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ABSTRACT
We present a novel approach to extract a subset of inde-
pendent sources from multidimensional observations when
some a priori information that can be incorporated to the
learning algorithm as reference is available. The con-
strained independent component analysis (cICA) is ex-
tended to use new constraints, and a Newton-like learning
algorithm is proposed to give an optimal solution to the con-
strained optimization problem. The convergence and the ef-
fect of parameters of the learning algorithm are analyzed.
Simulations with the mixtures of deterministic and random
signals and synthetic fMRI data demonstrate the efficacy
and accuracy of the proposed algorithm.

Keywords: ICA, constrained independent component
analysis (cICA), ICA with reference

1. INTRODUCTION

Some source separation problems like signal detection and
noise cancellation often expect to estimate a desired sin-
gle source or an interesting subset of sources from mixtures
thereof, for example, the problems in speech extraction and
financial analysis [1]. Conventionally, second-order meth-
ods, like the minimum mean square error (MMSE) tech-
nique, were often used to detect, extract and recognize the
desired signals [2], but their applications are limited due to
the use of only 2nd-order statistics. Using kurtosis or negen-
tropy as the contrast function, one-unit ICA algorithms have
been proposed to separate a single source from a set of mix-
tures of independent sources [3]. However, the extraction
of a particular source by using these algorithms is always
determined by the contrast function or sometimes arbitrary
due to local minima [4]. Some researchers had introduced
asymmetric information using sparse decomposition of sig-
nals [4] or fourth-order cumulants [5] into the algorithms
to solve such problems, however, they all still have some
drawbacks, such as the system reliability and complexity.

Let us denote the time varying observed signal by���������	��
��
������������
������������ and the source signal con-
sisting of independent components (ICs) by � �������
������������������� �!��������� . The linear ICA assumes that the signal������� is a linear mixture of ICs:

�������"�$# � ����� (1)

where the matrix # of size %'&)( represents linear memo-
ryless mixing channels. It often assumes that % � ( (com-
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Fig. 1. Illustration of a neural network extracting multi-
ple desired independent sources from the input mixtures�*�+��
��!�����,
��-��� using reference signals . . / denotes
the weight matrix and 0 �1��2,�3������2
4���� the output signals.

plete ICA); we hold this assumption in this paper for sim-
plicity, which can be relaxed without losing generality. The
time index � is omitted in the following for simplicity of
equations.

This paper presents a general approach to extract one or
several desired independent sources from the observations �
with minimal knowledge of # and original sources � . The
algorithm incorporates a priori information of the sources
in the form of a rough template which is referred to as
the reference signal, . �5��6
�7�����86�49� . The technique of
constrained independent component analysis (cICA) [6] is
adopted to systematically introduce a measure of the close-
ness between the output and the reference into the ICA con-
trast function. Such extraction is expressed as a constrained
optimization problem which is solved by a neural network
algorithm using a Newton-like learning. In this paper, first,
the algorithm of extracting one desired source is introduced,
and then extended to the situation when a subset of sources
is desired. Fig. 1 shows the neural network with multiple
neurons; the output 0 is given by

0 � / �;: (2)

where / �=< >?�@�����A>B4DCE� is the matrix containing F
weight vectors >!GH�I��J"GK�LJ"GNMA������J"GN�-��� which need
to be learned. In a single-source extraction, the output2O�$> � � where > is a vector and 6 denotes the reference.
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2. PREVIOUS METHODS

2.1. Second-Order Approach

There are many second-order approaches using either min-
imum mean square error (MMSE) or maximum correlation
(MC) criteria to extract a signal close to the reference [2].
In MMSE approaches, a least-mean-square (LMS) method
is used to estimate the desired output. At the minimum of
MSE, we have the optimum weight >�� given by

> � ����� ����	��
 6 �
� (3)

where � ��� is the covariance matrix of the signal � and
��
 � � is the temporal expectation. The corresponding output2�� � >�� � � gives a signal close to the reference in second-
order statistics.

