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ABSTRACT

Geometric algorithms for linear ICA have recently received
some attention due to their pictorial description and their
relative ease of implementation. The geometric approach to
ICA has been proposed first by Puntonet and Prieto [1] [2]
in order to separate linear mixtures. We will reconsider geo-
metric ICA in a solid theoretic framework showing that fix-
points of geometric ICA fulfill a so called geometric conver-
gence condition, which the mixed images of the unit vectors
satisfy, too. This leads to a conjecture claiming that in the
supergaussian unimodal symmetric case there is only one
stable fixpoint, thus demonstrating uniqueness of geometric
ICA after convergence.

1. INTRODUCTION

In independent component analysis (ICA), given a random
vector, the goal is to find its statistically independent com-
ponents. This can be used to solve the blind source sepa-
ration (BSS) problem which is, given only the mixtures of
some underlying independent sources, to separate the mixed
signals thus recovering the original sources. In contrast to
correlation-based transformations such as principal compo-
nent analysis, ICA renders the output signals as statistically
independent as possible by evaluating higher-order statis-
tics. The idea of ICA was first expressed by Jutten and Her-
ault [3] [4] while the term ICA was later coined by Comon
in [5]. However the field became popular only with the sem-
inal paper by Bell and Sejnowski [6] who elaborated upon
the Infomax-principle first advocated by Linsker [7] [8].

Recently, geometric ICA algorithms have received fur-
ther attention due to their relative ease of implementation
[1] [9]. They have been applied successfully to the analy-
sis of real world biomedical data [10] [11] and have been
extended to non-linear ICA problems [12] also.

2. BASICS

For m,n € N let Mat(m x n) be the R—vectorspace of
real m x n matrices, and Gl(n) := {WW € Mat(n x n) |
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det(W') # 0} be the general linear group in R™.

In the quadratic case of linear blind source separation
(BSS), a random vector X : Q — R™ called mixed vector
is given; it originates from an independent random vector
S : Q — R”, which will be denoted as source vector, by
mixing with a mixing matrix A € Gl(n),i.e. X = Ao S.
Here 2 is a fixed probability space. Only the mixed vector
is known, and the task is to recover A and therewith S =
A 1o X,

In the nonlinear case, where A is any function R —
R™, little is known because, without further restrictions,
the problem is generally ill-posed. But in the linear case
described above, many different algorithms have been pro-
posed with the Bell-Sejnowski maximum entropy algorithm
[6] being the most popular and also most widely studied
among them.

In this paper we consider a geometric approach to the
source separation problem. As we need a certain uniqueness
of the solution, we want at most one of the source variables
S; := m; o S, where ; : R* — R denotes the projection
on the i-th coordinate, to be Gaussian. Then any solution
to the BSS problem, i.e. any B € Gl(n) such that Bo X is
independent, is equivalent to A~!, where equivalent means
that B can be written as B = LPA~! with an invertible di-
agonal matrix (scaling matrix) L € Gl(n) and an invertible
matrix with unit vectors in each row (permutation matrix)
P € Gl(n). This has been proved by Comon [5]. Vice
versa, any matrix B which is equivalent to A=! solves the
BSS problem, since we calculate for the transformed mutual
information

I(BoX)=I(LPA oX)=I(A'oX)=1(S) =0,

taking into account that the information is invariant under
scaling and permutation of coordinates.

3. GEOMETRIC CONSIDERATIONS

The basic idea of the geometric separation method lies in the
fact that in the source space {si,...,sx} C R”, where s;



Xy

Fig. 1. Example of a two-dimensional scatter plot of a mix-
ture of two Laplacian signals with identical variance. The
signals have been mixed by a maxtrix A mapping the unit

vectors onto vectors inclined with angle «; to the z;-axis.
Striked lines show borders of the receptive fields.

represent a fixed number of samples of the source vector S
with zero mean, the clusters along the axes of the coordinate
system are transformed by A into clusters along different
lines through the origin. The detection of those n new axes
allows to determin a demixing matrix B which is equivalent
to A1, see figure 1.

