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ABSTRACT

A new framework for multivariate optimization by crite-
ria invariant under componentwise scaling is constructed.
These problems are naturally considered as problems on the
coset
����������	�

�������

. We show that there is a duality be-
tween the optimization flow on this coset and the dynamics
of quantum lattice with inner degrees of freedom. Then we
propose a new algorithm for optimization problems on this
coset named nested Newton’s method, whose essence is the
ignorance of � -body interactions with ����� if we explain
it by using its analogy to quantum lattice. This method is
readily applicable as a highly useful ICA algorithm, which
is robust under gaussian noises, quite fast, and practical for
large dimensional problems. The last feature comes from
the fact that our method requires memory space of order���

, whereas the conventional Newton’s method for ICA
(and the JADE) requires that of order

���
. The matlab code

for this algorithm is available from our web-site.

1. INTRODUCTION

1.1. overview

Independent component analysis(ICA) in its conventional
framework is nothing but a variant of principal component
analysis(PCA) or factor analysis(FA). The concept of ICA,
however, contains more than that. Proposed here are a new
method for ICA, which is highly practical and is formulated
quite differently from PCA and FA.

First, we will construct a fast and highly practical algo-
rithm for optimization problems on

����������	�

�������
by cri-

teria invariant under componentwise scaling, which we call
the nested Newton’s method. The nested Newton’s method
is a method introduced in [1] which decomposes the flow
of optimization on

��� � ����	�

�������
into dynamics of

�
-

particles under two-body interactions. The interaction be-
tween two ’particles’ is decided along the Newton’s man-
ner.

In this method thanks to the translation into two-body
problems, the updating rule is decomposed into manipula-
tions of ����� matrices. This method is quite new though
it is in some sense related to the so-called natural gradient
method or nonholonomic method.

Then we will show that an ICA algorithm without
prewhitening (pre-WH) is constructed from the nested New-
ton’s method, that is, factorized Newton’s method to mini-
mize sum of squared 4-th order cross cumulants between
components (with some weight). Its advantages are as fol-
lows.

1. Robust under gaussian noises. It is not necessary to
estimate the noise variance since this is pure fourth-
order-cumulant-based method.

2. Globally stable even if the number of sources does
not equal the number of observation channels.

3. Convergence is quite fast. Practical also in case where
the number of observation channels are quite large.

It is extremely useful when factor analysis (FA) is un-
avairable. When � � 
 � �"!$#�%&

'(�)!*#+��,.-��+��/ � where
� and

�
are respectively the number of sources and obser-

vation channels, FA is unavailable. The main target of our
method is problems for which this inequality holds.

1.2. notational conventions

We denote the sample mean by 021 and the empirical cumu-
lants by 02143 . ��	�

������� is the set of

� � � nonsingular real
matrices.

��� � ����	�

�������
is the quotient set of

��	�

�������
by the equivalence relation 5 , which is defined by6 5&7�8:9 nonsingular diagonal matrix ; and

6$< ;=7?>
2. NESTED NEWTON’S METHOD

2.1. general framework

We assume that @ samples of
�

-dimensional variablesA 
CBD

EF�.�HG IKJ #ML"NOLP���Q#ML"R�L @�S are available as ob-
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served data. The mean values have already subtracted from
the data, that is, ���I�� , 
CBD

EF�.�HG I < E for all

N
. We often omit

the last lower index denoting the sample number and denote
the data as

�
-dimensional vectors. Let us set

B < 7 BD

EF� � (1)

where we assume that 7�� ��	�

������� . We will study opti-
mization problems with respect to 7 . First, we assume that
there are � criteria

A��
	 J � � � � ��� � �K# L�
*L �?S
which depends on two specific rows in

B
and become very

close to zero at the optimal point. More explicitly, we want
to find 7 with which

J �
	 
CB(G.�.B��+�KJ
become very small simul-

taneously for
#ML�
*L � and

#ML"N��<�� L)�
. SinceBD

EF�

is given, the criteria
A��
	 
CB(G.�.B�� � S ’s are completely de-

termined by 7 . We also assume that
�
	

is scale invariant,
that is,

�
	 
��FB(GH��� B�� � < �
	 
CB(GH�.B��+�
(2)

for any
� �����< E

. Then
A��
	 
CB(GH�.B��+� S ’s become invariant

under multiplication 7 � ;=7 of

;�� � ���������< A
diagonal matrix in

��	�

������� S
from the left-hand-side of 7 . Thus the optimal point has in-
variance under this multiplcation. The optimization of 7 on
this setting is naturally considered as an optimization prob-
lem on the coset

����������	�

�������
.[2]

In this paper, we will construct the nested Newton’s
method to solve this kind of problems. The nested New-
ton’s method is originally introduced in [1]. Here we will
explain the nested Newton’s method by using the analogy
of the multiplicative update (3) of

�
-dimensional ICA op-

timization to quantum dynamics of
�

-particles under two-
body interactions.