In the following, we show that the second-order methods
are insufficient to recover an independent source from input� . In order to extract one of the ICs, say ��� , we should have
the optimum weight vector >�� such that the vector

� � � # � > � (4)

is a canonical base vector, ��� ��������� , where � is a con-
stant and ��� is a vector whose elements are zero except that
the � th element is � . Substituting Eq. (3) into Eq. (4) and
using � � # � , the vector

� � ��� � ���� ��
 6 � � (5)

where � ��� � ��
 � � � � . Because sources � are presumed to
have components that are mutually independent in statistical
sense, the covariance matrix � ��� is a diagonal matrix with
diagonal elements, 
 � ��� � G�GB�"! M#%$ �'&)(8� � :������ : % � which
is the variance of the corresponding component. Thus, the
inverse of � ��� is also a diagonal matrix with diagonal el-
ements * G � �+-, .%.0/ $1$ � �2�34 $ . So, the vector � � can be

written as

� � � � * � ��
 6������ * M ��
 6�� M�� ����� * � ��
 6�� �5��� � 6 (6)

Note that the reference signal is not identical to the orig-
inal source. In order that ��� is a canonical base vector,
��
 6��NG7� for all (�8� � must be zero, and ��
 6��9�:� is not equal
to zero. In general, it is impossible for such conditions to be
true because we assume that only the component ��� has the
biggest correlation with the reference 6 , but any sources in �
may have a non-zero correlation with the reference. There-
fore, as long as more than one IC have non-zero correlations
with the reference, the extraction of statistically indepen-
dent sources cannot be achieved by second-order statistical
techniques [7] even if a reference signal is available.

2.2. One-Unit ICA

Higher-order statistics have been adopted to estimate inde-
pendent sources in ICA [7]. Recently, instead of estimating

the whole ICA model consisting of matrix # and ICs � as
in classical ICA, one-unit ICA simply finds one weight vec-
tor > so that the product > ��� equals to one of the ICs [3].
The negentropy ; ��2 � is defined as the natural information-
theoretic contrast function of one-unit ICA [7]:

; ��2 ����< ��2>=	?�@9A��
BC< ��2 � (7)

where 2>=	?�@9A is a Gaussian random variable with the same
variance as the output signal 2 , and < � � � denotes the dif-
ferential entropy. Maximizing the negentropy produces an
independent component [8]. Hyvärinen introduced a flexi-
ble and reliable approximation of the negentropy [9]:

; ��2 ��DFE < ��
HG ��2 �0�IB ��
HG �%J �0��C M (8)

where E is a positive constant, G � � � can be any non-
quadratic function, J is a Gaussian variable having zero
mean and unit variance. Some practical functions were sug-
gested for G � � � [3]:

G ����2 � �LK M>N�OPMRQ-S �UT � 2 ��V�T � (9)

G M ��2 � �LWPXZY �:BIT M 2
M
[ ��V�T M (10)

G]\ ��2 � � 2�^�VH_ (11)

where ��` T � ` [
and T MaD � . G � is a good general

purpose function, G M and G]\ are better suited for super-
Gaussian and sub-Gaussian signals, respectively [3].

However, when using only the negentropy as one-unit
contrast function, theoretically one cannot obtain an IC
other than the one having the maximum negentropy among
the sources. Therefore, the present one-unit ICA method
cannot be used to produce a desired independent source.
Moreover, the learning algorithm [3] is not guaranteed to
converge to the global maximum at all times because the
local convergent point depends on the initial weight vector>�b , the learning rates and other factors [4].

3. ICA WITH REFERENCE

In many blind signal separation problems, one may only
want to reliably obtain a particular desired component or
a set of desired sources, and automatically discard the rest
of uninteresting signals or noises. At some instances, a trace
of the desired signals is available, for example, the On-Off
stimulation scheme of an fMRI experiments [10].

In this section, a variation to the classical ICA is pro-
posed, in which only a set of desired independent compo-
nents (ICs) is extracted incorporating the prior information
as reference signals; we refer this technique as ICA with ref-
erence. These reference signals carry some information of
the desired sources but not identical to the corresponding
desired signals. In this section, first, we present the tech-
nique of the one-unit ICA with a reference, and then extend
to the ICA with multi-reference.
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3.1. One-Unit ICA with a Reference

Our goal is to obtain a learning algorithm that satisfies the
following two conditions simultaneously: (1) the estimated
output is one of the ICs mixed in the input signal, and (2)
the extracted IC is the closest one to the reference signal 6
in some distance criteria.

