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ABSTRACT

A new concept of combining conventional beamforming
with independent component analysis (ICA) techniques and
its implementation on a multi DSP system is presented. The
system consists of two floating point digital signal proces-
sors TMS320C6701, an eight channel linear microphone ar-
ray, an analog/digital converter board and a handheld con-
trol unit for stand alone operation. In the two system stages
a sum and delay beamformer as well as a convolutive ICA
algorithm are implemented. Due to the high performance
of the digital signal processors, the systems achieves blind
separation of two convolutive mixed sources in real time.

1. INTRODUCTION

Recently, independent component analysis (ICA) has gained
great importance in the field of blind source separation.
Many algorithms are available for blind separation of in-
stantaneously mixed signals, e.g. [1, 2, 3]. Applications
have been reported e.g. in [4, 5].

In the instantaneous case the mixing process can be ex-
pressed in terms of weighted additions. This is not true
for microphone recordings, where the mixing process yields
convolutions with the room impulse responses between the
sources and the microphones. Instead of the determination
of scalar mixing weights, in the convolutive case impulse
responses need to be identified.

A common approach to convolutive ICA is to transform
the mixed signals into the frequency domain via short time
Fourier Transform (STFT) and to solve the source separa-
tion problem within each of the frequency bins separately
using an instantaneous ICA algorithm, e.g. [6, 7, 8]. The
individual solutions of the ICA algorithms form a digital
filter that can be applied either in the time or the frequency
domain.

An important problem inherent in this technique are the
permutations between the frequency bands. A subsequent
rearrangement of the individual frequency bins on the basis
of their similarity is a possibility to deal with this problem,
but this method suffers from long room impulse responses.

65

Preprocessing by a beamformer can shorten the effec-
tive filter length by rejecting some of the reflections from
the surrounding walls, resulting in a generally smoother fre-
quency response. That is, a permutation correction crite-
rion based on similarities between adjacent frequency bins
may perform better with a beamforming preprocessing than
without.

In order to analyse the combination of beamforming and
convolutive ICA algorithms in real world environments we
have implemented a system based on two digital signal pro-
cessors (DSP) TMS320C6701 to perform beamforming and
convolutive ICA in real time. First results of this system are
presented here.

2. METHODS

This section gives a brief overview of the employed beam-
forming and ICA algorithm and discusses some issues con-
cerning the realtime implementation.

2.1. Beamforming

The objective of the beamforming stage is the suppression
of diffuse echos which appear in a typical room environment
due to surrounding walls, floor and ceiling. These reverber-
ations can be assumed to impinge mainly from outside the
preferred look directions, which are adaptively aligned to
the two sources of interest.

Regarding computational power and robustness, a delay
and sum beamformer is a good choice. It can be easily ap-
plied in the frequency domain. This avoids the restriction to
few look directions, as it could be caused by integer delay
numbers after sampling.

The acoustical beamformer consists of two stages:

e estimating direction of arrival for two sources

e performing delay and sum beamforming for both look
directions



2.1.1. Estimating direction of arrival

The implemented direction estimator is energy based. Due
to possible source movements, it operates adaptively and
has a sufficiently large buffer of mean directions to ensure
robust estimation.

First, the complete area of interest is scanned in steps
of five degrees. The two largest maxima are compared to
two buffered mean directions. If the criterion of limited de-
viation is met, i.e. the estimated angles are plausible, the
assignment is carried out.

In practice some additional constraints must be used for
a successful direction estimation. So realizing a conven-
tional delay and sum beamformer with an equidistant lin-
ear array, the beam pattern is strongly frequency depen-
dent. That is, for low frequencies only negligible degrees
of signal-to-noise ratio (SNR) improvement are achievable,
while for higher frequencies with wavelengths A above the
half distance between the sensors, spatial aliasing may oc-
cur. Therefore, the direction finding is constrained to the
optimal frequency f,,:, where the wavelength matches the
sensor distance d, i.e. f,pr = ¢/2d with ¢ as the speed of
sound propagation.

Additionally, the direction estimation is only performed
in periods of high sensor activity, otherwise both look di-
rections are held constant. This avoids adapting to wrong
sources, like fan noise, if the source activity is temporar-
ily low. For activity detection, the current signal power is
compared to an adaptive threshold, which is determined by
the multiplication of the buffered mean energy by a constant
factor e ~ 2.5.

2.1.2. Delay and sum beamforming

The principle of delay and sum beamforming is the rein-
forcement of the signal impinging from the direction of in-
terest, achieved by in phase summation of the sensor sig-
nals, see e.g. [9, 10]. In case of known source locations, the
appropriate delays can be derived directly from the time it
takes for the signal to propagate from one sensor to the next.
Operating in the frequency domain, the signals are mul-
tiplied by a frequency and look direction dependent phase
shift factor A. The summation then can be expressed as

(1)

N
Y(Q, tN) = Z Oszk (Q, 1?) . ejQA’C 5
k=1
where X} (, Q) is the short time fourier transformed signal
of the k-th sensor and «, is the window coefficient of the
spatial sampling process.

