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ABSTRACT 

Independent component analysis (ICA) is being increasingly 
applied to functional MRI (fMRI) data. A principal advantage of 
this approach is its applicability to cognitive paradigms for 
which detailed a priori models of brain activity are not 
available. ICA has been successfully utilized to analyze single-
subject fMRI data sets, and we have recently extended this work 
to provide for group inferences. In order to perform group 
analysis, we concatenate the single-subject images in time and 
perform a single ICA estimation, then back-reconstruct 
individual subject maps and time courses. When applied to 
fMRI data acquired during a simple visual paradigm, our group 
ICA analysis revealed task-related components in left and right 
visual cortex, a transiently task-related component in bilateral 
occipital/parietal cortex, and a non task-related component in 
bilateral visual association cortex. In this work, we develop three 
important areas needed for applying ICA to group data: 
separability, stationarity, and inference. Our results further 
demonstrate the utility of using such a method for making group 
inferences on fMRI data using ICA. 

1. INTRODUCTION 

Independent Component Analysis (ICA) is being increasingly 
applied to fMRI data [1,2]. ICA as applied to fMRI data can be 
used to separate either spatially [3] or temporally [4] independent 
sources and works well in both situations when appropriate 
assumptions are met [5,6]. We have recently developed an 
approach for performing an ICA analysis on a group of subjects 
[7,8]. This process is complicated by the different processing 
stages involved in the ICA analysis as well as the computational 
burden involved. For example, when using the general linear 
model, the investigator specifies the regressors of interest, and so 
drawing inferences about group data comes naturally, since all 
individuals in the group share the same regressors. In ICA, by 
contrast, different individuals in the group will have different 
time courses, and so it is not immediately clear how to draw 
inferences about group data using ICA. We present a model that 
facilitates the extension of ICA to group studies and discuss three 
important properties of such an analysis. First, group ICA relies 
upon the separability of the estimated mixing matrix across 
subjects. We discuss the implications of such a property and 
present simulation results demonstrating separability. Secondly, 
the ICA model we apply assumes stationary sources. While this 

is a reasonable assumption for some sources of interest, other 
sources are likely to be nonstationary. We discuss the 
implications of such a case and present simulation results 
demonstrating that the stationary sources can still be recovered. 
Finally, our method for making inference involves testing the 
amplitudes of the components maps across subjects. We discuss 
the important of scaling these maps by the norm of the time 
courses and compare these results with an analysis in which the 
ICA time courses are used in a regression analysis. In this work 
we focus on spatial ICA (i.e., calculation of spatially independent 
brain sources mixed by the hemodynamic response) although our 
methods can be applied to temporal ICA as well. We first review 
our Group ICA model. 

2. THEORETICAL DEVELOPMENT 
2.1 A group ICA model 

We introduce the model in Figure 1 for discussion of group ICA. 
In the data generation block we assume that there is a set of 
statistically independent hemodynamic source locations in the 
brain (indicated by ( )is v  at location v , a continuous number 
spanning the image space, for the thi  source). The sources 

 ( ) ( ) ( ) ( )1 2, ,...,
T

p p p p N pv s v s v s v =  s  (1) 

have weights that specify the contribution of each source to each 
voxel (at locations indicated by pv , defined on [ ]0, D  for the 

thp  subject, where D  is the size of the image); these weights are 
multiplied by each source’s hemodynamic time course. Finally, it 
is assumed that each of the N  sources are added together so that 
a given voxel contains a mixture of the sources, each of which 
fluctuates according to its weighted hemodynamic time course. 
This linear mixing is represented by the system, A , and yields 

 ( ) ( ) ( ) ( )1 2, ,...,
T

p p p p N pv u v u v u v =  u , (2) 

which represents N  ideal samples of the signals ( )iu v  at 
location v , for the thi  source. 

The first portion of the data generation block takes place within 
the brain. The second portion of the data generation block 
involves the fMRI scanner. We assume that K  discrete time 
points were acquired with the scanner and that there are more 
time points acquired than there are sources in the brain. The 
sampling of the brain’s hemodynamics with the fMRI scanner 
results in 
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 ( ) ( ) ( ) ( )1 2, ,...,
T

p p p p K pi y i y i y i =  y  (3) 

where the fMRI data is discretely sampled in space (at locations 
indicated by 1,2,...,pi V=  for the thp  subject, where V  is the 
number of voxels). 