Suppose that the contrast function of one-unit ICA is
given by the negentropy function ; ��2 � that may have (
local or global optimum solutions > ��� � � � :������ : ( � to
give the output identical to each independent source ����� � �
� :������ : ( � . The closeness between the estimated output 2
and the reference 6 is measured by some norm, � ��2 :�6
� ,
where the closest one has the minimum value. Assuming
that one of ICs is the one and only one closest to reference6 , we can write the inequality relationship:� ��> � � �;:�6
��� � ��> � � �;:�6
� ` ����� ` � ��> �� � � �;:�6
� (12)

where the optimum vector >�� corresponds to the de-
sired output. Thus, there exists a threshold ����� �	 � ��>�� ���;:�6
�K: � ��>O�� �;:�6
��
 such that the closeness � ��2 :�6
�
is less than or equal to the threshold parameter � . i.e.����>?�B� � ��2 :�6
� B � `�
 , only when 2 � >�� � � , but not
with any other vectors > �-� 8�$>���� .

While treating the formula ����>?� as a feasible constraint
to one-unit ICA contrast function ; ��2 � , we model our prob-
lem in the framework of the constrained independent com-
ponent analysis (cICA) [6]:����X�� ��� �9W ; ��2 � D�E 	 ��
HG ��> � � �0� B ��
HG �%J �0��� M
Q������:W�O�����M�����>?� ` 
 :"! ��>?�"� ��
 2 M �IB � � 


(13)
The equality constraint ! ��>?� is included to ensure that
the contrast function ; ��2 � and the weight vector > are
bounded. Because one and only one IC satisfies the con-
ditions defined in this problem (13), the problem is solved
by a global convergent algorithm.

By introducing a slack variable # , we transform the in-
equality constraint into an equality, ����>?��$ # M � 
 . By
explicitly manipulating the optimum # � , the augmented La-
grangian function % �
��> :�&;:('�� for the problem in Eq. (13)
is given by:

% ����> :�&;:('���� ; ��2 ��B �M�) < ����X M 
 &*$,+-����>?�K: 
 � B.& M CB/'-! ��>?�
B �M +�0�! ��>?��0 M
(14)

where & and ' are the Lagrange multipliers for constraints����>?� and ! ��>?� , respectively, + is the scalar penalty param-
eter, 0��10 denotes the Euclidean norm, and

�M +�0��10 M is the
penalty term to ensure that the optimization problem is held
at the condition of local convexity assumption.

To find the maximum of % � , > can be adapted using a
Newton-like learning method:

>*2�33� �A>*2 B.4*5 % �76 68 39;: � � % ��68 9 :

where < is an iteration index, 4 is a positive learning rate
added to avoid the uncertainty in convergence, % � 68 is the
first derivative of % � with respect to > :

% �768 �>=E ��
 � G 6? ��2 �0�IB �M & ��
 �@� 6? ��>?�0�IBA' ��
 ��2 �
(15)

where =E'� � E whose positive or negative sign coincident
with ��
HG ��2 �0� B ��
HG �%J �0� , G 6? ��2 � and � 6? ��>?� are the first
derivatives of G ��2 � and ����>?� with respect to 2 . To simplify
the inversion, the Hessian matrix % ��6 68 3 is approximated as
the product of a scalar value and the input covariance:

% �76 68 3 �CB ��>?�:� ��� : (16)

where the scalar B ��>?�"��=E ��
HG 6 6? 3 ��2 �0�ZB �M & ��
 � 6 6? 3 ��>?�0�ZBD' ,
the covariance matrix � ��� � ��
 ����� � , G 6 6? 3 ��2 � and � 6 6? 3 ��>?�
are the second derivatives. Then, the approximate Newton
learning is given by

>*2�33� � >*2 B.4Z��� ���� % � 68 9 VEB ��>*2
� (17)

The optimum multipliers &
� and '5� are found by iteratively
updating them based on a gradient-ascent method [6]:

&F2�33� �G����X 
 
 :�&F2�$,+-����>*2
�0� : (18)'-2�33� �H'-2�$,+I! ��>*2
� 6 (19)

The expectation in the equations can be estimated using all
the samples of the input � .

