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ABSTRACT 
This paper presents a performance comparison of a variety of 
data preprocessing algorithms in a geoscience application. The 
selected algorithms are principal component analysis (PCA) 
and three different independent component analyses 
(FLEXICA, JADE and SOBI). These algorithms are applied 
to a set of electrical and radioactive signals obtained from a 
drilled well in Indonesia. Standard backpropagation neural 
networks are used to perform pattern (flow unit) classification 
from raw or preprocessed data. The results show that use of 
the preprocessed data gives more confident results than those 
obtained from the raw data. Among the preprocessing 
algorithms, FLEXICA seems to slightly outperform the others. 
The study also present a technological framework for 
combining results from different techniques and it shows that 
further improvement was achieved. 

1. INTRODUCTION 

Classification of rock types is a complex problem in petroleum 
reservoir geology and engineering. This problem involves the 
classification of sedimentary rock quality (in terms of 
hydraulic properties in porous media) based on a series of 
electrical and radioactive measurements obtained in drilled 
holes [1]. In heterogeneous reservoirs, the measurements can 
fluctuate continuously as a function of drilled depths. The 
resulting curves (signals versus depths) are often known as 
“logs.” The classification of log responses is a practical way to 
perform rock typing at different depths, and hence providing a 
“rock log” (commonly known as a “lithology log”). We may 
also express rock qualities as discrete flow units. For instance, 
flow unit 1 (FU-1) has low quality, and flow unit 2 (FU-2) has 
medium quality. 

Classification of log responses can be performed in 
unsupervised or supervised mode. The practical advantage of 
unsupervised classification is that it can make use of all the log 
data, but the resulting typing may not relate to the rock quality. 
Supervised classification has the opposite advantage and 
disadvantage. It can give meaningful typing, but the number of 
training patterns is often small, due to the expensive costs of 
retrieving rock samples from downhole to the surface. There 
are also additional costs to perform laboratory testing on these 
samples in order to quantify the rock quality. In practice, rock 
samples are few and the lack of data poses a great challenge for 
data mining and experimental design. 

In this paper, we will look at the use of a popular supervised 
tool of backpropagation neural networks for flow unit 
classification from well logs in an Indonesian reservoir. Since 
the data is complex (see later sections), it becomes necessary to 

preprocess the data prior to feeding the raw data to the neural 
networks. We will apply the existing techniques of principal 
component analysis (PCA) and independent component 
analysis (ICA) to extract hidden features from the log 
responses. We will compare the performance of the use of raw 
data and hidden features for solving the classification problem. 
In the next section, we will review the existing PCA and ICA 
methods. A case study will be presented in later sections, 
followed by results and conclusions. 

2. DATE PREPROCESSING 

2.1 Background 

Blind source separation (BSS) or independent component 
analysis (ICA) is a statistical method which aims at finding 
latent variables (hidden variable, sources) that are believed to 
generate the data. The ICA exploits the statistical 
independence among latent variables, so its task is to 
decompose m-dimensional multivariate observation data )(tx  
into a linear sum of statistically independent components. BSS 
is closely related to the ICA, and its task is to recover unknown 
sources, given only observation data. BSS/ICA considers a 
linear data model where the data vector )(tx  is assumed to be 
generated by: 

)()( tt sAx =  

where nm×ℜ∈A  is called the mixing matrix (each column of 

which corresponds to the basis vector) and nt ℜ∈)(s  is the 
source vector (whose elements correspond to basis 
coefficients). In other words, it seeks for a linear 
transformation with basis coefficient being statistically 
independent. Unlike most linear transforms (e.g. Fourier 
transform), both basis vectors and coefficients are learned from 
data only. If the data )(tx  consists of linear mixtures of 

sources { })(tsi , then the BSS can recover unknown sources 

{ })(tsi , given only a finite number of observations 

{ } Ntt ,,1,)( K=x . 

2.2 Principal component analysis (PCA) 

PCA is a classical multivariate data analysis method that is 
useful in linear feature extraction and data compression. It is 
essentially equivalent to Karhunen-Loeve transformation and 
closely related to factor analysis. All these methods are based 
on 2nd-order statistics of the data. 
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The PCA finds a linear transformation xWy =  such that the 
retained variance is maximized. It can be also viewed as a 
linear transformation that minimizes the reconstruction error 
[2]. Each row vector of W corresponds to the normalized 
orthogonal eigenvector of the data covariance matrix. 

