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ABSTRACT

A new algorithm is proposed for the variation of indepen-
dent component analysis (ICA) in which there are several
mixing matrices and, for each set of independent compo-
nents, one of the matrices is randomly chosen to mix the
components. The algorithm utilizes high-order moments
and can obtain consistent estimators even if the true prob-
ability density function of independent components is not
obtained. The effectiveness of our algorithm is verified by
a numerical experiment. This method can be used to ana-
lyze a class of data generated overcompletely, and to clas-
sify data in an unsupervised manner.

1. INTRODUCTION

The problem treated in the well-known original independent
component analysis (ICA) is simple. Recently, many exten-
sions of ICA have been studied to relax the assumptions of
ICA, and to analyze more data, such as assuming a form of
dependence and considering the effect of additive noise on
data. By these extensions, we can treat data against which
the original ICA is not effective. Here we treat the problem
in which the mixing matrix is not a single matrix. Instead,
there are several mixing matrices, one of which is randomly
chosen for each set of independent components to mix the
components. This problem is a special case of the ICA mix-
ture model[1, 2, 3].

The algorithm of Lee et al.[3] for the ICA mixture model
takes the form of a maximum likelihood estimation. How-
ever, unlike the original ICA, this algorithm cannot obtain
consistent estimators of mixing matrices for ICA with sev-
eral mixing matrices when we do not know the probability
density function of independent components. Furthermore,
estimation of mixing matrices does not lead directly to the
reconstruction of independent components. We must deter-
mine which matrix was used to mix the components among
the candidates for the mixing matrix, in order to reconstruct
the independent components.

In this paper, we propose a new algorithm for ICA with
several mixing matrices. This algorithm utilizes high-order
moments and can obtain consistent estimators even if we do
not know the distribution of independent components. We
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propose a method to reconstruct independent components
by estimating their distribution and by calculating the con-
ditional probability of each mixing matrix given data. We
verify the effectiveness of our algorithm by a numerical ex-
periment.

2. INDEPENDENT COMPONENT ANALYSISWITH
SEVERAL MIXING MATRICES

2.1. Model for generating data

We formulate the data-generating process and the goals of
ICA with several mixing matrices. As with the original
ICA, independent components are mutually independent and
we assume that we know they are independent. The proba-
bility density function of each independent component,

k7 (s;), is not known.

s(t) ~ £*(s) = Ki(s1)k3(s2) - kp(sn). (1)

For simplicity, we assume that the mean of s; is 0. There are
L different candidates for the mixing matrix, A, As,-- -,
Ay, ---, Ar. For each set of independent components, that
is, for every t, one of the candidate matrices is randomly
chosen and it mixes the components. In other words, there is
asequence of indices A(¢) made of {1,2,--- , L} randomly,
and a sequence of data x(t) is obtained by a sequence of
independent components s(¢) as follows.

x(t) = Ax)s(t). (2)

The probability that Ay is chosen is ¢y, and these values are
obtained. Even if we cannot obtain values of gy, in some
cases, we can appropriately assume that they are the same
for all A\. Only mixed data x are observed and we cannot
observe which mixing matrix is used. In this paper, we
deal with tractable cases, and assume that mixing matrices
A, are all square and regular. Their inverse matrices are
Wi, Wa, -+, Wrp.

In summary, we assume that we know values of g,, the
number of independent components n, and the number of
candidates for the mixing matrix L. Utilizing observed data
series x(t), the first goal is to estimate all candidates for
the mixing matrix Ay, As,--- , A, and the second goal is



to separate independent components from data. In the ICA
mixture model, the probability density function of indepen-
dent components and their means are assumed to be differ-
ent, linked to the used mixing matrix A,. In the above-
mentioned model, they are assumed to be the same for all
mixing matrices and the model is the special case of the ICA
mixture model. Our algorithm can be modified to a model
with different means, but this is not described in this paper.