2.2. multiplicative updating

We consider an iterative multiplicative algorithm. Let us set

� �����<! #" � � � � matrices $$
" G G < E 
H# L N L � ��% >

We specify the flow of the sequence by
A " 
'&+� � �)( & <E �K#(� � ��*�*�* S , which describes the amount of individual

steps:

BD

EF� <
observation

� BD
'& ! #+� < 
�+-,/. " 
'&+���4BD
'&+� > (3)

In other words,
BD
 � � depends on

A " 
'
 � S ’s as

BD
 � � < +1032 4#5 ,76 +1032 4#5 �86 *�*�*7+1032 9 6 BD

EF� > (4)

The meaning of the conditions
" 
'
 � � � is intuitively un-

derstood as follows. As explained in the previous subsection

an
�

-dimensional redundancy due to the scale invariance
exists in the description of 7 . A natural way to suppress this
redundancy is [2, 3] to attach

�
constraints,

" 
'
 � G G < E
for
# L N�L �

, since the diagonal degrees of freedoms
correspond to the componentwise scalings. Actually, we
can identify

" � � with the tangent space of the coset��� � ����	�

�������
, which explains why we call this frame-

work “optimization problems on
��� � ����	�

�������

. This
framework is also understood by using the concept of the
nonholonomy. For details on these topics, see [2] and [1].

2.3. consideration on Newton-type algorithms

If we apply the conventional Newton’s method on this
setting,

" G �
is determined by using all componentsA B , ��*�*�*D�.B �QS . There it is necessary to deal with

��� � ���
matrices which become quite gigantic when

�
is large.

Another choice is to decompose the optimization flow
(3) as

+-,/. 
 " � � +10;: <>=#?�@ <BAC*�*�*D+10;: ?�@ E�A�+10;: ?�@ F�A
(5)

where we assume that only

'
 �8G2�

-th and

�GH��
 �

-th elements
are nonzero among the elements of

" 2 	1H I 6 � � , we can
strictly determine elements of

A " 2 	1H I 6 S ’s only by using the
two-body interaction. This is in its spirit similar to the Ja-
cobi’s method for diagonalization of hermitian matrices. It
is obvious, however, that the number of steps becomes very
large if we adopt this approach because a single step in (3) is
decomposed into

� 

� % #+�
steps. This is a serious demerit

of this approach.

2.4. similarity to quantum lattice

The nested Newton’s method which we propose here pro-
vides a good prescription to these disadvantages of conven-
tional methods. Let us consider discretized time evolutions
on quantum lattice on the following setting:

J There are
�

fixed particles on lattice.J Each particle has inner degree of freedom. The inner
degree of freedom for each particle is represented by
@ -dimensional vector.J Only two-body interactions between particles are
present.

The time evolution in this system is described as

K 
CR.� < +�L M 2 I 5 ,76 +�L M 2 I 5 �86 *�*�*7+�L M 2 9 6 K 

EF� �
(6)

where the hamiltonian N 
CR.� for each
R

is an
� � � her-

mitian matrix. Since there is no � -body interactions with
�&�?� , the matrix element N G �F
CR.� for a pair


CN � � �
depends
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only on the inner degrees of freedom of
N
-th and

�
-th par-

ticles. Since the wave function
K

is the direct sum of � -
dimensional vectors which represent the inner degrees of
freedom:K 
CR.� � A 
�� � � � S 5< � � � � � � *�*�* � � � �
we can express

K
by an
� ��@ complex matrix.

Each off-diagonal elements of N , say N G � , is considered
as an interaction between

K G
and

K �
. On many of quantum

lattice systems, N G �F
CR.� is dependent only on
K G�
CR.�

and
K � 
CR.�

for a specific pair

CN � � �

. (Of course, three-body interactions
are not exceptional.)