Following the learning algorithm presented above,
the network is able to achieve the local maximum
at the optimum point, defined by Kuhn-Tucker (KT)
triple ��>��
:�&���:('5��� , that satisfies the first-order conditions:% �768 ��>��
:�&���:('5��� � 0; ! ��>����!� 
 ; ����>���� `J
 ; '5�LK 
 ,&��DM 
 and &��(����>������ 
 6

Suppose that the network is in a local maximum and per-
turbed by a small vector N to >�� . By a truncated Taylor
series expansion:

% ����>��O$ N :�&�� :('5���>D % �
��>���:�&��
:('5���P$ N � % �768RQ ��>��
:�&���:('5���$ �M N � % �76 68RQ 3 ��>��
:�&���:('5��� N 6
(20)

The second term is equal to 0 at the local maximum. For the
system to converge, the third term should always be nega-
tive for small N . In other words, the Hessian matrix % �76 68 Q 3
should be negative definite, which is known as the second-
order condition. For simplicity, let us consider the approxi-
mated % �76 68 Q 3 in Eq. (16) although our examination is valid
for the original Hessian as well.% �76 68 Q 3 is always negative definite when the scalar B ��>����
is negative and the input covariance matrix � ��� is non-
singular. The latter condition is true in most cases that
a large number of sample points of signals is available.
Even when it is singular or near-singular if inputs have a
small number of samples, � ��� can be transformed to a
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non-singular matrix by applying a whitening process, e.g.
PCA. Consider G � � � functions given in Eqs. (9), (10) and
(11), the scalar value B ��>���� is always negative when we use
the general-purpose functions G �
��2 � , but is negative only
for super-Gaussian signal when using G M ��2 � and for sub-
Gaussian signal when using G \ ��2 � . Therefore, our algo-
rithm is converged locally when one uses the function G � in
general cases, the function G M for super-Gaussian or G \ for
sub-Gaussian signal.

The value of � is critical to the convergence of the algo-
rithm. Given a suitable � � � , one and only one desired
IC is defined in the constrained optimization problem, and
hence the algorithm is converged globally to produce the
particular IC at the output. If � is beyond the upper bound
of the range � , the algorithm has more than one convergent
point. If � is too small, the algorithm may not converge be-
cause the constraint ����>?� � 
 causes the algorithm to be
unstable. In practice, the algorithm better uses a small � ini-
tially to avoid going to a local optimum, and then gradually
increases it to converge at the global maximum.

3.2. ICA with Multi-Reference
When a set of corresponding reference signals is available,
the problem can be easily extended to extract several desired
independent sources simultaneously. Every output corre-
sponds to a unique independent source different from oth-
ers as their individual constrained optimizations, defined in
Eq. (13), are able to produce the globally optimal solution
with the output component distinguishable from others. The
problem for ICA with multi-reference can be written as:����X�� ��� �9W�� 4 � �3� ; ��2>� �Q������:W�O�� ��M�� � / � `�� :
	 � / �"� 

where F is the number of desired independent sources to be
extracted, � � / � � �1� ����>?��� ����� �
4���>B4������ in which each�>����> � �B� � ����2>��:�6�� � B � � for & � � � :�������: F , and 	 � / �O�
� ! ����>?��� �����(! 4 ��>B49����� containing !��N��> � ��� ��
 2 M� � B � for& � � � :������ : F . The corresponding augmented Lagrangian
function % M � / :�� :�
�� is given by:

% M �
4�
� �3� �

; ��2>� ��B
����X M 
 & � $,+Z� �>����> � �K: 
 � B & M�[ +Z� �

B�
 � 	 � / ��B �[�� � 0�	 � / ��0 M
where � � � &3� ����� &�49� � and 
?� � ' � �����(' 49� � are two sets
of the Lagrange multipliers for inequality and equality con-
straints, respectively, and � � �1+��3����� + 49��� are the parameters
to form the penalty terms.

ICA with multi-reference combines individual one-unit
ICA with reference together and learns their weight vectors
simultaneously. A Newton-like learning algorithm is exten-
sively derived to learn the weight matrix / :

/ 2�33� � / 2 B.4�� =� � / ��� % M 6� ��� ���� (21)

where =� � / � is a vector equals to � ������ 8�� � ����� ��"!#� 8$! � ��� in

which B��N��> � ����=E�� ��
HG 6 6? 3% ��2>� �0� B �M & � ��
 � 6 6? 3% ��> � �0� B '�� for
& � � � :������ : F obtained from the Hessian matrix % M�6 6� 3 , � � �
represents a diagonal matrix whose off-diagonal elements
are all zeros and the diagonal is given by the vector inside
and the gradient % MP6� is given as