Assuming two sources, this operation is performed twice
on the same set of sensor signals for both look directions.
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2.2. ICA

The instantaneous mixing process is defined as a linear com-
bination of the statistically independent sources

x(t) = A -s(t), @
where s(t),x(¢) and A denote the vector of the source sig-
nals, the vector of the mixed signals and the mixing matrix,
respectively. The estimation of the matrix A or its inverse
W = A~!is possible only up to scaling factors and per-
mutations. The source signals are reconstructed by

u(t) = W-x(t), €)
with W as the estimated inverse mixing matrix. In the case
of convolutive mixtures, the mixed signals not only contain
scaled but also delayed versions of the source signals. For
microphone recordings this is caused by the convolution of
the source signals with the room impulse responses between
source and sensor. It can be expressed as

x(t) = A xs(t), 4
with A now containing the impulse responses of the mix-
ing filters. Transformed into frequency domain, under cer-
tain circumstances the convolution can be reduced to a fre-
guency dependent multiplication

X(Q:t) = A(Q) : S(Q:t): (%)

where 7 represents the index of the STFT frame. By apply-
ing a complex valued instantaneous ICA algorithm to every
frequency band, the convolutive separation problem can be
solved.

The elements of A (Q2) form the frequency responses of
the mixing filters. Unmixing is done with inverse filtering,
i.e. with the elements of W (€2) in the frequency domain?.

2.2.1. Jade

As an instantaneous ICA method, the JADE algorithm [1] is
applied in each frequency band of the spectrogram to iden-
tify A(€). This algorithm uses fourth order cumulants for
estimating the unmixing matrix. It is based on the joint dia-
gonalization of the most significant cumulant matrices.

First, the signals are decorrelated with a whitening ma-
trix M (see e.g. [12])

Xa(2,8) = M(Q)X(2,7) = M(Q)A@)S(2,7).  (6)
Hence, the following search is reduced to find an orthogo-
nal rotation matrix O(2) for separation. This is performed

1Time domain filtering is also possible by transforming back the filter
coefficients, see [11] for an overview of blind separation for audio signals.



by making a set of cumulant matrices QZXS as diagonal as
possible, i.e. solving

O(Q) = argmin Z offlo™ (Q)Q;X* O()].

i

()

The matrix O(2) is used to separate the mixed signals as
follows
U(Q,i) =07 ()X

5(Q,1). (8)

As for all ICA algorithms, a solution can be found up
to uncertainties of scaling and permutation. In frequency
domain based algorithms this leads to strong degradations
in the separation result.

An additional problem arises from the blockwise exe-
cution of JADE in combination with real time processing.
Because the unmixing filters are always computed anew, it
is not sure how the output signals will be assigned to the
channel numbers. Depending on the overall permutation,
the channels may swap. So postprocessing is necessary to
avoid the frequency and time domain permutations.

2.2.2. Scaling and frequency domain permutation

It can be shown [13] that, in a least squares sense, the opti-
mal scaling factors correspond to the elements of the mixing
matrix A. So, multiplying the separated signals by coeffi-
cients obtained from the mixing matrix A yields compensa-
tion of scaling errors. This operation is equivalent to assum-
ing a normalized mixing model with ones at the diagonal
elements of A. Although this supposition is not conform to
the real mixing process, it has proven to be sufficient for a
successful separation.

To correct permutations between frequency bands, it is
assumed that the transfer function that results from concate-
nating all mixing matrices A (€;) will be smooth, which is
true in case of a beamforming preprocessor. Thus, at each
frequency, that permutation is selected, which leads to the
smallest distance between the matrices A (€2 ) at the current
band and A(€_,) at the previous band.

For this purpose, two matrices A ) () and A?) (Q;)
are calculated, assuming the case of permutation and the
case of no permutation, respectively. They are compared to
the mixing matrix in the previous frequency band A (Qj_1),
with the distance calculated according to

Z|a(1 Qk
Z|a(2 Qk

— 0 (Q—1)] 9)

— aij(Qr-1)], (10)

and that A (9 with the smaller distance value is selected to
form A(Qy).
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2.2.3. Time domain permutation

To avoid channel swapping, the arrangement of the out-
put signals must be kept consistent. For that purpose, the
temporal structure of the separated frequency bands is ex-
ploited. Because consecutive blocks of STFT frames are
built with an overlap of up to 75%, depending on the pro-
cessor load, they cover mainly the same temporary events
and thus show strong correlations.