One simple approach to PCA is to use singular value 
decomposition (SVD). Let us denote the data covariance 

matrix by { })()()0( T ttE xxRx = . Then the SVD of )0(xR  
gives: 
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where U is the eigenvector matrix (i.e. modal matrix) and D is 
the diagonal matrix whose diagonal elements correspond to the 
eigenvalues of )0(xR  (in descending order). Then the PCA 
transformation from m-dimensional data to n-dimensional 
subspace is given by choosing the first n column vectors, i.e., n 
principal component vector y is given by: 

xUy T
s=  

2.3 Flexible ICA (FLEXICA) 

In general, the dimension of source vector (latent variable 
vector) is less than that of observation data. Thus we first 
perform the dimensionality reduction by data sphering. In fact 
the data sphering (whitening) project the data onto its subspace 
as well as normalizing its variance. In other words, the data 
sphering transformation Q is given by: 

T2
1

ss UDQ −=  

The whitened vector nℜ∈z  is given by: 

xQz =  

The orthogonal factor V in ICA can be found by minimizing 
the mutual information in z. The natural gradient in 
orthogonality constraint [3] or relative gradient (EASI 
algorithm) [4] leads to the learning algorithm that has the 
form: 

{ }VyyyyyyIV )()( TTT ϕϕη +−−=∆ t  

where zVy =  and )(yϕ  is an elementwise non-linear 
function whose ith element is given by: 

i

ii
ii yd

ypd
y

)(log
)( −=ϕ  

where { })(⋅ip  are the probability density functions of sources. 
Then the ICA transformation W is given by: 

xWy =  

where QVW = . 

Since we do not know the probability density functions of 
sources in advance, we have to rely on the hypothesized 
density functions. The flexible ICA [5] adopts a generalized 

Gaussian density which is able to approximate all kinds of uni-
modal distributions. For the generalized Gaussian density 
model, the nonlinear function is given by 

)()( iiii ysignyy iαϕ = . The flexible ICA exploits the 

relation between the Gaussian exponent and the kurtosis in 
order to select a proper value of the Gaussian exponent. See 
[5] for details. 

2.4 JADE and SOBI 

The JADE [6] and SOBI [7] are popular BSS methods based 
on the joint approximate diagonalization.  In both JADE and 
SOBI, the data is whitened first, then an orthogonal factor of 
the mixing matrix is found by a linear transformation that 
jointly diagonalizes a full set of 4th-order cumulant matrix (in 
JADE) or multiple time-delayed correlation matrices (in SOBI). 
Unlike the other methods, JADE exploits only 4th-order 
independence and SOBI utilizes 2nd-order uncorrelatedness 
with temporal correlations. When sources are spatially 
uncorrelated but temporally correlated, the SOBI is a very 
efficient method. 

2.5 Application in neural networks 

The above data preprocessing algorithms provide a 
transformation of raw data vectors into their independent 
component vectors. Use of independent inputs is theoretically 
better in any statistical techniques. When the component 
vectors are used in neural networks, it is equivalent to adding 
an extra layer of hidden neurons with connection weights 
determined by the above algorithms, rather than the learning 
algorithm used in neural networks. Improvements are often 
observed in practice as the hidden features of the raw data are 
extracted after the transformation.  

3.  CASE STUDY 

3.1 Objective and data descriptions 

The objective of this paper was to compare the performance of 
various data preprocessing systems for flow unit classification 
in a petroleum reservoir. The data came from a well drilled in 
Indonesia [8][9]. The well has 27 rock samples retrieved 
downhole, in which the training patterns were obtained. The 
inputs of the training patterns were four different well logs, 
namely GR (gamma ray response), RHOB (bulk density), 
NPHI (neutron porosity) and RT (deep resistivity). The target 
output was the flow unit type. In this reservoir, the expert 
geologist used four possible types to denote the flow units, 
ranging from “FU-1” (low quality) to “FU-4” (good quality). 
The typing was done based on the observation and hydraulic 
measurement obtained from the rock samples. Based on the 
use of this training set, this study applied supervised 
classification and to generate a “FU log” for the entire well, 
which has 301 input patterns. 

Flow unit classification is a highly non-linear problem in 
reservoir modeling. Figure 1 shows four scatter-plots of the 
training data used in this study. The actual flow unit types are 
displayed by the corresponding symbols. For simplicity, no 
units are displayed for the well logs. As shown, none of the 
well logs alone has good discriminative power. Many previous 
studies have confirmed the suitability of neural networks for 
solving reservoir problems, because the conventional 
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classifiers are overly linear and parametric. Detailed reviews 
can be found in [10][11]. 

3.2 Neural network setup 

In this study, we had 27 training patterns with 4 inputs and 4 
classes (outputs). Since the training set was small, it was 
difficult to develop a generalized network by any means. We 
therefore applied two rules of thumb: 1) the number of 
network weights is approximately equal to the number of 
training patterns; and 2) the network stops learning when the 
classification accuracy does not improve in 30 consecutive 
epochs. According to our first rule, the maximum number of 
hidden neurons was three and this resulted in 31 weights 
(including biases). 