On the other hand, the ICA flow is described as
BD
 � � < + 032 4#5 ,76 + 032 4#5 �86 *�*�*7+ 032 9 6 BD

EF���

where
BD
'
 �

is interpreted as a direct sum,
BD
'
 � � A � � � � S 5< � � � � � � *�*�* � � � >

Now, it is easily understood that there is a similarity be-
tween the quantum lattice and optimization problems on
��=�D� � ����	�

������� .

ICA quantum analogy�
-channel observation

�
particles (on lattice)

@ samples
@ dimensional representa-
tion of inner degree of free-
dom

2.5. optimization flow as dynamics under two-body in-
teractions

We can construct a natural and cheap updating rule by using
the analogy between the updating rules (4) and (6). That
is exactly what we call the nested Newton’s method. The
essence of the nested Newton’s method are as follows:

1. We do not decompose the problem as (5). Thus, we
can avoid explosions of the step size.

2. We ignore � -body interactions with �)� � , which
are, in fact, not important. Then, components of

"
in (3) is determined directly by using only two-body
interactions. Note that this is quite usual in the gradi-
ent descent literatures. We, however, adopt the New-
ton’s method to determine the interaction between
two components.

3. Thanks to this translation into two-body problems,
the updating rule is decomposed into manipulations
of � � � matrices. Thus the nested method is practi-
cal for large

�
. Furthermore, its convergence is quite

fast since this is a quasi-Newton’s method.

The concrete procedures are explained in the following.
Note that this method is quite new though it is in some sense
related to the so-called natural gradient method or nonholo-
nomic method.

2.6. concrete procedure of nested Newton’s method

Let us return to the optimization problem given at (2.1).
When � � � , it is impossible to determine simultaneous
zeros of all

A��
	 
CB(G.�.B�� � S in general. How can we get good
solutions to these over-determined optimization problems?
Our choice is to translate the problem to the minimization
of squared sum

� <��G H � H 	�� G � 	 �
	 
CB(G.�.B�� � � (7)

of criteria
A��
	 
CB(GH�.B��+�KJ # L 
�L �?S with weights

A
� G � 	 �E S . We define � -dimensional vectors

A
	 2 G � 6 S by

	 2 G � 6 < 
 � , 
CB(GH�.B��+� � � � 
CB(G.�.B�� � ��*�*�* � ��� 
CB(G.�.B�� �.��

and � � � positive definite diagonal matrices

A � 2 G � 6 S by

� 2
G � 6	�I <�� 	�I

� G � 	 . Then we decompose the single criterion�
to the sum of smaller squared sums:

� <�� G��C� � 2 G � 6 �

where we have set

� 2 G � 6 �����< 	 2 G � 6 
 � 2 G � 6 	 2 G � 6 > (8)

Let us focus on a specific pair
N � � 
CN�� � �

. We will
examine the variation of a part of criteria

� 2 G � 6
under

B � +-,/. 
 " �4B
where

" � � > (9)

and neglect � -body interactions with ��� � . First, the vari-
ation of

�
	 
CB(GH�.B��+�
up to second order terms is expressed by

using only
" G �

and
" ��G

as

�
	 
CB(GH�.B��+� � �
	 
CB(GH�.B��+� !&
 � 2 ,76	 
CB(GH�.B��+�.� 
��"
! #
�

�" 
 � 2 �86	 
CB(GH�.B��+� �" �
(10)

where
�" �����< 
 " G �F� " ��G � 


and � � # and � �&� matri-

ces
� 2 ,76	 
CB(GH�.B��+�

and
� 2 �86	 
CB(G.�.B��+�

are determined from given
data. It leads to the expression of the variation of

� 2 G � 6
:

� 2 G � 6 � � 2 G � 6 ! � �" 
�� 2 G � 6 
 � 2 G � 6 	 2 G � 6
! �" 
 
��)2 G � 6 
 � 2 G � 6 � 2 G � 6 � �" ! �" 
�� 2 G � 6 �"

(11)

where
� 2 G � 6

is an � ��� matrix given by

� 2 G � 6 <�� � 2 ,76, 
CB(GH�.B��+� � � 2 ,76� 
CB(G.�.B��+� � *�*�* � � 2 ,76� 
CB(G.�.B�� � � 

and

� 2 G � 6
is a � ��� matrix determined by

� 2 G � 6 <
�
�	 � ,

 � 2 G � 6 	 2 G � 6 � 	 � 2 �86	 
CB(G.�.B�� � > (12)
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Note that elements of
"

other than
" G �

and
" ��G

do not ap-
pear in (11) thanks to the two-body interaction principle.
Inversely speaking,