2.2. Applicationsof |CA with several mixing matrices

As an example of the ICA mixture model, Lee et al.[1, 3]
separated mixtures of a conversation of two people and mu-
sic in the background. In this example, ICA with several
mixing matrices is effective for data satisfying the following
two conditions: (1) The data are generated by overcomplete
basis functions, that is, the number of independent signal
sources is larger than the dimension of data. (2) The num-
ber of signal sources generating a signal simultaneously is
limited.

Lee et al.[1, 2, 3] also used the ICA mixture model for
data classification. In this context, independent components
are latent variables, and data are assumed to reflect them
linearly.

We introduce another application. We consider linear
mixtures of independent components, but the mixing matrix
is not fixed, nor is it chosen from several candidates. In-
stead, it fluctuates slightly stochastically. In some cases, by
applying an algorithm for ICA with several mixing matri-
ces, we can decrease the reconstruction error of independent
components compared with the original ICA. A numerical
experiment of this application will be reported elsewhere.

3. MAXIMUM LIKELIHOOD ESTIMATION

An algorithm taking the form of a maximum likelihood es-
timation [3] is summarized and discussed.

We define W = {Wy, Wy, --- ,Wr} and y\ = Wya.
If we know the true probability density function of indepen-
dent components x*(s), W can be estimated by maximum
likelihood estimation. However, in most actual situations,
we do not know the true distribution except that it is fac-
torable. In the original ICA, we can obtain estimators that
converge to true values asymptotically, by a maximum like-
lihood estimation with an arbitrarily assumed distribution
k(s) [4,5]. For ICA with several mixing matrices, the prob-
ability that the chosen mixing matrix is A, and the obtained
data are x is

P(a},/\|W) = qAn(W)\:c)|det W)\|. 3)
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From this probability, the likelihood of W can be calculated:

P(a[W) =Y gre(Waz)| det W], (4)
A
P(Na, W) = qw(w;*(jwjt Ml (5)
i 8 P@l) = (~e(wa)a” + AT POz, W),
(6)
where

_(Ei(y) K3(y2)  ER(Yn) T
e(y) = <H1(y1),@(y2), ; ) (7

k* is the true distribution function of s, and « is the distribu-
tion that is assumed since we do not know the true distribu-
tion function. W* is the true separating matrix, and W is an
estimate of 1&/7*. If the number of data is sufficiently large,
the estimate of W, obtained by the maximum likelihood
estimation is, approximately, the solution of the following
equation:

Epwe [(—e(yx)” + AL) PNz, W)]
= /(—w(yx)yf + A Q(yx)dyr =0,  (8)

Z)\/ CI)\/K,*(W;, A)\y)\)| det W;,|
Yo qv (W Axyn)| det Wy |

Q(yr) = axk(yn) -9

If the assumed x(s) is the same as x*(s), W = W* is one
of the solutions of eqg. (8). From these two equations, we
obtain Q(y») = qxx(yn) , where Q(y,) is factorable like
eg. (1) and eqg. (8) holds. However, if x(s) is different
from x*(s), under the condition W = W*, Q(y») is not
factorable and eq. (8) does not hold. Therefore, contrary
to the original ICA, maximum likelihood estimation cannot
obtain a consistent estimator for this problem.

4. AN ALGORITHM UTILIZING HIGH-ORDER
MOMENTS OF INDEPENDENT COMPONENTS

4.1. Calculation of high-order moments and estimation
of mixing matrices

We propose a new algorithm for ICA with several mixing
matrices. For the original ICA, Cardoso (1999)[6] proposed
a method utilizing high-order cumulants.

The relation between high-order moments of data  and
independent components s is represented in the following



equation with the true mixing matrix A3.
Elzi, zi, - - @i,]

= @Elz;, i, - - 2, [the mixing matrix isA}]
A

=30 | (S tann ) (T )
A p1 P2

*
x <: : a>\,impm SPm) ]
Pm

—_ * * *
=202 ) B B R
A Pm

p1 P2

X Elsp, 8py = Sp,.] - (10)