The post-processing block is the primary concern of this work. 
The stages of analysis include a) preprocessing/spatial 
normalization, b) data reduction, c) estimation of independent 
components, and d) thresholding/presentation of the results. In 
the first stage (a), we have a transformation ( ).T  representing a 
number of possible preprocessing stages, including slice phase 
correction, motion correction, spatial normalization to a standard 
template brain [9], global scaling and smoothing. Following this 
stage, the effective spatial sampling for all subjects is indexed by 

1,2,...,j M= , so that we now have 

 ( ) ( ) ( ) ( )1 2, ,...,
T

p Nj y j y j y j=   y  (4) 

The second stage (b) consists of data reduction. Two reduction 
steps, one on data from each subject ( 1 1

1
ˆ ˆ... M

− −F F ) and one on an 
aggregate data set ( 1ˆ −G ), are used to reduce the computational 
load of simply entering all subjects’ data into an ICA analysis 
prior to reduction. In the third stage (c), estimation of 
independent sources is performed. The fourth stage (d) involves 
grouping components across subjects and thresholding the 
resulting group ICA images. 

 
Figure 1: Model for Group ICA Analysis 

To perform the group analysis, we make the assumption that the 
data collected from individual subjects are statistically 
independent observations. Thus ( ) ( ) ( ),xy x yp x y p x p y=  where 

( )
,i i x y

p i
=

 is a probability density function (pdf) of a source from 
subject i  and ( ),xyp x y  is the joint pdf for the same source for 
subjects x  and y . Each subject is thus treated as an observation 
of the statistics of the population. Given this assumption, we will 
demonstrate that the unmixing matrix produced from the group 
ICA analysis will be largely separable across subjects. 

2.2 Separability 

We suggest entering all subjects into a single ICA analysis thus 
producing a single set of “group” components that can then be 
interpreted. The computational load of such an analysis can be 
decreased considerably by the incorporation of two data 
reduction stages as indicated. The data from the individual 
subjects are first reduced in dimension; these reduced data, from 

all subjects, are then concatenated in time. This data set is then 
further reduced resulting in a matrix that can be used in an ICA 
estimation stage. 

The ICA maps from individual subjects are then back-
reconstructed from the aggregate mixing matrix. A natural 
question which arises is how much the mixing coefficients 
associated with one subject are affected by the other subjects. 
Consider data in a voxel sampled at two time points from two 
subjects (subject x  and subject y ), [ ]1 2x x x=d  and 

[ ]1 2y y y=d , each of which is a normalized linear mixture of two 
hemodynamic sources. If we concatenate these subjects into a 
single vector, we have 

 
T

x y =  d d d  (5) 

The data reduction and ICA analysis result in a mixing matrix 

 3 41 2

3 41 2
x y

α αα α
β ββ β

 
 = =   

 
W W W  (6) 

and an estimate of the original sources ˆ =s Wd  where W  is 
partitioned to depict the submatrices corresponding to the 
original mixed sources. To back-reconstruct the individual 
subject maps we multiply the partition of W  corresponding to 
the desired subject’s data with the corresponding partition of d  
(e.g. x x x=s W d ). 

Since the goal of ICA is to yield independent components, the 
rows of ŝ  will be approximately statistically independent. 
Additionally, data from each subject is expected to be 
independent of each other. Then, we write the expression for ŝ  

 11 12

21 22

ˆ
s s
s s

+ 
=  + 

s  (7) 

where we have defined 11 1 1 2 2s x xα α= + , 21 1 1 2 2s x xβ β= + , 
12 3 1 4 2s y yα α= + , 22 3 1 4 2s y yβ β= + , and first note the statistical 

independence of 11s  and 22s  (and 12s  and 21s ). Since the ICA 
algorithm minimizes the dependence between the signals (rows 
of ŝ ), the dependence between 11s  and 21s  (and 12s  and 22s ) 
will be minimized by more heavily relying on the data within that 
subject, forcing the parameters for each subject to be primarily 
determined by that subject’s observations. Thus, the individual 
unmixing matrices will be approximately separable across 
subjects (partitions) and the back-reconstructed data will be a 
function of primarily the data within subjects rather than across 
subjects. 