" G �
and

" ��G
do not appear in the vari-

ation of
� 2 ��� 6

up to second order if

CN � � � �< 
 � ��� �

. Thus
we can determine

" G �
and

" ��G
readily from the variation of� 2 G � 6

. That is,

 " G �(� " ��G4�

which minimizes the decomposi-
tion of the criteria up to second order is determined by

�" < %�� � 2 G � 6 
 � 2 G � 6 � 2 G � 6 ! � 2 G � 6	� 5 , � 2 G � 6 
 � 2 G � 6 	 2 G � 6 >
(13)

By repeating this procedure for all
# L&N � � L*�

, an up-
dating width

"
is completely determined. Note that (13) is

� -dimensional and there is no need to deal with large matri-
ces.

3. NESTED METHOD AS ICA ALGORITHM
WITHOUT PREWHITENING

3.1. fast method without 2nd order statistics

We assume that
�

mutually independent random variablesA & G�J # L NQL � S with zero means lie behind the observed
data and that two random variables

A & G S and
A BD

EF� G S are re-

lated by
BD

EF� G < � � 6 G ��& � !�
(G , where

A 
(G S constitutes an�
-dimensional gaussain random variable with zero-mean

and variance � G � . The goal of independent component anal-
ysis(ICA) is estimation of

6
or its inverse.

Here we construct a nested method for ICA by slightly
deforming the nested method explained thus far. First, we
set

�
	 
CB(G.�.B�� � < 0 B
	G B � 5 	� 143 (14)

and

� G � 	 <
#

J 0 B �G 143 J
	 -�� J 0 B �� 143 J � 5 	 -�� (15)

for

 < #(� � � � , which leads to the slight violation of the

invariance under scaling and at the same time leads to the
stability. On this setting we use only fourth order cumu-
lants for the criteria of independence. Thus, the algorithm
becomes robust under gaussian noises. Note that for this
method, there is no need to estimate the noise variance.
Many pracitical ICA algorithms use the 2nd order statis-
tics as a part of criteria. To apply these algorithms to noisy
cases, we have to estimate the noise variance, which is usu-
ally accomplished by Factor analysis(FA). It is, however,
known that FA is available only if the inequality

� L
#
�
� � � ! # %�
 '(� ! # � (16)

holds where � and
�

are repspectively the number of sig-
nals and observation channels. Thus in case where (16) does

not hold, ICA algorithms based on FA is not available. Our
method works, however, perfectly also in that case. This is
a major advantage of our method.

3.2. deformation to increase global stability

Here we deform the updating rule to increase the global sta-
bility of the algorithm. We will use the notations,�=G < ��� 
CB(G.�.B(G2� � � G � < ��� 
CB(GH�.B��+� � � G � < � � 
CB(G.�.B�� � >
Then, the gradient

� 2 G � 6
of

	 2 G � 6
is expressed as

� 2 G � 6 <��� � � � � G �� � ��G � � G �
� � G � �=G

��
> (17)

Now we introduce a nontrivial deformation of
� 2 G � 6

,

� 2 G � 6 � � 2 G � 62�� 6 <��� � � 
 � %�� � � G �
� � ��G � � G �
 � %�� � � G � �=G

��
�

(18)

where
�

is some small positive number. Then the updating
rule becomes

�" < %�� � 2 G � 62�� 6 

� 2 G � 6 � 2

G � 62�� 6 ! � 2 G � 6�� 5 , � 2 G � 62�� 6 

� 2 G � 6 	 2

G � 6 >
(19)

We will adopt the modified updating rule (19). Note that
the difference between these two updating rules (13) and
(19) vanishes around the optimal point since there it is ex-
pected that

� G � < E
. This deformation, however, increases

significantly the global stability.
We will illustrate this situation from an

� < � case. Let
us introduce functions

	 2 G � 62�� 6 and assume that the gradient of	 2 G � 62�� 6 is
� 2 G � 62�� 6 . Now we define the symmetric part

"�� <

 " G ��! " ��G ��/ � and the anti-symmetric part

"! < 
 " G � %
" ��G4��/ � of of

"
. Then the variation of

	 2�� 6 2 G � 6 is written as

	 2 G � 62�� 6 � 	 2 G � 62�� 6 ! � �2�� 6 " � ! �  2�� 6 "  (20)

where we have set

� �2�� 6 
CR.� <"�� � � !&
 � %�� � � G �� � ��G ! � � G �
 � %�� � � G � !��=G
�� $$$$$$ # � # 2 I 6 (21)

and

�  2�� 6 
CR.� <"�� � � %�
 � %�� � � G �� � ��GD% � � G �
 � %�� � � G ��%��=G
�� $$$$$$ # � # 2 I 6 (22)
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and omitted

CR.�

. Let us consider the initial stage. Our as-
sumption is that

BD

EF� <P6 & ! 