3.3 Confidence measure 

Once the network is trained, the network can be applied to 
perform classification for any input vectors. The confidence of 
the results is an important issue for any prediction problems. 
One simple way to quantity the confidence of the neural 
classifier is to calculate the entropy of the predictions: 

( ) ( )∑−=
i

ijijj ypypH log  

where jH  is the entropy of the output vector j and ijy  is the 

corresponding activation at output neuron i. The larger the H, 
the smaller the confidence. Note that ijy  has to be normalized 

such that 1=∑
i

ijy . For a four-class problem, the maximum 

entropy is approximately .602.025.0log25.04 =××−=H  

In this study, we will use jH  to access the prediction 

confidence. We will also use the average entropy H  for the 
entire data set with n input vectors: 

∑=
n

j
jH

n
H

1
 

Note that H  can be used to compare the performance of 
different neural networks trained by different training sets. 

3.4 Data preprocessing 

As we had four input dimensions, we applied the PCA and 
ICA methods and ended with four PCs and four ICs. For 
comparison purposes, we retained all the four components as 
inputs to identical neural networks. All the three different ICA 

Fig. 1. Scatter-plots of input data.
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methods (FLEXICA, JADE and SOBI) were used. A total of 
five 4-3-4 neural networks were trained (including RAW and 
PCA). The results from the raw data were treated as the 
“bottom-line” (base) case. 

3.5 Results 

All the five networks converged to reasonable accuracy. The 
classification accuracy of the training set RAW was 70%, 
while all the preprocessed training sets gave 74%. Since no 
blind tests were performed, we examined the entropy values 

for the entire well using the 301 input vectors. The 
corresponding FU logs are displayed in Figure 2. Note that 
depths are measured in feet subsea, the solid line represents the 
flow unit (FU) along the well and the dotted line represents the 
entropy (H). 

The average entropy values ( H ) and performance ranking are 
tabulated in Table 1. From the confidence assessment, it was 
clear that the RAW classifications were the least confident 

( 344.0=H ), especially in the deeper part of the well (see 
also Figure 2). Use of JADE was particularly good for the 

Fig. 2. FU logs from different methods.
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entire well on average (see also Figure 2) with the lowest 

average entropy ( 251.0=H ). 

 
Methods Average Entropy Ranking 

RAW 0.344 5 

PCA 0.324 4 

FLEXICA 0.275 2 

JADE 0.251 1 

SOBI 0.279 3 

 
Table 1. Entropy analysis of the five methods. 

 

Since all the methods use different criteria to perform 
classification, it is possible to combine all their individual 
advantages by building a hybrid model. In this study, we 
aggregated the results by taking the FU classification from the 
method with the minimum entropy. Figure 3 shows the 
resulting FU log, together with the location of the optimum 
method along the well. It is important to note that the average 

entropy was 182.0=H , which was the lowest among all the 
other methods as shown in Table 1. 

Table 2 shows the percentage contribution and performance 
ranking of each method in the hybrid model. From this simple 
analysis, it is clear that FLEXICA contributed the most 
classifications to the hybrid model, followed by SOBI and 
JADE. However, FLEXICA did not work well in the shallower 
part of the well (4300–4370 ft). On average, FLEXICA 
seemed to slightly outperform the other two ICA methods. 

 
Methods Contribution Ranking 

RAW 6.6% 5 

PCA 7.3% 4 

FLEXICA 33.6% 1 

JADE 24.9% 3 

SOBI 27.6% 2 

 
Table 2. A contribution analysis of the hybrid model. 

 

This paper relied heavily on the use of entropy to measure the 
confidence of the predictions using the neural network output 
activations. Like all other confidence indicators, entropy 
cannot measure the “absolute” confidence of the predictions. It 
measures only if the trained neural network is confident in the 
predictions. We therefore should be aware of the limitations 
and check if the results conform to the expert knowledge. 

In summary, PCA gave better results than the use of raw data, 
and all the ICA methods (FLEXICA, JADE and SOBI) 
performed even better in this study. The hybrid FU log was 
geologically realistic, especially in the middle-to-bottom 
section of the reservoir. The rapid changes of rock types 
represent the inherent heterogeneity in the reservoir, which 
cannot be obtained from any single method alone. Moreover, 
since the hybrid FU log had the lowest average entropy, it was 
taken as the final results for further reservoir calculations. 
Finally, it is important to emphasize that although the 
technological framework is valid, the present conclusions are 
only valid for the data set we applied. More vigorous studies 
on larger data sets are required to truly compare the 
performance of different preprocessing algorithms. 

4. CONCLUSIONS 

This paper presents the use of standard backpropagation neural 
networks to perform classification of multidimensional signals 
obtained from a drilled well in Indonesia. The signals are 
classified as discrete flow units, which relate to the fluid flow 
potential of sedimentary rocks. A number of different data 
preprocessing algorithms commonly used in blind source 
separation are compared. The results show that the neural 
networks trained by the independent components perform 
better than those trained by the principal components and the 
raw data. More confident classifications are derived from 
aggregating all the results obtained from different methods. 
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