We now consider the full model. Let 1
i i i

−=X F Y  be the 
L by V− −  reduced data matrix from subject i , where iY  is the 
K by V− −  data matrix (containing the preprocessed and 
spatially normalized data), 1

i
−F  is the L by K− −  reducing 

matrix (determined by the PCA decomposition), V  is the 
number of voxels, K  is the number of fMRI time points and L  
is the size of the time dimension following reduction. Note that 
all inverses are considered to be psuedoinverses if the matrix is 
not square. 

The next step is to concatenate the reduced data from all subjects 
into a matrix and reduce this matrix to N  (the number of 
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components to be estimated). The N by V− −  reduced, 
concatenated matrix for the M  subjects is 

 

1
1 1

1

1
M M

−

−

−

 
 =  
  

F Y
X G

F Y
. (8) 

where 1−G  is an N by LM− −  reducing matrix (also determined 
by a PCA decomposition) and is multiplied on the right by the 
LM by V− −  concatenated data matrix for the M subjects. 

2.2.1 ICA Estimation 

Following ICA estimation, we can write ˆ ˆ=X AS , where Â  is 
the N by N− −  mixing matrix and Ŝ  is the N by V− −  
component map. Substituting this expression for X  into 
equation 8 and multiplying both sides by G , we have 

 

1
1 1

1

ˆ ˆ

M M

−

−

 
 =  
  

F Y
GAS

F Y
. (9) 

2.2.2 Partitioning 

Partitioning the matrix ˆGA  by subject provides the following 
expression 

 

1
1 1 1 1

1

ˆ
ˆ

ˆ M MM M

−

−

   
   =   
   

  

G A F Y
S

F YG A

. (10) 

We then write the equation for subject i  by working only with 
the elements in partition i  of the above matrices such that 

 1ˆ ˆ
i i i i i

−=G A S F Y . (11) 

The matrix ˆ
iS  in equation 11 contains the single subject maps 

for subject i  and is calculated from the following equation 

 ( ) 1
1ˆ ˆ

i i i i i

−
−=S G A B X . (12) 

2.2.3 Single-subject maps and time courses 

We now multiply both sides of equation 11 by iF  and write 

 ˆ ˆ
i i i i i=Y FG A S , (13) 

which provides the ICA decomposition of the data from subject 
i , contained in the matrix iY . The N by V− −  matrix ˆ

iS  
contains the N  source maps and the K by N− −  matrix ˆ

i i iFG A  
is the single subject mixing matrix and contains the time course 
for each of the N components. 

2.3 Stationarity 

We have assumed throughout that the sources are stationary; that 
is their distributions do not change with time (or across subjects). 
It is reasonable to assume that the signals of interests (e.g. 
activation due to a specific task or of a specific brain network) 
will be largely stationary (this is the basic motivation for group 
inference in the first place). In practice, this is not the case for 

subject specific signals such as motion or physiologic noise. That 
is, there are non-stationary signals present in the data as well. 
But, how do the presence of non-stationary signals affect the 
group analysis? Consider two sources again, one containing 
stationary brain activation and one having a subject specific 
distribution. Assuming independence of the sources, the 
estimated source distributions may be written as: 

 ( ) ( ) ( )
( ) ( )

1 2

1 2

ˆ ˆ
ˆ ;

ˆ ˆ
i

i

p s p s i x
p i

p s p s i y
 ==  =

s  (14) 

where ( )ˆ ;p is  is the pdf for subject i , ( )1p̂ s  is the estimated pdf 
for source 1 and ( )2ˆ ip s  is the estimated pdf for source 2. Using 
a stationary source model, it is not possible to estimate the 
nonstationary source distributions correctly. However the source 

1s  can still be estimated. This can be seen by writing the 
histogram estimated source pdf: 

 ( ) ( ) ( )1 2
1

1ˆ ˆ ˆ
M

i
i

p p s p s
M=

= ∑s , (15) 

The time varying portion of the source pdf is collapsed across 
time and the resulting individual source distributions are based 
upon the entire data. Thus we are able to estimate 1s , but the 
other source will have a distribution that is averaged across 
subjects. This is not a physiologically meaningful source and can 
be considered noise. It is useful to consider that some of the 
sources that are difficult to interpret in ICA of fMRI data may be 
due to nonstationary sources. This result will also be 
demonstrated in a simulation. 