. At the initial point, we

do not know anything about the transfer matrix
6

. Suppose
that every

6 G �
is a gaussian random variable with an iden-

tical variance � and zero-mean. We call this ensemble the
Laguerre orthogonal ensemble (LOE) as in the context of
physics[4, 5]. Since there is no convergent invariant mea-
sure on the space of

� � � real matrices, it is natural to
discuss the global stability by assuming that the mixing ma-
trix is distributed from the LOE. First, we can show that

������� 
 �  2�� 6 

EF�.� < � �
	 # E %�#�� 
 �����<�
�  � (23)

where
������� 
2�

is the expectation under LOE and
�

is a con-
stant independent of

�
. Then, since

��������
 �  2 9 6 

EF�.� < 	 E E E�� 
 � (24)

is always satisfied, the original updating rule (13) is instable
along the

"! 
direction at the initial stage. In this way, it is

understood that non-zero
�

is desirable. When the algorithm
stops successfully, it is expected that

J � G � J
,
J � G � J

, and
J � ��G J

become very small and the main contributions come from�=G �����< � 2�� 6G and
� � �����< � 2�� 6� . Thus it is reasonable to

expect that�  2�� 6 � �  2�� 6 
�� � < � � 2�� 6� E % � 2�� 6G � 

(25)

around the optimal point. Generally, the Newton’s method
becomes instable when

J �  2�� 6 
CR.�KJ is very small during the up-

dating. If �  2�� 6 
�� � is located at the opposite side of

�  2�� 6 from

the origin, it is likely that the flow enters the dangerous re-
gions where

J �  2�� 6 
CR.�KJ���E . Let us assume that
�

is positive.

1. In case
� 2�� 6G � 2�� 6� � E is satisfied, it is shown that

the sign of
�

is the same as that of
� 2�� 6G (and of� 2�� 6� ). Since �  2�� 6 
�� � is written as� J � 2�� 6� JPE % J � 2�� 6G J � 


in this case, we can easily show that the inequality� �  2�� 6 
�� � � 
 
�  2�� 6 � E
holds, which means that the angle between �  2�� 6 
�� �
and


�  2�� 6 is acute.

2. When
� 2�� 6G � 2�� 6� � E

, �  2�� 6 around the optimal point
is written as�  2�� 6 
�� � <�� � J � 2�� 6� JPE J � 2�� 6G J � 
 >
If
J � 2�� 6G J < J � 2�� 6� J , the angle between �  2�� 6 
�� � and


�  2�� 6 is maximized when
J � 2�� 6G J or

J � 2�� 6� J becomes
very small and the upper bound is ��� /�� .

Combining these, the angle between �  2�� 6 
�� � and

�  2�� 6 is at

most ��� /�� for positive
�
. Thus it is realized that the possi-

bility to enter the dangerous regions is reduced greatly by a
positive

�
.

4. PERFORMANCE

We have performed numerical experiments to show the
power of our method as an ICA algorithm. For refer-
ence, we have also analyzed the same data by FICA[6] and
JADE[7]. The source signals are � -dimensional sound data
with 48000 samples, which are mixed by a matrix chosen
from the LOE. This setting should make the experiences
more convincing. Although singular matrices have measure
zero on the LOE, matrices with very large condition num-
bers may be choosen on this setting. After the mixture we
add noises. For the noises we choose � -dimensional mutu-
ally independent gaussian random variables. (Actually, the
nested method is also robust under the correlated gaussian
noises.) We will measure the performances by the follow-
ing criteria. First, let us set

� < 7 6 
�� � ��,.-�� , where
� � <

!#"�$�% 
 0 & � , 1 ��*�*�*D� 0 & �� 1 � . We also introduce
� �

by
� � <

!#"�$�% 
'& $ , 	 J � , 	 J �(& $ , 	 J � � 	 J ��*�*�*D�(& $ , 	 J � � 	 J � . Then
the matrix elements