We now consider the learning process to be terminated
already and describe precisely how to recover the matrix A
then, i.e. after the axes, which span the observation space,

have been extracted from the data successfully. Let
L:={(z1,...,2p) € R* | Jiz; >0,z; =0forall j #1i}

be the set of positive coordinate axes. Denote L' := AL the
image of this set under A.
We claim that L' intersects the unit (n — 1)-sphere

S = {z eR | |z| = 1}

in exactly n distinct points {p1, ..., p,}. For this note that

L' n S~ is the image of the unit vectors {e1, ..., e, } un-
der the map
f: R*\{0} — R"\{0} — S"!
x — Ax — ‘A;‘

so we have (after a possible reordering of the p;’s) f(e;) =
p;. Since A is bijective, p; = p; induces e; = e; and hence
i = j. Furthermore, we note that the p;’s span the whole
R™, so they form a basis of R".

Define the matrix M, . ,. € Gl(n) to be the linear
mapping of e; onto p; fori = 1,...,n, i.e.

Mp,....p. = (1] .- Pn) -
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This matrix thus effects the linear coordinate change from
the standard coordinates (e;); to the new basis (p;);. We
then have the following lemma:

Lemma 3.1. For a permutation ¢ € S,,, the two matrices

My,....p, ad Mp,_ ;.. p.., areequivalent.
Proof.
My,,...pn = PMPU(U,---,PU(TL)

for a permutation matrix P. O

Theorem 3.2 (Unigueness of the geometric method). The
matrix M, ... p. isequivalent to A.

Proof. By construction of M, .. ., we have

Aei

M, = —
|A€,’|’

p1.pn (€1) = Di = f(e;)

so there existsa \; € R\ {0} such that
Mpl,...,pn (61) = )\iAei.

Setting
A1

0 An

yields an invertible diagonal matrix L € Gl(n), such that

Mpl,...,p = LAeZ

n

This shows the claim. O

Corollary 3.3. The matrix M
lem.

.p,, Solves the BSS prob-

4. THE GEOMETRIC ALGORITHM

We will restrict ourselves to the two-dimensional case; in
[13], we show that for higher dimensions the number of
samples needed to guarantee a fixed error rate grows ex-
ponentially, at least for uniform distributions. Therefore, in
practice, higher-dimensional ICA solutions are sometimes
constructed from their two-dimensional counterparts by pro-
jecting onto R? along different coordinate axes and then re-
constructing the multi-dimensional matrix from the differ-
ent two-dimensional solutions [14] [10] [11]. However, this
only works if the mixing matrix A is close to the identity up
to scaling and permutation.

So, let S : © — R? be an independent two-dimensional
Lebesgue-continuous random vector describing the source
pattern distribution; its density function is denoted by p :



Fig. 2. Visualization of the geometric algorithm with start-
ing points w1 (0) and w,(0) and end points w; (o) and
wa (00).

R? — R. As S is independent, p factorizes in the follow-
ing way
p(x,y) = p1(x)p2(y),

with the marginal source density functions p; : R — R.
We assume the source variables S; tobe distributed symmet-
rically, i.e. p;(z) = pi(—xz) forz €¢ Randi = 1,...,n.
In particular, E(S) = 0. For stability of the geometric al-
gorithm, later we will have to assume that the signals are
supergaussian and unimodal — in practice these restrictions
are often met at least approximately.