We define & as the vector that is composed of m-th-
order terms of x;, z;, x4, - - - x4, , arranged in lexicographic
order of I = (iy,i2,--- ,im,m). The dimension of & is n™.
In other words, if the following relation holds,

j=n"" 0 = 1)+ iy — 1) 4 -
+ n(im—l - 1) + ima (ll)

the j-th element of & is x;, x;, - - - z;,, . We define § from s
in the same way. We define a n™ x n™ matrix B as follows:

b1 = bpips-pmivia-im

= § : AXNAX i1y AN jisps " AN,y P - (12)
A

The row index of B is the lexicographic order of P =
(p1,p2,- -+ , pm), and the column index is the lexicographic
order of I = (i1,1492, - - - , i ). Equation (10) is rewritten as
follows, with B calculated from A3,

E[z]" = E[3]"B. (13)

Here, we add another assumption to A,, that B is regular.
We define G as the inverse matrix of B. From eq. (13), we
obtain the following equation:

E[5]" = E[#]"B~! = E[z]"G. (14)

Using this equation, if G is calculated from true mixing ma-
trices A3, we can estimate high-order moments of indepen-
dent components from high-order moments of data.

Let us consider an estimate A, of the mixing matrix.

The column vector of G is represented by g;,4,...,, and we
define functions f; by the following equation.
Fivinovin (@) = &7 iyigeiy - (15)
Note that if G is calculated from true mixing matrices,
Elfirio-im (T)] = Elsi; 8ig -+ 53, ]- (16)
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We define E,[f] as a sample mean of f(x(t)) .

1 T
Elf] = 7 D fla(t). (17)

T is the number of data sets. We can obtain an estimate
of A, by bringing values of E;[fi,,....,, ()] close to the
values of E[s;, s;, - - - 8;,,.], which have been decided by as-
sumptions of independence and scale, as described below.
If a high-order moment of s contains one degree variable,
that is, there is at least one number that appears only once
inI = (i1,42---i,), the expectation of the moment is 0,
based on independence and the assumption E[s;] = 0. We
assume the scale of independent components as E[s?] = 1.0
since their scale cannot be decided from data «. Values of
some other moments can be decided from this assumption.
From these restrictions, we can construct a cost function.
For example, using moments up to the 4th order, we obtain
the following cost function:

E= % Y (Eelfal = 10+ Eilfi]®

i i#]

+é DoEdfuwl+ Y Edfil’

i#j i£d,jAk kA
+ i {Z Eq[fiji]? + ZEt[fijkk]Q + Z Et[fiju]’
+(Edlfiiji] - 1-0)2} (18)

Updating the values of A to decrease the cost function, we
can obtain an estimate of A,. The true values of A, mini-
mize this cost function regardless of the true distribution of
independent components.

The residual problem is which set of moments is suf-
ficient for consistent estimation. At least, we need n2L
moments, that is, as many as the unknown variables, and
in practice, we need more for the stability of calculations.
Further analysis of sufficient conditions will be treated in a
forthcoming paper.

4.2. Reconstruction of independent components

In ICA with several mixing matrices, the estimation of mix-
ing matrices is not sufficient for the reconstruction of inde-
pendent components. For each set of data, one must deter-
mine which matrix was used for mixing. If the true prob-
ability density function of independent components x*(s)
were obtained, the conditional probability of each mixing
matrix given a set of data P(\|x, W) would be calculated.
It is an appropriate way to employ, as an answer, the matrix
with the largest posterior probability.

Since we can consistently estimate mixing matrices, we
can consistently estimate all auto moments of independent



components by E,;[fr(x)]. One way to estimate the prob-
ability density function x*(s) is to calculate estimates of
m-th-order auto cumulants of i-th component sy, ;, from
auto moments, and substitute these estimates into the Gram-
Charlier expansion:

Alsi) ~o(s:) (14 B Ha(si) + S Ha(s:)

pe.i + 1043 ;
6!

(s +

5! HG(Si)---> . (19)

H,,(s) is the m-th Hermite polynomial, and ¢(s) is a den-
sity function of the standard normal distribution. From the
estimated distribution, we can estimate P(\|x, W), and can
employ A with the largest posterior probability. Even if we
know the true distribution of independent components and
the values of the true mixing matrices, independent compo-
nents are not always reconstructed exactly. The accuracy of
reconstruction depends on the problem itself, for example,
the combination of mixing matrices.

