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ABSTRACT 
The description of multivariate data with principal components 
allows most accurately to approximate a random function with a 
given number of expansion terms. The question is how to estab-
lish that the biorthogonal expansion is really finite in the physi-
cal sense and an experimental function is a random linear com-
bination of several non-random functions over the instrumental 
error. Many situations are expected to result in the linear vari-
ance structure or be reducible to it on the base of physical con-
siderations. Statistical criteria have been elaborated to detect the 
situations since a data variance could not be directly seen to 
possess the linear structure even in two-dimensional situations. 
Some analytical properties of principal components are shown to 
give reliable rotation criteria for calculation the informal process 
functions. The approach is illustrated with the variance-
linearization and rotation transforms for large sets of experi-
mental dependencies describing the leap-like changes in the 
yield of a chemical process at the atom-by-atom growth of cata-
lyst nanoclusters. Facing the latest results on the neural algo-
rithms of identification and decision-making, the approach 
appears to promise efficiently to decode the large arrays of data 
on the electrical activities of brain. 

1. LINEAR STRUCTURE OF VARIANCE 

The huge amounts of measured data on complex systems require 
efficient methods to reduce their dimensionality and efficiently to 
analyze them. The multivariate statistical analysis by the method 
of principal components is one of the most powerful means 
concisely to describe large families of similar experimental 
dependencies obtained at various test conditions [1, 2]. The 
experimental vectors, Y, can be considered as realizations of a 
random function, y(t). They form overestimated rectangular mat-
rices (r, n) if the number of tests, r, overcomes the number of 
ordinates, n. The variance of experimental vectors is commonly 
considered as consisting of 'physical' variance, which describes 
the processes under study, and an instrumental error, which can 
base a criterion to restrict the analysis with the information on the 
variability of process functions only. 

The description by principal components is optimal in the sense 
of minimizing the mean-square deviation [3 - 5]. It bases on the 
biorthogonal Karhunen-Loève expansion that most accurately 
approximates a random function with a given number of expan-
sion terms [6, 7]. Several terms of the generally infinite expansion 
that take into account a main portion of experimental variance, are 
frequently considered [4] as informal linear constituents and their 
properties are ascribed to some physical (chemical, physiological, 
etc.) processes assumed.  

The infinite expansion can degenerate to a finite one if the expe-
rimental dependencies are actually the random linear combina-
tions of several non-random functions, which do not depend on 
variables other than t in the realizations considered:  
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ϕk (t) are dissimilar non-random functions that describe l contri-
buting physical processes and ak are their random weights under 
given experimental conditions.  
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Figure 1. Linear combinations of basic curves 1 and 2 of 
Fig. 2. Weighting factors: 2, 1.6 (A); 2.5, 0 (B); 1.5, 0.6 (C); 
-0.25, 2.2 (D); and 0.3, 0.8 (E), respectively.  

Owing to their mainly additive contributions and their linear 
growth with the process intensity, many of physical variables can 
be expected to result in such a linear structure of variance or be 
easily transformed to it (say, with taking a logarithm of a product 
of multiplicative variables). It would be advantageous to reduce a 
measured set of dependencies to situation (1) that offers obvious 
opportunities for a better understanding of the contributing 
physical processes [8, 9]. Unfortunately, one cannot directly see 
that the experimental dependencies possesses such a linear 
structure of variance. When looking at curves A to E of Fig. 1, 
you can hardly suggest them to be the linear combinations of 
simple logarithmic (1) and linear (2) 'process' functions from Fig. 
2. Therefore, a proper statistical criterion would be useful for 
independently to examine the linearity hypothesis.  

A mathematical procedure has been developed to test (a) if the 
experimental dependencies really have the structure of Eq.(1) and 
(b) if they possess some analytical properties, which allow 
independently to calculate the process functions, ϕk (t), from the 
principal components with using no arbitrary assumptions. 
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2. THE LINEARITY CRITERION 
One of the most intriguing questions of the method is whether 
one could independently derive the process functions if basing 
on only analytical properties of principal components obtained.  
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Figure 2. 'Process functions' whose linear combinations 
constitute the dependencies of Fig. 1. 