As above, let X denote the mixed vector and A the in-
vertible mixing matrix such that X = AS. Without loss of
generality, assume that A is of the form

o~

where «; € [0, ) are two angles. The geometric learning
algorithm for symmetric distributions in its simplest form
then goes as follows:

Pick four starting neurons wy , w} , wo and w’ on S* such
that w; and w; are opposite each other, i.e. w; = —w} for
i = 1,2, and wy and w- are linearly independent vectors
in R2. Usually, one takes the unit vectors w; = e; and
w9 = eq. Furthermore fix a learning rate n : N — R such
that n(t) > 0, > ,enn(n) = oo and ), n(n)? < oco.
Then iterate the following step until an appropriate abort
condition has been met:

Choose asample z(¢) € R? according to the distribution
of X. If z(t) = 0 pick a new one — note that this case
happens with probability zero since the probability density
function (pdf) px of X is assumed to be continuous. Project

x(t) onto the unit sphere and get y(¢) := \;Egl Leti bein

Cos aq
sin a;

COoS iy
sin aip
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Fig. 3. Plot of the density py of a mixture of two Laplacian
signals with identical variance. The weight adaptation by
the geometric algorithm is also visualized, also see figure 2.

{1,2} such that w; or wj is the neuron closest to y with
respect to an Euclidean metric. Then set

wi(t +1) := m(w;(t) + n(t) sgn(y(t) — wi(?))),
where 7 : R? \ {0} — S! is the projection, and
wi(t+1) := —w;(t +1).

The other two neurons are not moved in this iteration.

In figures 2 and 3 the learning algorithm has been vi-
sualized both on the sphere and after the projection onto
[0, 7).

This algorithm may be called absolute winner-takes-
all learning. It is Kohonen’s learning algorithm for self-
organizing maps with a trivial neighbourhood function (0-
neighbour algorithm) but with the modification that the
step size along the direction of a sample does not depend on
distance, and that the learning process takes place on S* not
in R.

5. FORMAL MODEL OF THE GEOMETRIC
ALGORITHM

Now, we present a formal theoretical framework for geo-
metric ICA which will be used in the next section to formu-
late a proper convergence condition.

First, we show using the symmetry of S that it is in fact
not necessary to have two neurons w; and w; moving around
on the same axis. Indeed, we should not speak of neurons
but of lines in R2 — so our neurons would be living in the
real projective space RP' = S'/ ~, where ~ identifies
antipodal points. This is the manifold of all 1-dimensional
subvectorspaces of R?. A metric is defined by setting

d([«], [y]) == min{|z —y|, |z + y[}



for [z], [y] € RP'. Alternatively, one can picture the neu-
ronsin S1 := S' N {(z1,22) € R?|zy > 0}/ ~, where ~
identifies the two points (1,0) and (—1,0). Lety : St —
S* be the canonical projection. Furthermore, it is useful to
introduce polar coordinates ¢ : S} — [0,7) on S} with
the stratification ¢’ : R — S such that ¢’ o ¢ = id. Let
X := oy’ : R — [0, ) be the ’'modulo 7” map. We want
to somehow approximate the transformed random variable

Y:=ponomoX:Q —[0,7).

Note, that the density function py of Y can be calculated
from the density px of X by

py(p) = / px (rcosp,rsin )rdr

—0oQ

|detA|_1/ p(A~Y(r cos @, 7 sinp) " rdr

— 00

2|detA|*1/ p(Afl(rcosgo,rsingo)T)rdr
0

for ¢ € [0, m) using the symmetry of p. Then the geometric
learning algorithm induces the following discrete Markov
process W (t) : Q — R? defined recursively by

W(0) = (w1, w2)

and
W(t+1) =x(W(t) +n@®)0(Y (t) — W(t))),
where
_ | (sen(z),0) |yl > |=|
bla,y) = { (0,5gn()) |2l > |yl

and Y (0),Y (1), ...isasequence of independent identically
distributed random variables  — R? with the same dis-
tribution as Y — we need them in order to represent the in-
dependence of the successive sampling experiments. Note
that the right hand side of the algorithm has been plugged
into  in order to guarantee that W (¢ + 1) € [0, 7). Indeed,
this is just winner-takes-all learning with a signum function
in R, but taking into account the fact that we have to stay
in [0, 7). Note that the metric used here now is the planar
metric, which is obviously equivalent to the metric on S7
induced by the Euclidean metric on S' c R?.

