with varying sen-

sitivity and selectivity towards certain volatile compounds.
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Fig. 5. Score plot showing the linear relationship of the

graded concentration between the four solutions: Pure

ethanol 0.5 % and butanol 1%, and two mixtures of the so-

lutions with a ratio 1:2 and 2:1.

4.2. Materials and methods

The odours subject to inspection by the proposed scheme

should satisfy the two criteria set by the ICA-model. First,

the odour signals should be as independent as possible be-

fore sampling by the electronic nose. Second, a mixture of

two odour components should follow a linear relationship.

The last condition is not met if the mixing of gases involves

a chemical reaction, thus generating new molecular struc-

tures in the gas.

For the following investigation, four different solutions

with butanol 1% and ethanol 0.5% were used, since alco-

hol solutions meet the mentioned criteria. The concentra-

tion level of the solutions were chosen to �t in the linear

response area of the electronic nose. Two of the solutions

consisted of only ethanol and butanol, and the other two

were mixtures using a ratio of 1:2 and 2:1 for both ethanol

and butanol. The �rst two solutions will in the rest of this

text be referred to as the pure alcohol solutions, while the

latter are called mixtures. By this procedure, the four so-

lutions then represented a graded decrease in concentration

for both ethanol and butanol. This graded concentration de-

crease was veri�ed using the standard data analysis tool for

electronic noses, principal component analysis (PCA). Each

of the four solutions were measured 20 times for each of the

22 sensors in the array. Selected features from the response

curves of all the sensors were used to create a PCA score-

plot from the response signals of the electronic nose. The

score-plot, using the two most prominent principal compo-

nents, is shown in Fig. 5. It is seen that the four solutions

form clusters that to some extent are separable to each other.

Also indicated is a line �tted according to the cluster means

showing the linear relationship between the four solutions,

thus verifying that the responses are in the linear response

area of the electronic nose.

For the rest of this work, only 2 of the 22 sensors in the

array were picked for the further analysis according to their

level of response to the alcohol solutions. Both sensors were

of the MOSFET2 transistor type. Typical response signals

for the two sensors (numbered 12 and 13) is shown in Fig. 6.

From the traces shown, it should be clear that the sensor

responses are highly correlated for all solutions.

4.3. Separation of odours using ICA

The sensor responses from the two sensors to the four al-

cohol solutions described previously were ICA-transformed

one at the time, thus giving two independent components for

each of the four solutions. The estimated independent com-

ponents are shown in Fig. 7. It can be seen from the traces

that for each of the solutions one of the components indi-

cate strong relationship with the sensor response (Fig. 6) of

the major ingredient in the measured solution as opposed

to the other component. As described for the test signals

in Sec. 3.3, this result indicates a "common" and a "differ"

component.

The goal of this investigation is to establish the ratio

with which the two mixed alcohol solutions were mixed,

using only the available source signals estimated from the

pure alcohol solutions by the ICA-transform. Traditionally,

the calculation of such mixing ratios of odours has been a

challenging problem to the electronic nose community. This

has been due to both response variability of the sampling

instruments and the lack of suitable analysis tools.

Due to the correlation that clearly exists between the

sensor responses, the unmixing system estimated from the

ICA-transform will incorporate both the sensor dependen-

cies, B, and the applied mixtures of the solutions,A. Since

the pure solutions of both ethanol 0.5% and butanol 1.0%

are available, the dependency matrix B can be estimated

according to the scheme outlined in section 2.2. Unfor-

tunately, the sensor dependencies differs according to the

odour it is exposed to and can not be linearly described. The

estimated dependency matrix for the ethanol solution, Be
is not equal to the estimated dependency matrix using the

ethanol solution,Bb. If instead, a dependency matrix using

an average of Be and Bb where their columns are normal-

ized is used, a suitable dependency matrix can be formed.

A more direct approach in estimating the contribution

from the two mixed alcohol solutions is the calculation of

ccommon and cdi�er as de�ned in Eq. (15). These are cal-

culated for both of the pure alcohol solutions and added

together, giving the total contribution from each of the al-

cohols.

2MOSFET (metal-oxide-semiconductor �eld-effect transistor) gas sen-

sors consist of three layers; a doped silicon semiconductor, a thick oxide

layer (SiO2) as insulator and on top a thin catalytic metal layer.
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Fig. 6. Typical response signals as functions of time for two

selected sensors when exposed to the four alcohol solutions.
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Fig. 7. Source signals from the four alcohol solutions es-

timated by the ICA-transform. "Common" components are

shown left, while "differ" components are shown right.

Table 1 shows the estimated mixing ratios averaged over

11 odour signals for each solution for the two mixed alcohol

solutions by both the dependency matrix approach and the

direct method with correlation calculation. It can be seen

that the averaged estimates are quite close to the true ra-

tios, 1:2 and 2:1 for both approaches, while the variance is

still considerably large. This variance may be explained by

the large variability in the responses produced by electronic

noses.

5. CONCLUSIONS

ICA has been applied as a novel tool in the analysis of data

produced by odours sampled by an electronic nose. It has

been shown that sensor dependencies present in the mea-

surement process may be overcome by the use of ICA to ei-

ther construct a dependencymatrix in the linear dependency

Eth.-But. ratio 2:1 Eth.-But. ratio 1:2

Est. content Eth. (%) But. (%) Eth. (%) But. (%)

Dep. matrix 63� 13 37� 13 36� 14 64� 14
Cor. approach 66� 13 34� 13 36� 12 64� 12

Table 1. Classi�cation results of the two mixed alcohol

solutions using dependency matrix and the correlation ap-

proach. Indicated are percentage of the estimated content.

case, or by a direct estimate of the correlation between the

observed signals and some reference signals recorded with-

out mixing. The described methods has successfully been

applied to a real world application, estimating the mixing

ratio with which two alcohol solutions were mixed, though

with large variance. In the future, the large variance in the

results should be decreased, and other types of odours in-

volvingmore than two compounds should be tested. Further

investigation using ICA on odour signals should follow.
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