The usual search for principal components (the first eigenvectors 
of covariation matrix) to describe the experimental dependencies 
within the accuracy of measurement is a numerical procedure to 
obtain the first terms of the Kahrunen-Loève expansion [6, 7] of 
random function y(t), whose realizations y*(t) on the range [T1, T2] 
are the experimental vectors, Y, obtained at different test condi-
tions. For simplicity, assume them to have a zero mathematical 
expectation, M [y(t)] = ym(t) = 0. If y(t) is continuous on [T1, T2] in 
the quadratic mean,  
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there is a convergent biorthogonal expansion,  
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where ψj (t) are orthonormal: 
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and the expansion factors,  
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are non-correlated: 

M [bq bs] = 0,   q ≠ s.    (6) 
It is necessary and sufficient that ψj(t) were eigenfunctions of the 
covariation function, B [t, t1], used as the kernel of the Fredholm 
homogeneous integral equation of the second kind [9, 10], and 
their spreads, M [bj

2], were its eigenvalues, λj: 
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A given number of the expansion terms approximates the random 
function, y(t), with the highest accuracy among other expansions, 
and a given accuracy would be attained with using the least num-
ber of expansion terms [4, 7, 11, 12].  

For numerically to solve Eq. (7), its matrix representation is used 
[3, 13, 14]. For a sample of r vectors Y, each is a set of n ordinates 
of a test curve, consider biorthogonal vectors Xj, which approxi-
mate them most accurately at any p = 1,2, ...n:  
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yi, xij, and yim are i-th coordinates of Y, Xj, and the mean vector, 
Ym, respectively, at i-th abscissa; bj is the weighting factor of j-th 
basis vector. The maximum likelihood estimates of Xj [4] will be 
the eigenvectors of the symmetric covariation matrix: 

?  (n,n) = U’U/(r-1),     (9) 

U (r, n) and U´(n, r) are the centered matrix of experimental data 
and its transposition, respectively. The lines of U and columns of 
U´ are Y - Ym, the differences between an experimental curve and 
the mean curve. The transition from U to K is a variant of least-
squares method permitting to avoid the error-caused 
incompatibilities in the simultaneous equations, overestimate 
their system by involving r>>n equations, and increase the sam-
ple representativity and accuracy of solution [15]. The equation, 

(K - λj E) Xj = 0,     (10)  
E is the matrix unit, has n real roots only. The eigenvectors are 
orthogonal, (Xq  Xs) = 0 at q ≠ s, and usually normalized to unity, 
(Xq  Xq) = 1. Their weights for i-th experimental curve are:  
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The eigenvalues λj obtained are positive and their sum, the spur 
of the matrix K, is equal to the whole variance of initial data: 
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k ii  is the element of the principal diagonal of K. An eigenvalue is 
equal to the spread accounted for by a respective eigenvector: 
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where Xj' is transposition of Xj. It is common to number the 
eigenvectors in the order of decreasing eigenvalues λj.  

If the experimental dependencies (1) had included no instrumental 
error, the kernel of Eq. (7) would have degenerated [11]. If the 
contributions of l 'process functions' are non-correlated even if in 
part, the number of the expansion terms is l. Since 
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the left part of Eq. (7) is as follows: 
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are connected by a linear transform with the equivalent basis of 
the constituent process functions:  
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Figure 3. Principal components of D(logE/Es) curves: 
various materials and development conditions (1, 2, 3); 
technological variability of a material (1´,2´,3 )́. 

The first ? eigenvectors, capable of describing the experimental 
curves within their instrumental error, are called the principal 
components. If the experimental variance has a more complex 
structure than Eq. (1), the number of eigenfunctions will be the-
oretically infinite. Since an n-dimensional experimental vector is 
formally a random linear combination of n delta-functions [12], 
the maximum number of eigenvectors is restricted by n. Due to 
the optimal expansion properties, the description error,  
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tends to the instrumental error and the further (n - p) eigenfunc-
tions is commonly neglected.  