In many actual problems, independent components are
smooth or the same mixing matrix tends to be used suc-
cessively. These assumptions can be utilized to refine the
reconstruction.

In summary, the algorithm we propose to reconstruct in-
dependent components is as follows.

Step 1 Estimate mixing matrices by means of the algorithm
utilizing high-order moments, as described in section 4.1.
Step 2 Estimate auto moments of independent components
E[s3], E[s}]... by E¢[fiii], Et[ fisi] -... From these estimated
moments, calculate auto cumulants s34, ft4.5....

Step 3 Estimate x*(s) by substituting estimated auto cumu-
lants into the Gram-Charlier expansion.

Step 4 From the estimated probability density function (s),
calculate conditional probabilities of mixing matrices, given
each set of data.

@ r(Wyz)| det W, |
P(\xz, A) = '
(. 4) >y avk(Wy )| det Wy |

Step 5 Choose a mixing matrix with the maximum condi-
tional probability for each set of data, and by means of the
matrix, separate independent components from data.

At) = arg max P(MNx(t),4), y(t)= A;\(lt)ac(t).

Step 6 If some prior knowledge is available for the data,
for example, the smoothness of independent components,
or the continuity of the used mixing matrix, utilize them to
refine choices of the mixing matrix. We describe a simple
example of these methods for image data in section 5.

5. SSMULATION

To verify the effectiveness of our algorithm, we carried out
a simple demonstration using image data. We used 3 im-
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Table 1. Values of auto cumulants of images used as inde-
pendent components. For each image, true values calculated
from original images are in the upper row, and estimates are
in the bottom row. s;:a building, s»:fabric, s3:tiles.

orderofcumulant | 3rd | 4th | 5th |  6th

sy true value 0.714 | 0.093 | -1.944 | -5.590
s;  estimate 0.748 | 0.187 | -1.871 | -6.468
sy true value -0.245 | -0.444 | 0.874 | 0.405
s, estimate -0.189 | -0.436 | 0.374 | 0.614
s3  true value -0.375 | -1.135 | 2.114 | 5.312
s3  estimate -0.377 | -1.158 | 2.132 | 5.557

ages: a building, fabric and tiles as independent compo-
nents, shown in the top row of Figure 1, taken from MIT’s
VisTex database. * We simulated data from these 3 images
according to the model described in eq. (2) with L = 2 and
g1 = g2 = 0.5. Mixing matrices were made randomly. The
mixtures of images appear in the second row of Figure 1.

We used the algorithm described in section 4 with the
cost function in eq. (18) to reconstruct independent compo-
nents. Since we used the gradient method to decrease the
cost function, local minima could not be avoided. To ob-
tain good estimates, we made 40 initial values. From the
best one of the 40 estimates, we made 48 new initial ma-
trices by permuting columns of A,, and by changing the
signs of columns of A,. Then, we employed the matrices
with the smallest cost function. The estimation was good,
and A; ' A* is close to an identity matrix, as shown in the
following equations:

1.009 —0.010  0.019
~0.036 1.015 —0.010 |, (20)
—0.023  0.006 1.011

0.987 —0.034  0.063
A;'A3 = 0001 0984 —0.017 |. 1)
0.018 —0.021  1.001

A4

After mixing matrices were estimated, we reconstructed
independent components using the algorithm described in
section 4.2. The cumulants of original image data and their
estimates by E.[f;] appear in Table 1, and the estimation is
good. Histograms of original image data appear in Figure 2.
Graphs in Figure 2 are four approximations of distributions
by Gram-Charlier expansions. One approximation utilizes
the expansion up to 6-th order terms, and the used cumu-

1Copyright 1995 by the Massachusetts Institute of Technology. All
rights reserved. Developed by Rosalind Picard, Chris Graczyk, Steve
Mann, Josh Wachman, Len Picard, and Lee Campbell at the Media Labo-
ratory, MIT, Cambridge, Massachusetts. This distribution is approved by
Nicholas Negroponte, Director of the Media Laboratory, MIT.