2.4 Inference 

Thresholding the resulting group ICA maps using a Z -threshold 
criterion as suggested for single subject analysis [3] provides 
information about which regions are contributing significantly to 
an individual component map. In a group study, we are interested 
in which components are consistently contributing significantly. 
We thus suggest reconstructing single subject ICA maps from the 
group ICA estimation and calculating the mean and variance of 
each component across subjects, where the variance across 
subjects is used as an estimate of the population variance [10]. A 
hypothesis test can then be used to provide a “random effects” 
inference: the magnitudes or weights of the voxels within a set of 
ICA components are treated as random variables and a one-
sample t -test with the null hypothesis of zero magnitude is 
performed. This is related to general linear model approaches in 
which the estimated amplitudes are tested for a significant 
difference from zero [11]. As the ICA analysis produces 
estimates of hemodynamic sources, there is a physiologic 
meaning to the results and such an approach is justified. 

Two important points involve normalization. First, we 
recommend as a preprocessing stage scaling the data across 
subjects to the same global mean. The scaling is a function of the 
gain used for the scan acquisition and typically varies between 
scan sessions. Normalizing by the global mean prevents subjects 
scanned with high gains from dominating the analysis. Second, 
the back-reconstructed component maps should be multiplied by 
the standard deviation of the mixing matrix prior to the 

157



 

 

hypothesis test. In most ICA estimation approaches, the 
components are forced to have a standard deviation of 1 and the 
amplitude of the time courses is allowed to vary. As the MRI 
signal strength is the measure of interest, it is desirable to 
normalize the amplitude of the time courses when performing 
inference. This also parallels a regression analysis, in which the 
regressor is normalized and the estimated amplitude is a relative 
measure of the MRI signal strength. This approach provides a 
measure of the amplitude in terms of MRI signal, whereas the 
independent component amplitude is potentially confounded 
with the amplitude of the time course.  

3. EXPERIMENTS AND METHODS 
3.1 Simulated Experiment: Separability 

A simulation was performed to determine how the sources that 
were back-reconstructed from the aggregate mixing matrix would 
compare with sources that were generated from an ICA analysis 
performed separated on each “subject”. In order to determine this 
matrix, we simulated nine “subjects”. Eight of the nine subjects 
only had one source embedded within the data. The ninth subject 
had two sources (similar to the sources in the previous 
simulation). 30 30by− −  spatial “sources” and associated 80-
point hemodynamic mixing time courses were generated for each 
subject. Each source was flattened into a 900-element vector and 
the two subsequently mixed by the hemodynamic time courses, 
resulting in a 900 80by− −  matrix. Zero mean, Gaussian noise 
was then added to the mixed sources such that the contrast-to-
noise ratio (CNR) for the largest simulated fMRI “activation” 
was 3.9, slightly less than half the CNR for our fMRI 
experiment. Each individual “subject” was first reduced from 80 
time points to 20 time points using PCA and the resulting data 
sets were concatenated together into an aggregate data set, 
resulting in a 900 180by− −  matrix. The number of sources was 
then further reduced using PCA to 2, followed by independent 
component estimation. This yielded a set of aggregate 
components and time courses. The individual time courses and 
maps were then reconstructed and thresholded as described 
earlier. Additionally, we performed an ICA analysis on each 
subject individually and generated subjects’ maps for comparison 
with the back-reconstructed maps. 

 
Figure 2: Mixing matrix used for simulation 

3.2 Simulated Experiment: Stationarity 

We designed a simulation to evaluate the effect of nonstationary 
sources upon the ICA estimation. We generated a data set 
containing eight simulated subjects with two sources present. 
One sources was stationary across subjects and the other source 
was stationary within subjects, but varied across subjects. An 
eighty element mixing matrix for each source and each subject 

was generated and used to mix the data. The data were 
concatenated in time and reduced to eight time points, 
concatenated in time, and reduced to two time points followed by 
an ICA unmixing. 

 
Figure 3:  Stationary source (S) and five sources which 

change from subject to subject. 