In the physical case of Eq. (1), the extra (n - l) eigenvectors are 
induced by the instrumental error. With no error,  p is equal to l 
or may be in principle less than l. If the weights, ak, of two 
process functions are proportional to each other in a sample, they 
cannot be distinguished and a principal component disappears. If 
two of the process functions, ϕk (t), are similar, they also cannot 
be distinguished. For the process functions normalized to unity, 
the condition not to degenerate is: 
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The l principal components, Xj, of a sample of experimental curves 
can be transformed into the principal components, Zu, of another 
sample with an orthogonal matrix, G (l, l). Its elements, 
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are correlation factors between respective elements of principal 
components and characterize redistribution of process weights, 
M [ak ar]. The instrumental error, σe, declines G(l, l) from the 
orthogonal properties and the sums of gju

2 in any column or line 
of matrix G be less than unity by ∆j ≥ 0. The description error of 
an element of Xj with vectors Zu is as follows:  
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What ∆j should result from the instrumental error, σe? Let the 
spread of an element of  Xj  be of the same order as the spread of 
the mean, Ym, in a sample of r curves, σj ≈ σe /(rλj)

1/2. Then the 
error of  gju would be about:  
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and the spread of the sums of 2
jug  in any line or column of G: 
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The relation was confirmed with using two artificial sets of fun-
ctions (1) at  l = 3  and the 'instrumental error' generated as nor-
mally distributed random numbers. The ∆j values of transforma-
tion matrix practically coincided with those from Eq. (22).  

3. THE ROTATION CRITERIA 
If the experimental dependencies under study obey Eq.(1), some 
mathematical properties of the process functions, ϕk (t), can be 
detected from its principal components. If within the range of t 
from T1

* to T2
*, every ϕk is a linear combination of a non-constant 

function, ϕ∗(t), with a constant, ck : 
ϕk (t) = γk ϕ

*(t) + δk ck ,    (23) 
γk and δk are their weights, there is a linear dependence between 
respective elements of any two principal components there:  
ψj(t) = αjuψu + βju ,     (24) 
αju is a factor, βju is a constant. That can be proved with substi-
tution of relations (23) into Eq. (15). Linear dependencies (24) 
between respective elements of principal components  indicate 
that all the process functions are linear combinations of a con-
stant with ϕ*(t). That can be shown with substituting Eqs. (24) 
into Eq. (16). In the simplest and most probable case, a process 
function is ϕ*(t) and the other (l - 1) process functions are con-
stants, ϕk (t) = ck , within the t range from T1

* to T2
*.  

Thus, if a dependence between the respective values of any two 
principal components is linear from T1

* to T2
*, all of ϕk (t) but one 

are constants or all of them are linear combinations of a constant 
with common ϕ∗(t). Also if:  

a) the respective values of any two principal components are 
proportional to each other, all of ϕk (t) differ by only a factor 
or all of them but one, ϕ∗(t), turn into zero there;  

b) every principal component takes constant values, all of the 
process functions are constants, ϕk (t) = ck , there.  

In the first case, the straight portion or its prolongation goes 
through the origin of coordinates, and in the second case, the en-
tire [T1*, T2*] gathers together practically into a point. It can be 
expected to find extra indicative correspondences between the 
analytical properties of principal component and respective pro-
cess functions. If the properties are expressed in at least l points, 
Eq. (16) gives l simultaneous linear equations with l unknown 
factors, α jk , and the entire process functions, ϕk (t), can be calcu-
lated as linear rotations of principal components. An equation 
follows from the normalization condition of process functions 
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that are determined up to a factor like the principal components 
themselves. After α jk are obtained, the rest of a process function 
can be calculated with using Eq. (16).  

If a process function has a constant weight in all the sample 
dependencies, it will be lost with the mean, yim, subtracted. If the 
analytical properties of process functions not the data statis tics 
as such are of interest, it can sometimes be advantageous to use 
the symmetric matrix B of initial moments instead of K for no 
principal component to be lost. 