Table 2. Error rates of choices of the mixing matrix used
for each data set. " True value” means that values of cumu-
lants used to approximate «*(s) were calculated from orig-
inal images. “Estimate” means that used cumulants values
were estimates. ”Smoothness” means that after we deter-
mined the used mixing matrix by estimated probability den-
sity functions, we altered the determination by utilizing the
smoothness of images. The orders are those of the Gram-
Charlier expansion.

| cumulant | error rate(%) |

| true value 6th | 20.8 ]
estimate 6th 20.9
estimate 4th 22.5
estimate 2nd 27.1

| estimate 6th + smoothness | 6.2 |

lants were calculated from original image data. Three ap-
proximations utilize expansions up to 2nd-order terms, 4th-
order terms and 6th-order terms, and the cumulants were
estimated by E;[f;]. From each approximation, we deter-
mined the most plausible mixing matrix for each data set
and reconstructed the independent components, according
to steps 4 and 5 in section 4.2. Error rates of choices of a
mixing matrix are shown in Table 2. Since estimation of
cumulants was sufficiently good, we could determine the
true mixing matrix as accurately as the decision using true
values of cumulants. The error rate decreased considerably
when we used higher order terms of the Gram-Charlier ex-
pansion. Reconstructions of image data by approximated
distributions from estimated cumulants up to the 6th order
appear in the third row of Fig. 1.

From the reconstructed images in the third row of Fig-
ure 1, we applied a simple method that utilizes smoothness.
Suppose we obtain reconstructed images whose (p, ¢) pix-

elsare y, .. We refine y,, 4 into A;nlew x, 4 by the following
equations:

Anew = arg mAax(log P(\xp,q, A)

- Z (Ypr g — Aglmp,q)Tc(yp’,q’ - Aglmp,q)): (22)

('’ )EN

with the following neighborhood and constants,

N={(p,q-1),(p-1,9,(p+1,9,(pqg+ 1)}, (23)
C = diag(cy,c2,- - ,cpn)- (24)

c; is defined as 1/207 where o7 is the mean of squares of
differences between adjacent pixels of the reconstruction of
the i-th image. Even by this simple method, the error rate
decreased to 6.2 %. Reconstructed images are shown in the
bottom row of Fig. 1. The reconstruction is satisfactory.
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6. CONCLUSION

Our method can retain consistency of estimation even if we
do not know the true distribution of independent compo-
nents. However, it is not clear which set of moments is suf-
ficient for consistent estimation. We can obtain sufficient
conditions by formulating the ICA with several mixing ma-
trices as a semiparametric estimation problem and examin-
ing the condition under which estimating function[7] can be
constructed. We carried out this analysis with 4th-order mo-
ments only and the result will be reported in a forthcoming
paper. For the original ICA, Amari et al. (1997)[4] treated
a similar problem.

We did not compare our algorithm with the maximum
likelihood estimation[3], because we anticipated that results
depended heavily on whether the presumed distribution of
independent components was close to the true one.

What condition decides the maximum number of mix-
ing matrices that can be estimated consistently ? Can we
estimate any number of matrices using higher-order mo-
ments? Is the maximum number of mixing matrices L re-
lated to the dimension of independent components n? These
questions remain to be answered in future research.
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Fig. 1. Results of simulation to verify the effectiveness of the proposed algorithm. Top row: original images, that is, independent
components. 2nd row: images mixed by two mixing matrices, that is, data. 3rd row: images reconstructed by approximating the distribution
of independent components from estimates of cumulants up to the 6th order. Bottom row: images refined from images in the 3rd row, by
utilizing smoothness of images. The error rates are those of the mixing matrices.
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Fig. 2. Histograms represent true distributions of original images. The thin solid line represents an approximation of distribution from
cumulants of original image data up to the 6th order. The thick solid line represents an approximation from estimates of cumulants by
E:[f1] up to the 2nd order. The dash-dot line represents an approximation from estimates of cumulants up to the 4th order, and the dashed
line, up to the 6th order. The three graphs correspond to the three original images. a: a building, b: fabric, c: tiles.
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