3.3 fMRI Experiment 

The Johns Hopkins Institutional Review Board approved the 
protocol and all participants provided informed consent. Data 
from nine normal subjects were acquired on a Philips 1.5T 
Scanner. Functional scans were acquired with an echo planar 
sequence (64x64, flip angle=90, TR=1s, TE=39ms) over a 6-
minute period for a total of 360 time points. Nine slices were 
acquired, centered on the occipital pole and the frontal pole. A 
visual paradigm was presented in which an 8Hz reversing black 
and white checkerboard was presented intermittently in the left 
and right visual fields for thirty seconds at a time. 

 
Figure 4: Paradigm for fMRI experiment 

Preprocessing:  The images were first corrected for timing 
differences between the slices using windowed Fourier 
interpolation to minimize the dependence upon which reference 
slice is used [12,13]. Next, the data were imported into the 
Statistical Parametric Mapping software package, SPM99 [14]. 
Data were motion corrected, spatially smoothed with a 6x6x10 
mm Gaussian kernel, and spatially normalized into the standard 
space of Talairach and Tournoux [9]. The data were slightly 
subsampled to 3x3x4mm, resulting in 53x63x34 voxels. For 
display here, slices ten through twenty-five were presented. 

ICA: An AIC/MDL estimation on two subjects was performed 
which predicted in both subjects fewer than 40 sources. Data 
from each subject were reduced from 360 time points to 40 time 
points using PCA. The results are not very sensitive to the 
reduction parameter, however the original data should not be 
overly reduced to avoid losing important information. Data from 
all subjects were then concatenated and this aggregate data set 
was entered into an AIC/MDL estimation to determine the 
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number of sources existing in the group data. The aggregate data 
were then reduced to this dimension using PCA, followed by an 
independent component estimation using an algorithm which 
attempts to minimize mutual information [1]. Time courses and 
spatial maps were then reconstructed for each subject and the 
spatial maps were thresholded at p <0.001 ( t =4.5, df =8). 

4. RESULTS 

Results from simulation 1 are presented in Figure 5. ICA spatial 
maps generated from individual subjects were very similar to 
spatial maps back-reconstructed from the aggregate mixing 
matrix. 

 
Figure 5: Comparison of individual ICA maps for nine 
simulated subjects with back-reconstructed ICA maps 

Results from simulation 2 are presented in Figure 6. The 
stationary source estimate was remarkably good. The non 
stationary sources were all captured in the same component and 
represented a time averaged source distribution. 

 
Figure 6: Estimated sources for data containing 

stationary (left) and non stationary (right) sources. 

Group maps for the fMRI ICA analyses are presented in Figure 7. 
The number of components was estimated to be twenty-one by 
both MDL and AIC so the aggregate data were reduced to this 
dimension and twenty-one components were estimated. Both 
maps are thresholded at p <0.001 ( t =4.5, df =8). There were 
several interesting components within the data. Separate 
components for primary visual areas on the left and the right 

visual cortex (depicted in red and blue, respectively) were 
consistently task-related with respect to the appropriate stimulus. 
A large region (depicted in green) including occipital areas and 
extending into parietal areas appeared to be sensitive to changes 
in the visual stimuli. Additionally we identified visual 
association areas (depicted in white) that were consistently 
detected across the group of subjects, however the time courses 
were not task related. 

 
Figure 7: fMRI Group ICA results 

5. SUMMARY 

We have presented a method for making group inference maps 
through the application of independent component analysis to 
fMRI data. We have applied it to a simple visual paradigm and 
identified several distinct visual areas which were either 
consistently task-related, transiently task-related, or correlated 
but non task-related. 

Starting from the assumption that data from subjects represent 
independent observations, we have demonstrated that the 
aggregate mixing matrix is separable across subjects. We have 
also demonstrated that group ICA of fMRI data can be used to 
estimate sources of interest even when other sources (such as 
motion or other artifacts) are not stationary. Fortunately, most 
fMRI sources of interest are largely stationary across subjects 
due to the fMRI paradigm design. 

The most powerful aspect of group ICA lies in the ability to 
make inferences about a group of subjects. The application of a 
preprocessing stage in which the global average for each 
subjects’ data is normalized to the same value as well as 
normalization of the back-reconstructed spatial maps by the time 
course variance is emphasized. 

In conclusion, we have extended independent component 
analysis of fMRI data to provide for group inferences. Our 
method has general applicability, is straightforward to apply, and 
should be computationally reasonable for many fMRI group 
studies. 
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