4. A PRACTICAL EXAMPLE  

4.1 A Process and Its Linear Variance 

Consider, for example, the dependencies of optical density, D, of 
photographic image on the logarithm of light exposure, E: 

D = Dmax f(logE/Es) = Dmax f(logE - logEs).   (25) 

The optical densities are additive physical characteristics as the 
logarithms of multiplicative transmission factors. The varying 
light sensitivity, 1/Es, as a non-linear contribution to the experi-
mental variance can be excluded from consideration by a shift of 
experimental curves along the logE axis [1, 8, 9, 16, 17]. The 
dependencies were also known to contain a linear component 
bound with the 'fog', Do, that developed without light exposure 
and added a 'reversal' curve to exposed fields: 

D  = Dmax f(logE/Es) + Do [1 - p fo(logE/Es)],    p << 1.  (26) 

The residual variance of the shifted D(logE/Es) dependencies 
was usually by one to two orders of magnitude larger than the 
instrumental error and its structure remained unclear. 
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Figure 4. Dependencies of elements of second (1) and 
third principal components (2) on the elements of the first 
one at ∆logE = 1.8. Curve 3 is obtained at Do = 0. 

The number of principal components was p = 7 for the depen-
dencies of various silver bromide materials considered with no 
shift along the logE axis. It decreased to 4 after the curves were 
shifted so that their Es formally coincided [16, 17]. So the three 
extra principal components were produced by the formal expan-
sion of the non-linear component of variance caused by different 

light sensitivities. After the log-exposure range was decreased 
from 2.4 to 1.8, the number of principal components became 3. It 
remained the same also for a single photographic material 
considered within a typical technological instability of its deve-
lopment conditions (the primed numbers on Fig. 3) [8]. 

Subtraction of Do (or using the curves with Do = 0) or numerical 
differentiation of D(logE/Es) with respect to logE eliminated a 
principal component. That confirmed a constant Do additively to 
enter Eq.(26) and the non-constant fog contribution, fo(logE/Es), 
to consist of the same constituents as the light dependence itself 
since not to increase the dimensionality of the variance  [8]. 
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Figure 5. Dependencies of elements of second principal 
component on the elements of first principal component, 
∆ logE = 2.4: 1 - D(logE/Es), 2 - derivatives D´(logE/Es)  
with respect to logE.  

To test the linearity of the residual variance, we considered two 
sets of D(logE/Es) curves that strongly differed in the weights of 
constituent process functions. A set of 68 curves represented 
various photographic materials at various development conditi-
ons and another set of 22 curves represented only the technolo-
gical variability of a single photographic material whose curves 
were absent in the first set [8]. The principal components (Fig. 3) 
of the samples strongly differed but their transformation matrix 
declined from the orthogonal properties within the experimental 
error. The sums of its elements squared in a line or column 
differed from unity by 0.001, 0.01, and 0.015 for the first, second, 
and third principal components, respectively. The differences did 
not overcome their values estimated with using Eq. (22): 0.001 for 
the first and about 0.025 for the second and third principal 
components. That proved the D(logE/Es) dependencies  to 
possess the linear structure of experimental variance described 
by Eq.(1). They were further examined to meet the intrinsic 
analytical criteria, which would enable the calculations of 
underlying process functions. 
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4.2 The Rotation of Principal Components 

The dependencies of respective elements of any pair of principal 
components had two characteristic linear portions [8, 9] within 
the log-exposure range of 1.8 (Fig. 4). When the mutual depen-
dencies of principal components indicated an initial constant 
value range (curves 1 and 2), a zero range was indicated after Do 
was absent or subtracted (curve 3). This meant initial zero ranges 
for all the process functions there except for the non-zero 
constant of fog. Within the log-exposure range of 2.4, three linear 
regions were regularly observed (curve 1, Fig. 5). Those in the 
initial part and likely the end part of the experimental curves were 
obviously directed to the origin of coordinates if the derivatives 
of experimental curves were considered (curve 2). 

The dependencies showed that the initial portion of a D-logE 
curve was formed by the fog constant, Do, while all the other 
process functions but one (function II) reduced to zero. In a midd-
le part of D(logE/Es) curves, all the process functions but one 
(function III) were constants and function IV took zero values. 
Within the end portion, all the process functions but function IV 
were non-zero constants. Since the straight portions were expres-
sed in s > l points, we obtained s > l simultaneous equations and 
solved them with respect to the l unknown factors, αjk . 