Empirical examinations showed that it is sufficient to
use a maximum number of 11 frequency bins. They are
smoothed by a low pass filter operation and afterwards cor-
related. So we obtain 11 permutation indices p; with values
of either one or zero, which can be used for the decision on
time permutation

Zzlil pl Z 61

Ptime - Lt . (11)
0 otherwise.

3. HARDWARE IMPLEMENTATION

An overview of the system is shown in Figure 1. The in-
put/output stage consists of four stereo codecs CS4215 with
a precision of 16 bit. They sample the signals from eight
boundary condenser microphones (AKG® C400PC) at a sam-
pling frequency fs=11kHz and are also used for digital/ana-
log conversion of the output signals.

DSP 1 DSP 2
C6701 EVM C6701 EVM
Daughter- . Daughter-
board B'd‘rse;:gml board
Connection
RS232
[ ]

Fig. 1. Hardware structure

The high computational cost of ICA algorithms and the large
amount of data in multichannel signal processing necessi-
tates the use of two DSPs. We have used two TMS320C6701
EVM boards provided by Texas Instruments Inc. for our
system and linked them via serial ports. This allows the
bidirectional communication to run at 50 MHz.

The peripheral equipment, i.e. the codecs and the hand-
held control unit, are also connected via serial interfaces.
The system is capable of stand alone operation, since the
daughter boards are equipped with boot EEPROM. Changes
of parameters are carried out by the microcontroller based
handheld control unit.



The two DSPs run at a clock rate of 100 MHz and perform
the individual tasks as follows:

o codec communication

o short time fourier transformation

o direction estimation

o sum & delay beamforming

o performing JADE for every frequency bin
o correction of frequency permutation

o correction of time permutation

o transform data back to the time domain

DSP1

DSP 2

Fig. 2. Image of the compact system

4. EXPERIMENTAL SETUP AND RESULTS

The default parameters of the system are initialzed after
startup and are set as shown in table 1.

Table 1. Default parameters

Parameter Value
sampling frequency 11025Hz
number of microphones 8

spatial window function hamming
DFT length 512
STFT hamming window length | 256
STFT overlap 192
blocklength for JADE 1000
energy threshold factor e 25

The recordings were taken in a normal office environ-
ment, i.e. a room with the dimensions 6m x 4.8m. Two
loudspeakers were placed in a distance of about 1.7m at the
angles shown in Figure 3. Previously made recordings of a
male and a female voice served as sound sources.
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Fig. 3. Experimental setup

A common method to evaluate the quality of separation
is to compute the signal to noise ratio (SNR) or its improve-
ment. However, direct SNR estimation is difficult because
of additional convolutions and overall scaling factors intro-
duced by the ICA stage. To exclude errors in the SNR esti-
mation, the source signals and the separated signals have to
be made comparable, i.e. differences in variance and tem-
poral delays have to be compensated.

Hence, we first define two desired signals, i.e. the best
solutions to the separation problem, by alternately recording
the sources s; (t) and s2(t). In the second step an appropri-
ate scaling and time delay is applied. That is, the sources
and the separated signals are normalized to unit variance

s si(t)

Si

B(t) = 7 i),

(12)
(13)

and the cross correlation between u; (t—7) and s;(t) is max-
imized so that the signals do not show significant timeshifts.
The normalization to unit variance results in a zero dB SNR
of the mixed signals, so that the SNR of the separated sig-
nals corresponds directly to the value of improvement.

For the calculation of the SNR of the separated signals
an error signal is necessary. It can be estimated as the dif-
ference of the absolute values of the spectrograms of 5;(t)
and 4;(t)

Eventually, the SNR of the separated signals is calculated in
the frequency domain by

>0 U%i

SNR; =10-log S0l
E;

(15)



The SNRs of the separated speech signals are shown in the
following table.

Table 2. Results expressed as SNR improvement

mixed sources | improvement
al
TS 0dB 7.0dB
femal
= 0dB 1.6dB

5. DISCUSSION AND FUTURE WORK

It has been shown that the combination of beamforming and
independent component analysis is well suited for the sepa-
ration of real world signals in real time.

Although the current implementation has been proven
to work in a real environment, enhancements are possible
and necessary. From the computational point of view, the
application of a batch algorithm, such as JADE, is a ma-
jor drawback because of possible delays as well as possible
permutations in time and frequency domain. Additionally,
continuously varying recording conditions can only be han-
dled by overlapping the blocks.

To enhance the quality of the separated signals several
improvements of the algorithms are possible. Besides an
additional denoising stage, a critical factor is the correct es-
timation of the directions of interest within the beamform-
ing stage. The implementation of an eigenvalue based algo-
rithm should improve the detection [14]. Another important
way of improvement are frequency invariant beamformers
[15].

The further work also includes the ongoing search for
better permutation correction methods as well as new means
for better cost functions. The algorithm proposed in [7]
seems to be promising in this context.
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