% MP6� �&�(') � ��
HG 6* � 0 ��� � �RB �[ �+�,� ��
 � 6* � / ��� � �RB-�.
/� ��
 0 � � �
where G 6* � 0 � and � 6* � / � are the first derivatives of G � 0 �
and � � / � with respect to the corresponding 2�� in 0 . The
learning of Lagrange multipliers � and 
 are also based on
the gradient-ascent method� 2�33� �G����X 
 � :�� 2 $0� � �"� � / � (22)
 2�33� �1
 2"$0� � �"	 � / � (23)

Although the constraints define that one neuron can pro-
duce one particular IC different from others, in practice, im-
proper values of � � can cause different neurons converge
to the same independent source. Instead of the exact ad-
justment for the threshold which is impossible with little
knowledge we have about the sources, it may be desired
to postprocess the weight vectors by decorrelating them in
each learning iteration to prevent the different neurons esti-
mating the same independent source [11] as follows:

/ �1< / � ��� / � C � �3 / (24)

where the inverse square root < / � ��� / ��C � �3 is obtained
from the eigenvalue decomposition of / � ��� / � �24342 � as < / � ��� / ��C � �3 � 243 � �3 2 with the simple
calculation of

3 � �3 [3]. The decorrelation process in Eq.
(24) helps the global convergence achieved in this multi-
unit network when each unit reaches its global optimum.

The selection of the closeness measure depends on what
form the reference signals are available. A common mea-
sure of closeness between the estimated output and the ref-
erence is the mean square error (MSE) given by � ��2�� :�6�� �"�
��
 ��2>� BA6�� � M � 6 This measure requires both 2R� and 6�� nor-
malized to have zero-means and unit-variances. Alterna-
tively, correlation can also be used as a closeness measure:� ��2>��:�6�� �O� B ��
 2>�D6��:� . Both the output and reference are
normalized so that the value of correlation is bounded. The
proper choice of closeness function helps us easily choose a
threshold � � and make the algorithm more robust and glob-
ally convergent.

4. EXPERIMENTS
We demonstrate our technique with experiments using syn-
thetic data and compare the accuracy and effectiveness of
the algorithm with the second-order method and one-unit
ICA. The accuracy of the extracted ICs was measured with

123



Desired Output ��M � \ � ^ ���
SNR(dB) 27.75 33.18 23.65 32.92

PI 0.07 0.05 0.10 0.02

Table 1. Signal-to-noise ratio (SNR) of the output and the
performance indices (PI) of the network in individually ex-
tracting the desired sources, ��M , � \ , � ^ and ��� , by using the
present algorithm.

the signal-to-noise ratio (SNR) in dB, given by
����� �

�P
 K M>N � b 5 2 3� A	� : where ! M denotes the variances of the sig-

nal and mse denotes the mean square error between the
original and extracted signals [6]. The performance of
the network was measured by a performance index (PI):
�� �!� � �G��3� 
 � % $ 
� ?�� 9 
 � % 9 
 B � , where � � G is the ( th element

of the vector � �3�$# � > � [6].

4.1. Mixtures of Random and Deterministic Signals
Five zero-mean and unit-variance independent sources: a
Gaussian noise signal, � � , two periodic deterministic sig-
nals, � M and � \ , and two random signals, sub-Gaussian � ^
and super-Gaussian ��� , were randomly mixed to obtain five
mixtures. The reference for the random signal was simu-
lated by applying an operation Q�� N�� � � � to roughly gave the
signs of most data samples of the desired source. The refer-
ence for the deterministic signal was simulated by a series
of impulses having the same period as the desired source.
The algorithm of one-unit ICA with reference ran using the
MSE as the closeness measure to extract each deterministic
and random signal, individually, with the corresponding ref-
erence. As expected, the network converged to produce the
output signals identical to the desired sources in all cases.
Table 1 shows the results of extracting the desired sources
by using the present technique: the high SNRs and low PIs
indicate good performance of the algorithm. The output
waveforms are displayed in Fig. 2.

The results of the second-order method with the same
experiment settings were compared. The low SNRs with
average value of 3.3 dB and poor PIs with average of 1.0
indicated the failure of this method to separate the desired
sources. Also, the previously proposed one-unit ICA algo-
rithm was also run with these mixtures and always produced
a signal identical to ��� irrespective of the reference because
the super-Gaussian source ��� had the maximum negentropy
among all sources.