We furthermore can assume that after enough iterations
there is one point @ € S* that will not be transversed any
more, and without loss of generality, we assume a to be 0
(otherwise cut S* open at a and project along this resulting
arc), so that the above algorithm simplifies to the planar case
with the recursion rule

W(t+1)=W(t)+n)0Y (t) — W(t)).
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This is exactly Kohonen’s learning rule in the 0-neigh-
bour case with an additional sign function. Without the sign
function, and the additional fact that the probability distri-
bution of Y is log-concave, it has been shown [15] [16]
[17] that the process W (t) converges to a unique constant
fixpoint process W = w € R? such that

1

NE) /F epy (p)dyp = w; 1)

fori = 1,2, where

F,' = F(U),) =
{o €0,7) | x(l¢ —wi|) < x(l¢ —wy|) forall j # i}

is the receptive field of the neuron w; and A(F;) is the vol-
ume of the field. However, it is not clear how to general-
ize the proof for our geometric case, especially because we
do not have (and also do not want) log-concavity of Y be-
cause this would lead to a unique fixpoint. Therefore we
will assume convergence in a sense stated in the following
section. Refer to figure 1 for a picture of the distribution on
the sphere together with the corresponding receptive fields
(dotted lines).

6. LIMIT POINTS OF THE GEOMETRIC
ALGORITHM

In this section, we want to study the end points of geometric
ICA, so we will assume that the algorithm has already con-
verged. The idea then is to formulate a condition which the
end points will have to satisfy and to show that the solutions
are among them.

Definition 6.1 (Geometric Convergence Condition). Two
angles l1,1o € [0,) satisfy the Geometric Convergence
Condition (GCC) if they are the medians of Y restricted to
their receptive fields i.e. if /; is the median of py | F'({;).

Definition 6.2. A constant random vector W = (11, i) €
IR? is called fixpoint of geometric ICA in the expectation if

E@ —W(t))) = 0.

Hence, the expectation of a Markov process W (t) start-
ing at a fixpoint of geometric ICA will not be changed by
the geometric update rule indeed, because

EW(i+1) = EW(@®)+n)E@OF (&) - W(t)))
= E(W({)).
Theorem 6.3. If the geometric algorithm converges to a

fixpoint W (oco) = (w1 (00), wa(00)) of geometric ICA in
the expectation, then the w; (o) satisfy GCC.



Proof. Assume w, (co) does not satisfy GCC. Without loss
of generality, let [3;, 2] be the receptive field of w; (o)
such that 3; € [0, ). Since W (o0) is a fixpoint of geomet-
ric ICA in the expectation, we have

E (X[ﬁl,ﬁz](y(t)) sgn(Y (t) —un (OO))) =0,

where x(3, 5,] denotes the characteristic function of that in-
terval. But this means
/Bz
w1 (00)

w1 (00)
/ (=Dpy (p)de +
/ﬁz
w1 (00)

and therefore
w1 (00)
/ py (p)dp =
1
S0 w1 (00) satisfies GCC. The same calculation for ws (o)
shows the theorem. O

lpy(p)de =0

py (p)dp,

As before, let p; := Ae; be the transformed unit vectors,
and let ¢; := p onox(p;) € [0,m) be the corresponding
angles fori =1, 2.

Theorem 6.4. The transformed angles g; satisfy GCC.

Proof. Because of the symmetry of the claim it is enough
to show that ¢, satisfies GCC. Without loss of generality let
0 < a1 < as < m using the symmetry of p. Then, due
to construction ¢; = «;. Let f; := 21292 — Z and f3,
B1+%. Thenthe receptive field of ¢; can be written (modulo
m) as F(q1) = [B1,02]. Therefore, we have to show that
¢1 = ay is the median of py restricted to F'(g1), which
means [ py (p)dp = fff py (p)dp.