A 

��� 5 ,� �HG � S for
� �< $�)*% & $ , 	 J ��G 	 J

are a natural measure of crosstalks for an estimated demix-
ing matrix 7 . In this paper we measure the signal-to-noise
ratio (SNR) by

%�# E,+ - % , 9 A & + !#"�$�. 
�/�� S (db).
[No noise case]

CT(mean) max CT(med.) time(med.,sec.)
nested Newton 0.0069 0.0342 6.51
JADE 0.0052 0.0110 2.88
FICA 0.0061 0.0180 3.58

Here, JADE are better than our method. For the total CT our
method is better than FICA. It is natural that methods with
pre-WH outperforms our method provided an prior knowl-
edge that ther is no noise. Nevertheless, our method is com-
petitive also in this case.
[Small noise ( �10 > ��2 # ' db) case]

CT(mean) max CT(med.) time(med.,sec.)
nested Newton 0.0074 0.0341 6.93
JADE 0.0085 0.0118 3.01
FICA 0.0097 0.0209 3.63

For the max CT, JADE is the best. For the total CT, our
method is the best.
[Middle noise case (The SNR is

# � > 3 # 0 # db.)]
CT(mean) max CT(med.) time(med.,sec.)

nested Newton 0.0247 0.0359 7.38
JADE 0.0505 0.2268 3.13
FICA 0.0525 0.2684 3.91

Our method outperforms the other methods in this region.
As a whole, it is demonstrated that our algorithm is ex-
tremely useful and practical in cases where there might be
some noises.

118



5. REMARKS

We have constructed a new method called the nested
Newton’s method. A close connection between cosets��� � ����	�

�������

and � 
H#+� � � � 

� � is known, where the
former coset is said to be paracomplex manifold and the lat-
ter is known as a complex manifold. Since dynamics on the
latter coset is nothing but the quantum dynamics, it is rea-
sonable to call dynamics on the latter coset para-quantum
dynamics. Thus the nested method is naturally understood
as para-quantum dynamical method for optimization. This
explains why it is natural to use the analogy the quantum
dynamics in order to construct a useful algorithm for the
multivariate optimization. Characteristics of various meth-
ods is listed in Table 1 and 2.

The nested method can be applied to various optimiza-
tion problems on

��	�

�������
provided the optimum is scale

invariant. Given the scale invariance, the optimization is
formulated as a flow on the coset



� � � � ����	�

������� . This
coset structure is fatally important for the factorization of
the problem to a collection of � -dimensional problems.
Indeed, it is easily understood that on the general linear
groups, we can not factorized the procedures in the same
way.

Table 1. time evolution and interaction
generator of
time evolution

continu
-ous
limit

typical
interaction

quantum
lattice

���
hermitian matrix

( �����
	 )
� �

-body

gradient
flow on
�� ��������	

��� ������� � �
-body

gradient
flow
on �

��� ������������� "! � �
-body

Newton’s
method
on �

��� � ����������� "! � � -body
(expensive)

nested
New-
ton’s
method

��� � ����������� "! � �
-body

(cheap)

Here, we have set # < 

��� � � ����	�

������� .
As we have shown, nested Newton’s method is useful

as ICA algorithm robust under gaussian noises. Remember
that we do not prewhiten the data. In the presence of noises,
the pre-WH results in ‘the overwhitening’ since at the opti-
mal point the off-diagonal elements of the covariance matrix
do not necessarily vanish. This explains partly the reason
that the pre-WH is not preferable. In this paper we use, for
the criteria of the independence, solely the fourth order cu-
mulants, which are obviously not sensitive to the gaussian
noises. As a result, our method is robust under strong gaus-
sian noises. Other advantages are as follows. (1) It works

Table 2. advantage as an optimization method
learning
rate
tuning

required
step #

conver
-gence each step

gradient
descent

required large linear cheap

Newton’s
method

not required small 2nd order expensive

nested
Newton’s
method

not required rather
small

almost
2nd or-
der

cheap

well also in cases where the number of the signal and the
number of the channel of the observation differ. (2) Thanks
to the factorization, the memory space and computational
quantity required for each step becomes of order

� �
. (3)

The algorithm stops after fairly small iterations because of
its quasi-Newton nature. (4) It is considerably stable glob-
ally by the deformation in $ 3.2. It is thanks to all these
features that our method becomes highly practical.
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