4.3 The Constituent Processes 

The weighting factors, αjk , substituted into Eq.(16), allowed us to 
calculate the additive constituents II, III, and IV of the experimen-
tal variance of D(logE/Es) curves (Fig. 6). One more process 
curve was the constant bound with the fog . 
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Figure 6. The process functions describing the leap-like 
increases in the development rate with the atom-by-atom 
growth of latent image centers with light exposure. 

The S-shaped process functions, being apart from one another at 
almost identical distances along the logE axis, were confirmed 
further in direct experiments (Fig. 7) [18]. They could be most 
obviously seen on the graphs of the first derivative D´ of experi-
mental dependencies with respect to logE where each of the S-
shaped dependencies turned into a bell-shaped curve. Further 
studies detected up to seven regular components within the log-

exposure range of about 5.5 [19]. At fast penetration of developer 
solution into a gelatin layer, the efficient number of the S-shaped 
process functions grew with decreasing rate of silver reduction in 
a silver bromide microcrystal [18].  
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Figure 7. Derivatives of D-logE dependencies of a pho-
tographic film with respect to logE. The rate of silver 
reduction in a silver bromide microcrystal decreases with 
increasing curve number.  

Mathematical simulation of photolytic growth of silver nanoclu-
sters has shown the same almost identical log-exposure incre-
ments to produce subsequent single-atomic increases in the size 
of the largest silver nanoclusers at a silver halide microcrystal [9, 
19, 20]. The regular S-shaped constituents turned out to be 
regular leaps in the developed silver mass with the atom-by-atom 
growth of the catalytic nanoparticles of photographic latent 
image (the smallest active particle was known to contain four 
atoms) with increasing light exposure. The silver particles turned 
out to occur in two more catalytic states that differed in the 
spaces along the logE axis  [9, 20 - 23]: (a) at another silver salt 
that, unlike silver bromide, had no crystal lattice correspondences 
to them, and (b) after deprived of contact to any initial light-
sensitive salt before development. In the first case, the ∆logE 
spaces were half as large, and in the second case twice as large 
as above. Another example was the optical and chemical com-
ponents of the modulation transfer function of the recording 
media [17, 24].  

5. VARIANCE LINEARITY 
OCCURRENCE  

The variance linearity is not rare. The weights of physical pro-
cesses are dominated by energetics or concentration contributi-
ons that are mostly linear and additive even if the single-process 
functions themselves could be very complex. A threshold varia-
bility component of light sensitivity, a psychophysical percepti-
bility, etc. in a physical or biological system can be removed with 
a shift transform as it was shown above. A data variability, based 
on probabilistic interactions (as in the cases of multi-particle 
absorption of radiation, multi-stage signal transmission, etc.), 
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frequently results in a multiplicative structure variance, which is 
reduced to the additivity with a logarithmic transform.  

The latter case is also relevant to the neural algorithms of iden-
tifying subject or situation features and binding them to make a 
decision how to react. The latest results have demonstrated a 
multiplicative moiety of the neural 'tolerance functions', which 
can be derived from a simple feed-back process that compares a 
variable input with a memorized feature statistics [9, 25 - 27]. The 
multiplicative structure of variance and the characteristic 
constancies of the single-feature tolerance functions [28 - 30] 
appear to be the necessary prerequisites for an efficient decoding 
of the large sets of the EEG, ERG, MfRI, etc. recordings. 

6. SUMMARY 

A statistical procedure is proposed to test if the principal com-
ponents calculated are not simply the first formal terms of an 
infinite expansion to describe experimental dependencies close to 
the measurement accuracy but really indicate a number of 
physical processes contributing to the data variance observed.  

Analytical criteria are proposed and tested that allow indepen-
dently to calculate the functions separately describing the contri-
buting physical processes, basing on intrinsic analytical proper-
ties of the principal components of large sets of experimental 
dependencies with the linear structure of variance above.  

The examination and linearization of variance structure have been 
demonstrated for a complex photochemical system. Its process 
functions calculated were confirmed and physically identified in 
further decisive experiments. Substantial opportunities were 
noted efficiently to apply the procedures above to the analysis of 
electrical brain activities in the course of feature identification, 
binding, and decision-making processes. 
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