We will reduce this to the orthogonal standard case A =
id by transforming the integral as follows:

Js oy (9)dp =
=2|det A|! f;l de [° rdrp(A=1(r cosp,rsinp) ")
= 2/ det Al fyy dedyp(A~ (z,)7)

where K {(z,y) € R?|B; < arctan(y/z) < a1}
denotes the cone of opening angle oy — S; starting from
angle ;. Using the transformation formula, we continue
f;l py (p)dp =2 fA—l(K) dxdyp(x,y). Now note that the
transformed cone A~ (K) is a cone ending at the x-axis of
opening angle /4, because A is linear; therefore we are
left with the following integral:

/ ?1 py (p)dyp

o'} 0

2 / de [ dyp(z,y)
0 —x

2/ d:v/ dyp(z, —y)
0 0

2/ d:v/ dyp(z,y)
0 0

/‘ﬁz

py (p)dy
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where we have used the same calculation for [y, 82] as for
[81, 1] at the last step. This completes the proof of the
theorem. 0

Combining both theorems, we have therefore shown:

Theorem 6.5. Let ® be the set of fixpoints of geometric ICA
in the expectation. Then there exists (i1, w2) € ® such that
M;llm solves the BSS problem. The stable fixpoints in &

can be found by the geometric ICA algorithm.

Furthermore, we believe that in the special case of uni-
modal and supergaussian signals, the set ® consists of only
two elements: a stable and an unstable fixpoint, where the
stable fixpoint will be found by the algorithm:

Conjecture 6.6. Assume that the sources S; are unimodal
and symmetric. Then there are only two fixpoints of geomet-
ric ICA in the expectation.

Note that then, the two fixpoints are related as follows:
If (i1, 102) is a fixpoint in @, then (L2 @1oW2) s the
other fixpoint.

Conjecture 6.7. Assume that the sources S; are unimodal,
symmetric and supergaussian. Then there is only one stable
fixpoint (w;,9) of geometric ICA in the expectation, and
M solves the BSS problem.

W1 ,W2

If the two conjectures have been shown, using the above
remark we can also perform geometric ICA for subgaussian
signals with the standard algorithm. Then

Mt

w1 +Wwg

w1 —a
2 0T 2

is the solution of the BSS problem for the subgaussian case.
Simulations for mixed uniform distributions confirm this re-
sult.

7. UPDATE RULES WITHOUT SIGN FUNCTIONS

We have shown that the geometric update step requires the
signum function as follows

wi(t +1) = wi(t) + n(t) sgnly(t) — wi(t)).

Then (normally) the w; converge to the medians in their re-
ceptive field. Note that the medians don’t have to coincide
with any maxima of the mixed density distribution on the
sphere as shown in figure 4. Therefore, in general, any algo-
rithm searching for the maxima of the distribution will not
find the medians, which are the images of the unit vectors
under the mixture. However under special restrictions to
the sources (same super-gaussian distribution of each com-
ponent, as for example speech signals), the medians corre-
spond to the maxima [18].
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Fig. 4. Projected density distribution py of a mixture of two
Laplacian signals with different variances, with the mixture
matrix mapping the unit vectors e; to (cosa;,sin ;) for
i = 1,2. (dark line = theoritical density function, gray line
= histogram of a mixture of 10.000 samples)

8. CONCLUSION

The geometric ICA algorithm has been studied in a con-
cise theoretical framework resembling the one of Kohonen’s
learning algorithm. The fixpoints of geometric ICA learn-
ing algorithm have been examined in detail. We have in-
troduced a Geometric Convergence Condition, which has to
be fullfilled by the fixpoints of the learning algoritm. We
further showed it is also fulfilled by the mixed unit vectors.
Hence geometric ICA can solve the BSS problem. Finally,
we have given two conjectures for the unimodal case where
the fixpoint property is expected to be very rigid.

In future work, besides treating non symmetric sources
S, these theoretical concepts have to be extended to under-
stand nonlinear geometric algorithms [11]. And of course,
the two conjectures will have to be proven, as well as the
Kohonen proof of convergence to be translated into the above
model.
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