The present algorithm was also used to extract the Gaus-
sian noise with a signed reference closest to ��� . The trained
network produced an output identical to the Gaussian sig-
nal ��� with SNR 10.88dB and PI 0.37. The classical ICA
algorithms are unable to deal with Gaussian signals because
such a signal does not have statistical properties higher than
2nd-order. With a trace of the source, our algorithm can
extract even Gaussian signals as the closeness between the
reference and signal is measured in 2nd-order statistics.
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Fig. 2. Signals of sources, mixture inputs, outputs and ref-
erences in the experiments to extract the desired signals ��� ,
��� , ��� and ��� , individually: (a) five independent sources:
Gaussian noise ( ��� ), periodic deterministic signals ( ��� and
��� ), random signals ( ��� and ��� ), (b) the mixture inputs, (c)
and (d) the reference and the output for extracting the de-
sired signal ��� , respectively, (e) and (f) the reference and
the output for extracting the desired signal ��� , respectively,
(g) and (h) the outputs extracted by using the references of
��� and ��� , respectively.

4.2. Synthetic fMRI Time-Series Data
Multiple input stimuli have often been used in fMRI experi-
ments [10]. FMRI time responses from activated brain vox-
els are always confounded by physiological signals such as
cardiac, respiratory, and blood flow, and the electronic noise
of the scanners [10]. To simulate this situation, two fMRI
time responses from activated voxels �����	 �!#"%$&���	 �!�')(*�	 �!
and �����	 �!+",$��-�	 �!.'*(*�	 �! , where the input stimulus functions
$&���	 �! and $��-�	 �! convolved with a gamma hemodynamic re-
sponse function (*�	 �! , three sinusoid functions ��� , ��� and
��� with frequencies 0.03Hz, 1 Hz and 0.2 Hz to represent
periodic activations of blood flow, cardiac and respiratory
interferences, respectively, and a random Gaussian noise ��/
were generated. They were mixed to mimic the time series
generated in an fMRI experiment and to generate six inputs
to our algorithm. The function $��&�	 �! and $��-�	 �! with On-Off
scheme were used as the references for two outputs, respec-
tively. This experiment used the correlation to measure the
closeness between the reference and the sources. The algo-
rithm converged in 10 iterations with PI of 0.052. The out-
puts gave two signals very close to the original fMRI time
responses ��� and ��� with SNR of 28.74dB and 30.82dB,
respectively. The extracted waveforms are shown in Fig.
3. Normal one-unit ICA algorithm was not able to sepa-
rate either of two fMRI response signals in this experiment:
instead, it produced the output signals identical to sinusoid
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Fig. 3. Waveforms of sources, mixture inputs, the refer-
ence and the output in the simulation of extracting multi-
ple fMRI time-domain response signals. (a) FMRI activa-
tion responses, ��� and ��� , three sinusoid sources, ��� , ��� and
��	 , and a Gaussian noise ��
 , (b) six mixtures, (c) the input
stimulation-1 as the reference to extract the activation signal
��� , (d) the extracted activation identical to ��� , (e) the input
stimulation-2 as the reference to extract the activation signal
��� and (f) the extracted activation identical to ��� .

sources ��� or ��	 at most times because their histograms had
higher negentropies than others.

5. CONCLUSIONS

This paper presented a novel algorithm to extract one or sev-
eral desired independent components, in a one-step process,
by using reference signals that carry some a priori informa-
tion of the desired sources. The problem was formulated in
the cICA framework, and then a Newton-like learning al-
gorithm was derived and its robustness was analyzed. The
algorithm was able to extract independent periodic or non-
periodic sources having any distributions, including Gaus-
sians, close to the reference signals in real time when the
closeness measures were properly chosen and the parame-
ters were properly adjusted.

The experiments demonstrated the advantages and supe-
riority of our algorithm compared to earlier methods. The
second-order methods, which use only 2nd-order statistics,
failed to extract the independent sources close to the ref-
erence. The present technique accurately extracted the in-
dependent sources with high SNR and low PI because the
negentropy, a higher-order statistical property, was used as
the contrast function. The source extracted by previous one-
unit ICA was always determined by the negentropy. The
present algorithm can simultaneously extract several desired
sources if the available information can be introduced as ref-
erence signals. An extensive application of the present al-
gorithm for fMRI data analysis is presented elsewhere [12].
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